
Annotated Trees and their Applications to XML Compression

Tomasz Müldner1, Jan Krzysztof Miziołek2 and Tyler Corbin1

1Jodrey School of Computer Science, Acadia University, Wolfville, B4P 2A9 NS, Canada
2Faculty of Artes Liberales, University of Warsaw, Warsaw, Poland

Keywords: XML, Tree Compression using Annotated Trees, Permutation-based XML Compression.

Abstract: Permutation based XML-conscious compressors permute the input document to improve the compression
ratio and support efficiency of operations, such as queries or updates. One such compressor, XSAQCT, uses
the properties of the permuted document, called an annotated tree, to these operations. This paper provides
the formal background for the definition of an of D. It also provides an algorithm for creating an annotated
tree for the XML document and its reverse algorithm, and discusses a measure of compressibility using an
annotated tree. The theoretical and algorithm approaches are followed by the experimental results showing
compressibility of annotated trees and a general analysis of semi-structured data and XML compression.

1 INTRODUCTION

A tree is one of the most important and popular
structures in computing, used to represent the re-
lations between nodes. Therefore, there has been
considerable research on succinct representation of
trees while allowing various operations on these
trees to be efficiently performed, see (Chen and
Reif, 1996), (Bille et al., 2013), (Jacobson, 1989)
and (Benoit et al., 1999). The eXtensible Markup
Language, XML (XML, 2013), is one of the most
popular data formats for the serialization of tree
data structures and for the storage of relational data.
Since XML documents are hierarchal and acyclic
in nature, there have been numerous attempts to
apply techniques used for general tree compression
to XML, see e.g., (Busatto et al., 2005), (Ferragina
et al., 2009) and (Busatto et al., 2008). A specific
subset of tree-compressors designed specifically for
XML (or semi-structured data in general) are called
XML-conscious compressors, e.g., XQueC (Arion
et al., 2007). These compressors typically parse the
XML, and either sequentially build a model during
compression or build a model and then compress
the contents. XML-conscious permutation-based
compressors permute the input document during a
pre-order traversal and apply a partitioning strategy
to group content nodes into a series of data containers
compressed using a general-purpose compressor (a
back-end compressor). For example, XML compres-
sor XSAQCT is a permuting and streamable XML

compressor, see (Müldner et al., 2009). The compres-
sion starts with SAX-based parsing to permute the
input into a compressed form of the XML tree, called
an annotated tree. Then it is followed by storing data
values in data containers and compressing data using
a back-end compressors (such as GZIP (GZIP, 2013)
or BZIP2 (bzip2, 2013)).

The annotated tree in XSAQCT can be considered
to be a high level index, which was proved to be
useful for various applications, e.g., updates, online
rather than offline compression see (Corbin et al.,
2013), and parallelization of the implementation.
However, the formal definition of this mapping was
never provided nor was the proof that it can be
reversed. These questions are very important because
without answering them, the compression process
used by XSAQCT is not known to be lossless. This
paper fills in these gaps, by providing a formal
definition of a tree and an annotated tree, and the
mapping τ from a labelled tree to the annotated tree,
as well as the proof that τ is injective and can be
inverted. An algorithm to create an annotated tree and
its reverse are provided, followed by the discussion
of the compressibility measure of this approach along
with experimental results and a general analysis of
XML compression.

Contributions. There are several novel contribu-
tions of this paper: (1) The theoretical part, i.e., the
formal background for the definition of an annotated
tree and a proof that the mapping from a tree to the

27Müldner T., Miziołek J. and Corbin T..
Annotated Trees and their Applications to XML Compression.
DOI: 10.5220/0004839900270039
In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 27-39
ISBN: 978-989-758-023-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

annotated tree is injective, and therefore, the anno-
tated tree for the labelled tree D provides a faithful
representation of D; (2) An application of of the an-
notated tree methodology with respect to XML, i.e.,
a formal proof that XSAQCT’s compression process
is lossless; (3) The algorithmic approach, i.e., the al-
gorithm which inputs an arbitrary (cyclic or not) tree
and outputs an annotated tree, and the ”inverse” al-
gorithm for XML, which inputs an annotated tree for
the XML document, and outputs this document; (4)
Quantification of text trees and a discussion of mutual
information; (5) A compressibility measure defining
the cost of using annotated trees and results of test-
ing using an especially designed XML suite, show-
ing high compressibility; and (6) General analysis of
XML compression.

This paper is organized as follows. Section 2 in-
troduces the formal background for this paper, includ-
ing a definition of a tree and an annotated tree. Sec-
tion 3 provides a description of trees with text el-
ements. Section 4 provides algorithms implementing
various mappings and shows time complexity of these
algorithms. Section 5 provides results of testing and a
general analysis, and finally Section 6 provides con-
clusions and describes future work.

2 TREES AND ANNOTATED
TREES

2.1 Labeled Trees

Definition 1. Let Σ be an alphabet, called the label
alphabet. A labeled tree is an ordered tree with nodes
labeled by strings from Σ∗ and having arbitrary de-
grees (i.e., number of children).

In what follows, by a tree we mean a labeled tree,
and by Trees we denote the set of all trees. We use
the letter D to denote a tree, with nodes denoted by
lower-case letters x,y,u,v (with indices when needed)
and by x(a) we denote a node x labeled with a. Let
Label(x) denote the label of the node x, Height(D)
denote the height of D, Nodes(D) denote the set of
all nodes of D, and Di be the tree consisting of all
nodes and edges in D at levels 1, . . . , i,where1 ≤ i ≤
height(D). Example of a tree is shown in Figure 1.
Definition 2. A path in a tree is defined to be of the
form /x1/x2, . . . ,/xk, where x1 is the root of D and for
1 ≤ i < k,xi+1 is a child of xi.

We use a lower-case letter p (with indices when
needed) to denote a path and Paths(D) to denote the
set of all paths in D. For the path p = /x1/x2, . . . ,/xk,
let Length(p) be the number of nodes in the path p,

Figure 1: Example of a tree D.

Last(p) be the last element xk, Label(p) = Label(xk)
be the label of p, and for Length(p)> 1, let p↓ be the
path p except the last element.

Definition 3. Two paths in the tree D, p1 =
/x1/x2 . . ./xk and p2 = /y1/y2 . . ./yn are called sim-
ilar if k = n, x1 = y1 is the root of D and for 1 ≤ i ≤
k,Label(xi) = Label(yi).

The similarity relation is an equivalence relation
and we denote by JpK the equivalence class of p, by
Similar(D) the quotient set of this relation, i.e., the
set of all different sets of similar paths. For p ∈
Paths(D) let Length(JpK) = Length(p) be the length
of the equivalence class, Label(JpK) = Label(p) be
the label of the class (it is easy to see that both def-
initions of the length and the label of an equivalence
class are well defined, i.e., independent of the choice
of the path p from the equivalence class). Finally, for
q ∈ Similar(D) let |q| be the number of paths in q,
and Last(q) be the sequence of nodes that are last el-
ements of all paths in this class, ordered from left to
right. Clearly, |Last(q)|= |q|.

In Figure 1, Similar(D) = {J/xK, J/x/y1K,J/x/y1/u1K, J/x/y1/u3K, J/x/y1/u3/v5K,J/x/y1/u1/v1K, J/x/y1/u1/v2K, J/x/y1/u2/v4K,J/x/y1/u1/v1/w1K,J/x/y1/u1/v3/w2K} and for
p = /x/y1,JpK = {/x/y1,/x/y2}; Length(JpK) = 2,
Label(p) = b, Last(JpK) =<y1,y2>, and |JpK|= 2.

Definition 4. A partial relation ≺ in the set
Similar(D) is defined as follows: Jp1K ≺ Jp2K
iff Length(Jp1K) = LengthJp2K) > 1,Jp1↓K =Jp2↓K,Label(Jp1K) is different from Label(Jp2K),
and there exist paths p1 ∈ Jp1K and p2 ∈ Jp2K such
that the node Last(p1) is the left sibling of the
node Last(p2). The tree D has a cycle if there exist
q1,q2 ∈ Similar(D) such that q1 ≺ q2 and q2 ≺ q1. D
is acyclic if it does not have a cycle.

For D in Figure 1, J/x/y1/u1/v1K ≺J/x/y1/u1/v2K, while J/x/y1/u1K and J/x/y1/u3K are

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

28

not in relation ≺. There would be a cycle in D if
there was a node u0(e) between nodes u1 and u2. By
Acyclic we denote the set of all acyclic trees.

When it does not lead to confusion, a tree can be
represented using a simplified notation (used e.g. for
XML), by omitting node names, e.g., replacing y1(b)
by b1. In this notation, an equivalence class JpK will
be denoted using the label Label(JpK), in upper case,
e.g., for D from Figure 1, J/x/y1/u1/v1K will be de-
noted by E.

2.2 Annotated Trees and g-trees

A tree D can permuted to create an annotated tree
with nodes represented by equivalence classes of the
similarity relation. In the worst case, if for each
q ∈ Similar(D), |q| = 1 then the size of D would be
the same as the size of the corresponding annotated
tree. However, typically XML documents are regular,
i.e., for majority of paths q ∈ Similar(D), |q| ≫ 1 and
the annotated tree provides a compressed representa-
tion of D. For a single tree D, there may be more than
one annotated tree such that each such annotated tree
can be mapped back to D. To formalize this idea, in
this section we define annotated trees and annotated
g-trees. Then we define two mappings, an injective
mapping from the set of trees to the set of annotated
g-trees and an injective mapping from the set of anno-
tated g-trees to set of subsets of annotated trees. Fi-
nally, we define annotated text trees and a mapping
from text trees to the annotated text trees. In this sec-
tion we consider only acyclic trees, but in Section 4
we provide algorithms for all types of trees. In what
follows, by a dag we mean an acyclic digraph.
Definition 5. An annotated tree is an ordered tree
with nodes additionally labeled by annotations (se-
quences of non-negative integers). An annotated g-
tree is an unordered tree A (i.e., children are not or-
dered) such that (1) nodes of A are dags; (2) each
dag G ∈ Nodes(A) except the root has its nodes an-
notated; and (3) for every node H ∈ Nodes(A) and
for every child G of H there exists exactly one node
n ∈ Nodes(H), called the source of G, and different
children of H have different sources.

Nodes in the annotated tree are denoted by upper-
case letters (with indices where appropriate), e.g.,
X(n)[α1, . . . ,αj] denotes a node X labeled with the
label n and annotation [α1, . . . ,α j] or in a simplified
notation it is denoted as the node N[α1, . . . ,α j]. Let
AnnotationSum(X) = ∑ j

i=1 αi be the sum of all an-
notations of the node X . By Annotated we denote
the set of all annotated trees. Two examples of an-
notated trees (using a simplified notation) are shown
in Figure 2 and Figure 3. As we will explain it later,

Figure 2: Annotated tree.
Figure 3: Another an-
notated tree.

both these trees represent the same tree D from Fig-
ure 1. Example of an annotated g-tree is given in Fig-
ure 4 (the source of a node is shown using a dashed
arrow). By Annotated−G we denote the set of all an-
notated g-trees and by a chain we mean a rooted dag
such that each node except the root has the in-degree
one and each node except one designated node called
the sink has the out-degree one; the sink has the out-
degree zero. The reason for defining g-trees is that
a dag G, which is a chain, will have its nodes repre-
senting children of the source (in left-to-right order)
of G. If a dag G is not a chain then G needs to be
topologically sorted for our usage. For example, in
Figure 4 the topological sorting of the dag containing
nodes E,F and G may produce the chain E,F,G and
these three nodes can be made children of the source
of this graph, i.e., the node C.

Figure 4: Example of a g-tree.

2.3 Tree Isomorphism

Since we will show that the mapping from the set of
trees to the set of g-trees is injective, we need to define
the concept of ”identical” or isomorphic trees, which
differ only in names of the corresponding nodes. We
use a similar concept for annotated trees and g-trees.

Definition 6. Two trees D1 and D2 are isomorphic iff
they have the same height h and for each level i,1 ≤
i ≤ h, the sequence of all nodes <n1, . . . ,n j> (in left-
to-right order) in D1 at level i and the sequence of all

Annotated�Trees�and�their�Applications�to�XML�Compression

29

nodes <m1, . . . ,mk> (in left-to-right order) in D2 at
level i,k = j, and for 1 ≤ r ≤ k, nodes nr and mr have
the same degree and label.

2.4 Mapping Trees to Sets of Annotated
Trees

We define the mapping τ : Acyclic→ Annotated−G
in two steps; first for nodes and the tree structure, and
then for annotations of nodes. Nodes in all dags are
represented by equivalence classes of the similarity
relation and written as JpK(Label(p))[α1, . . . ,α j] or
using a simplified notation Label(p)[α1, . . . ,α j]. If x
is a node in D, which is not a root, then by px we
denote a (unique) path p ∈ Paths(D) which ends in x.
Definition 7. Definition of mapping τ :
Acyclic→Annotated−G. Let D ∈ Acyclic.

• Mapping labeled nodes and the tree structure
1. The root r of D is mapped to the root of τ(D)

defined as a graph consisting of a single nodeJ/rK(Label(r)).
2. For any level i > 1 of D and equivalence

class q ∈ Similar(D) of length i − 1 let Nq, i
denote the set of nodes x in D at level
i such that Jpx↓K ∈ q. Clearly, the sets
{Nq, i : q ∈ Similar(D)} form a disjoint cov-
erage of the set of all nodes in D at level i.
Each set Nq, i is mapped by τ to the single
graph G ∈ Nodes(τ(D)) at the level i; G =
{JpxK(Label(px)} where the source of G is the
node q. For any graph G ∈ Nodes(τ(D)) and
two nodes q1,q2 ∈ G, there is an edge q1=⇒q2
in G iff q1≺q2, (see Definition 4). Since D is as-
sumed to have no cycles, G is acyclic. The node
H ∈ Nodes(τ(D)) is the parent of the node G if
the source of G belongs to the dag Nodes(H).
From the definition of sets τ(Nq, i),H is the
unique parent of G.

• Annotations are defined by induction on the height
of τ(D)

1. The annotation of the root is [1]
2. Assume that annotations are defined up to

the level i,1 ≤ i < Height(D) and for any
equivalence class q of length i, |Last(q)| =
AnnotationSum(q), i.e., the sum of all anno-
tations for the node q is equal to the num-
ber of last elements in all paths in this class.
Consider a dag G at the level i + 1 with the
source X, and a node Y ∈ Nodes(G). Let
Y = JpK(r)[α1, . . . ,α j],X = Jp↓K(m) and k =
AnnotationSum(X). First, we set the number
j of annotations in Y to be k. From the in-
ductive assumption it follows that the sequence

Last(Jp↓K) has k elements s1, . . . ,sk. For 1 ≤
j ≤ k, we define α j to be the number of chil-
dren in D of the node s j which are labeled
with r. It is easy to see that |Last(JpK)| =
AnnotationSum(Y).

Let Treesτ denote the image τ(Acyclic) ⊂
Annotated−G. From the Definition 7, it follows that
any g-tree A ∈ Treesτ, A = τ(D) has the following
properties:

1. Height(D) = Height(A)

2. For 1≤ i≤Height(D),D and A have identical sets
of labels at level i

3. For a dag G ∈ Nodes(A), let X be the source of
G,X = JqK and k = AnnotationSum(Y). Then for
each node Y ∈ Nodes(G), Y = JpK(n)[α1, . . . ,α j]
there exists i,1 ≤ i ≤ k such that αi > 0; j = k, andJq↓K = JpK

4. If a node q is not a source of any dag, then all
nodes in the sequence Last(q) are leaves in the
tree D.

For the tree D from Figure 1, the g-tree τ(D) is
shown in Figure 4. From Property 1 it follows that the
height of a g-tree for the document D is the same as
that of D; however typically these trees have different
width and therefore represent a compressed form (see
more in Section 5).

Theorem 1. The mapping τ : Acyclic→Treesτ is in-
jective.

Proof. We will define the mapping τ−1 :
Treesτ→Acyclic such that τ−1◦τ = τ◦τ−1 is an
identity mapping, i.e., it maps a tree to an isomorphic
tree. Let A ∈ Treesτ. Then τ−1 is defined inductively
on levels i of A:

1. for i = 1, let the root of A be a graph G consisting
of a single node X(a)[1]). Then τ−1(G) = x(a)

2. Assume that for all levels i,1 < i <
Height(A),Di = τ−1(A)i ∈ Acyclic. We de-
fine τ−1 : Ai+1→Di+1. Let G be a dag in A
at level i + 1, and Nodes(G) = {Y1, · · · ,Ym},
where for j,1 ≤ j ≤ m, Yj = Jq jK(r j)[α

j
1, . . .,α

j
k],

the node X = JpK(m) be the source of of G ,
k = AnnotationSum(X), and Last(JpK) be the
tuple s1, ...,sk.
For h,1 ≤ h ≤ k we now define τ−1(G) as nodes
in D at the level i + 1 that are children of each
node sh. First, for j,1 ≤ j ≤ m, let Nh, j be the
set of nodes in D at the level i+ 1 consisting of
α j

h nodes in D labeled by r j. We define a partial
order between these sets as follows: for j1 and
j2,1 ≤ j1, j2 ≤ m, Nh, j1 ≺ Nh, j1 iff in G there is

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

30

an arc between Jq j1K and Jq j2K. Finally, children
of sh are nodes from sets Nh, 1, . . . ,Nh, m defined
as follows: (1) within each set Nh, j, nodes are ar-
bitrarily ordered and appear one after another; (2)
for any two sets Nh, j1 and Nh, j2 all nodes from
Nh, j1 appear to the left of all nodes in Nh, j2 iff
Nh, j1 ≺ Nh, j2 ; and (3) for any set Nh, j which is
not in the relation ≺, we arbitrarily place children
from this set to appear after all nodes from sets
which are in this relation with another set.

Clearly the tree τ−1(A) is acyclic and for D ∈
Acyclic,τ−1◦τ(D) = D, for A ∈ Treesτ, τ−1◦τ(A) =
A.

Next, we define the mapping γ :
Treesτ→2Annotated−G. Let T S(G) be the set of
all topological sortings of a dag G, and for G1, · · · ,Gn
P(G1, . . . ,Gn) be a Cartesian product ×n

i=1T S(Gi).
If <g1, . . . ,gn> ∈ P(G1, . . . ,Gn) then each graph gi
represents a topologically sorted graph Gi.

Definition 8. Mapping γ is defined as follows: For
T ∈ Treesτ, γ(T) = {γ<g1,...,gn>(T) : <g1, . . . ,gn> ∈
P(G1, . . . ,Gn)} where γ<g1,...,gn>(T) is the g-tree T
with all graphs G1, . . . ,Gn replaced respectively by
graphs g1, . . . ,gn, and having the same arcs between
dags (as well as sources) as in the tree T .

Let Treesγ denote the image γ(Treesτ) ⊂
2Annotated−G.

Theorem 2. The mapping γ : Treesτ→Treesγ is in-
jective.

Proof. We will define the mapping γ−1 :
Treesγ→Treesτ s.t. γ−1◦γ and γ◦γ−1 are iden-
tity mappings. It is sufficient to show that each
topologically sorted dag gi with annotated nodes can
be uniquely mapped to the dag Gi. Two different
nodes X [α1, . . .,αk] and Y [β1, . . .,βk] from the dag gi
will be called dependant if there exists m,1 ≤ m ≤ k
such that αm > 0 and βm > 0. Now, let us define
γ−1(gi) to be the graph consisting of the same nodes
as in the graph gi and with the same source, but with
arcs defined as follows: there is an arc X =⇒ Y iff
the node X appears in the topological sort used in gi
before the node Y , and X and Y are dependant.

It is easy to see that each g-tree T ∈ Treesγ is
in one-to-one correspondence with an annotated tree.
Since τ : Acyclic↔Treesτ and γ : Treesτ↔Treesγ,
each tree D can be mapped to the set of annotated
trees, denoted by Annotated(D) and defined by the
composition of τ and γ. It is easy to see that every
annotated tree from the set Annotated(D) represents

Figure 5: Cyclic Tree.

Figure 6: Acyclic tree with
dummy nodes.

Figure 7: The anno-
tated tree with dummy
nodes.

D. For example, both annotated trees shown in Fig-
ure 2 and Figure 3 belong to the set Annotated(D)
that uniquely represents the tree D.

If there is a cycle in D, then we map D to an
acyclic tree with the so-called dummy nodes, denoted
by $. After adding a dummy node to a cyclic doc-
ument D in Figure 5, this tree will be acyclic, see
Figure 6, and it can be mapped to the annotated tree
shown in Figure 7. We do not formally prove that the
mapping from the tree with cycles to a tree with the
dummy nodes is injective but provide Algorithm 1 in
Section 4 showing how cycles can be removed.

3 TEXT TREES AND THEIR
COMPRESSION

Since the procedure of compressing text trees is al-
most identical to the procedure of compressing la-
beled trees, in this section we provide only the de-
scription of how text nodes are dealt with.

3.1 Text Trees

Definition 9. Let ∆ be an alphabet, called the text
alphabet, its elements are \0 terminated strings. A
text tree is a tree with two kinds of nodes; element
nodes labeled by strings from Σ∗ (see Definition 1)
and text nodes labeled by strings from ∆∗ such that
text nodes are always leaves, the root of the text tree
is an element node, and any two sibling text-nodes are
separated by at least one element node.

For text trees we use the same notations as for
trees; text labels are denoted using letter t (with in-

Annotated�Trees�and�their�Applications�to�XML�Compression

31

Figure 8: Text tree.
Figure 9: The anno-
tated text tree.

dices if needed), see Figure 8. By TextTrees we de-
note the set of all text trees, and by AcyclicTextTrees
we denote the set of all acyclic text trees. A text tree
can be used to represent an XML document with text
values represented by labels of text nodes. Text nodes
may or may not be present and now we define com-
plete text trees corresponding to the full-mixed con-
tent of XML documents, see (Müldner et al., 2012).
Definition 10. An element leaf node in the text tree is
the element node that has no element child. A text tree
is called complete if every non-leaf element node has
the left and the right text sibling, and every element
leaf node has exactly one text child node.

The text tree from Figure 8 is complete; it would
not be complete if any of the text nodes were miss-
ing. Note that in XSAQCT when the input XML doc-
ument D is parsed then for any missing text node, a
text node labeled by an empty text (consisting of \0
only) is added. To support a unique representation of
an XML document using this technique, added text
nodes are removed while D is restored. In what fol-
lows, we assume that text trees are complete.

3.2 Compressed Representation of Text
Trees

Definition 11. For a node X in the annotated tree
with m children Y1, . . . ,Ym, m ≥ 0 let Number(X)

= (
m
∑
j=1

AnnotationSum(Yj))+AnnotationSum(X). An

annotated text tree is an annotated tree with nodes
additionally labeled by concatenations of strings from
∆∗, called text labels, such that a text label T of a node
X(a)(T) is equal to the concatenation of Number(X)
text labels.

Example of an annotated text tree is shown in Fig-
ure 9. By AcyclicAnnTextTrees we denote the set of
all acyclic annotated text trees.

3.3 Mapping Text Elements

For every equivalence class JpK, labels of text nodes
that are children of element nodes (in left to right
order) from the sequence Last(JpK) will be concate-
nated into a single text label of the node in the anno-
tated tree that corresponds to this equivalence class.

For example, the text tree shown in Figure 8 will
be mapped to the annotated text tree from Figure 9,
where t1, t2 denotes a concatenation of texts. The rea-
son for mapping text nodes this way is that for query-
ing of the XML documents, the query of the form /X
returns the concatenated texts appearing in this path.

Definition 12. Let D ∈ AcyclicTextTrees and let A
be the image of D under τ (see Definition 7) as if
there was no text nodes in D. Now, for every node
X ∈ A, we will define its text label T such that the
number of texts concatenated in T will be equal to
Number(X). Let τ−1(X), as defined the proof of The-
orem 1, be the sequence x1, . . . ,xk of element nodes,
where k = AnnotationSum(X) and let us consider two
cases:

1. X is a leaf. Then for every 1 ≤ i ≤ k, xi has exactly
one text child, and let T be the concatenation of
labels of these k children. Clearly, Number(X) =
AnnotationSum(X) = k.

2. X is a not leaf, and it has m children, Y1, . . . ,Ym.
Thus, there are Number(X) text children of nodes
x1, . . . ,xk, and we define T to be the concatenation
of labels of these children (in left-to-right order).

Theorem 3. The mapping of text elements is injective.

Proof. Let A be an annotated text tree and D be the
text tree; we will describe how text labels from A are
mapped into the text elements in D. Consider the node
X ∈ Nodes(A) and let k = Number(X). The image
of X under the reverse mapping is the sequence of
element nodes x1, ...,xk. We consider two cases:

1. X(T) is a leaf. Then k = Number(X) =
AnnotationSum(X) and T is a concatenation of k
texts t1, . . . , tk. For every i,1 ≤ i ≤ k, we define a
text child yi(ti) of the node xi.

2. X(T) is a not leaf and it has m chil-
dren Y1(T1), . . . ,Ym(Tm), where T is a con-

catenation of r = (
m
∑
j=1

AnnotationSum(Yj)) +

AnnotationSum(X) texts s1, . . . ,sr. Given a node
x in a tree from AcyclicTextTrees with k element
children y1, . . . ,yk and k + 1 texts t0, . . . , tk, text
nodes are defined as follows: (1) the node labeled
t0 is the leftmost child of the node x, and (2) for
i,1 ≤ i ≤ k, the node labeled ti is the right sibling
of the node yi. Assume that each element node

xi has nri element children, so r = (
k
∑
j=1

nr j) + k.

Now, let us create text children of nodes x1, . . . ,xk
using the above method and consecutive groups of
texts from T , i.e., for x1 and its element children
y1, . . . ,ynr1

we use the first nr1 + 1 texts from T ,

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

32

for x2 and its element children y2, . . . ,ynr2
we use

the next nr2 +1 texts from T , etc.

Clearly the tree τ−1(A) is acyclic and for D ∈
Acyclic(D),τ−1◦τ(D) = D.

4 ALGORITHMIC APPROACH

This section provides the algorithm to create an anno-
tated tree for a fixed labeled tree D, which may or may
not be cyclic. There are two steps in the process of
creating an annotated tree, respectively implemented
by Algorithm 1 and Algorithm 2. After the first step,
when parsing of D is performed, for each set of sim-
ilar paths there will be an associated graph of anno-
tated nodes, which may include (in case of a cyclic
input document) a special annotated dummy symbol
$. The second step uses data created by the first step
to create an annotated tree. We also show the Algo-
rithm 3 for the inverse mapping for XML, which in-
puts an annotated tree for the XML document D and
outputs D.

4.1 Notations and Auxiliary Abstract
Data Types

Recall that x(n) denotes a node x labeled by n in D,
and X(n)[A] denotes an annotated node X labeled by
n with the annotation A. For the path p ∈ P and a
node x∈D, let p/x denotes the path p extended by /x,
and X0(p) denotes the so-called current node (which
could be empty). Recall from Section 2.1 that p↓
denotes the path p except its last element, and from
Section 2.2 that AnnotationSum(X) denotes the sum
of all annotations of the node X . Let A(n) denote
a list of AnnotationSum(X0(p↓))− 1 occurrences of
integer n, i.e., k− 1 occurrences of n, where k is the
sum of all annotations of the current node for the path
p↓. For example, if AnnotationSum(X0(p↓))− 1 is
equal to four, then [A(5),1] denotes the annotation
[5,5,5,5,1]. If X is a node or the dummy node then
by Inc(X, i) we denote the following modification of
the annotation of X : if i = 1 then the last annotation
of X is incremented by one; if i = 0 then ”,0” is added
after the last annotation of the dummy symbol. Let P
be the set of equivalence classes of the similarity rela-
tion (see Definition 3) maintained by the Algorithm 1
(initially, it consists of the equivalence class for the
path /root of D). For every equivalence class q∈P , let
G(q) be a pair consisting of (a graph with annotated
nodes, a dummy node $), and let $(p) denotes the an-
notation of the dummy node for the class JpK. Now,
we define several auxiliary notations and operations:

(1) int insertP(path p) returns 0 if JpK ∈ P ; oth-
erwise it inserts JpK into P , sets G(JpK) to be an
empty graph and empty dummy symbol, and returns
1; (2) Annotatednode insertG(path p, label
n, annotation A) ; (3) node memberG(path p,
label n) returns the unique node X in G(JpK) such
that X is labeled with n; (4) addArc(node X1, node
X2, path p) adds a new arc connecting X1 and X2
in G(JpK); (5) annotation Ann(path p) if the path
p is of the form \root or S(X0(p↓)) is equal to 1 then
return 1, otherwise return the annotation S(X0(p↓))-
1 of 0’s, 1; (6) int reachableG(node X1, node
X2, path p) returns 1 if the node X2 is reachable
from the node X2 in G(JpK), otherwise it returns 0;
(7) sortG(path p) performs a topological sort of
G(JpK); (8) update(path p) for each node X in
G(JpK) performs Inc(X ,0).

4.2 Mapping a Labeled Tree D to an
Annotated Tree

This section presents Algorithms 1 and 2 which map a
labeled tree D, possibly cyclic, into an annotated tree,
which in case of cycles adds dummy nodes labeled
by $ (thus algorithms in this section are designed for
arbitrary trees, rather than for XML trees). Algo-
rithm 1 performs a depth-first search traversal of the
input tree, moving down and up. For the XML docu-
ment D, these actions would be triggered by entering
the beginning of the element, i.e., <x and the end of
the element, i.e., </x . The algorithm maintains the
current path p0 in D, and for each path p in D it main-
tains the set P of paths and associated graphs G(JpK).
It also maintains the current annotated node X0(p) in
G(JpK) and the annotated dummy node.

The Algorithm 1 is initialized by setting the node
x0 to be the root of D and p0 to be the path /x0.
Then it performs a loop moving down and up until it
reaches the root node and there are no more un-visited
children of the root, while maintaing the following
two invariants: (1) The current node X0(p0↓) is not
null; (2) If the algorithm moves down to the node x,
such that the path p/x already exists, then there ex-
ists a unique annotated node X in the graph G(Jp0K)
which has the same label as the label of x. Once the
algorithms complete their actions, the set P stores all
equivalence classes of the similarity relation for D.

Table 1 shows the trace of the execution of Algo-
rithm 1 for the document D from Figure 5, using sim-
plified notation. The current annotated node X0(p) (if
any) is underlined. If the tuple (path q, G(q)) has not
changed, then it is not shown again. The action of go-
ing down to the node x is shown as ↓x and the action
of going up to the node x is shown as ↑x. Each q ∈ P

Annotated�Trees�and�their�Applications�to�XML�Compression

33

will represent a node of the annotated tree, and the
annotated nodes from the graph G(q) will represent
children of these nodes. Algorithm 2 inputs the out-
put of the Algorithms 1 and produces the annotated
tree.

Algorithm 1: Algorithm which maps a tree to a set P
and associated graphs.

Require: x0 = root of D, p0 = /x0, G(Jp0K)=(graph and
dummy node; both empty)

1: function TRAVERSE
2: while true do
3: if current is root and no more nodes then
4: return;
5: end if
6: if moving down to x then
7: p1 = p0/x;
8: if insertP(p1) then // p1 is a new path
9: X1 = insertG(p0, label of x, [A(0),1]);

10: if X0(p0) ̸= /0 then
11: addArc(X0(p0), X1, p0);
12: end if
13: else// p1 is already defined
14: X1 = memberG(p0,label of x);
15: if X0(p0) ̸= /0 AND X1 ̸= X0(p0) then
16: // check if arc can be added
17: if !reachableG(X0(p), X1, p0) then
18: // can add
19: Inc(X1,1);
20: update(p1);
21: addArc(X0(p0), X1, p0);
22: if $(p0) ̸= /0 then
23: Inc($,0);
24: end if
25: else// needs a dummy node
26: if $(p0) ̸= /0 then
27: Inc($,1);
28: else
29: $(p0) = $[A(1), 2];
30: end if
31: update(p0);
32: Inc(X1,1);
33: end if
34: else
35: X0(p0) = X1;
36: Inc(X1,1);
37: update(p1);
38: if $(p1) ̸= /0 then
39: Inc($,0); Inc($,1);
40: end if
41: end if
42: end if
43: X0(p0) = X1;
44: p0 = p1;
45: else// moving up to the node x
46: X0(p0) = /0;
47: p0 = p0↓;
48: end if
49: end while
50: end function

Let n be the number of nodes in the input tree.
The Algorithm 1 is based on DFS-traversal of a tree,
which has O(n) time complexity, with the nested call

Table 1: Trace of the execution of Algorithm 1.

Move p0 p1 JpK : G(JpK), dummy
/a A: /0

↓b1 /a/b1 /a/b1 A: B[1], /0
↓c1 /a/b1/c1 /a/b1/c1 B: C[1], /0
↑b1 /a/b /a/b1/c1
↓d1 /a/b1/d1 /a/b1/d1 B: C[1]→D[1], /0
↑b1 /a/b1/
↑a /a B:, C[1]→D[1], /0
↓b2 /a/b2 /a/b2 A:Y(b)[2], /0

B: C[1,0]→D[1,0], /0
↓d2 /a/b2/d2 /a/b2/d2 B: C[1,0]→D[1,1], /0
↑b2 /a/b2
↓c2 /a/b2/c2 /a/b2/c2 B: C[1,0]→D[1,1]

B: C[1,0,1]→D[1,1,0]
$[1,2]
$[1,2]

↑b2 /a/b2
↑a /a

Algorithm 2: Algorithm which maps a set P and as-
sociated graphs to an annotated tree.

Require: Initially p = \root, X = root(label of the
root of D)[1]

1: function FINALIZE(Path p, Node X)
2: if $(p) ̸= /0 then
3: make the node $(p) a child of X;
4: X = $(p);
5: end if
6: Node R = sort(p); // now G(p) is a chain
7: make annotated nodes in G(p) children of X
8: for every node X1 in G(p) do
9: if G(p) ̸= /0 then

10: Finalize(p/(label of X1), X1);
11: end if
12: end for
13: end function

(line 17) to the function reachableG(), which has
O(|V |+ |E|) time complexity, where |V | is the num-
ber of vertices in the graph passed as a parameter to
the function, and |E| is the number of vertices in this
graph. Therefore, time complexity of this algorithm is
O(n2). Similarly, Algorithm 2 has O(n2) complexity.

4.3 Mapping an Annotated Tree to the
Labeled Tree

Now we present the algorithm 3, which describes for
an XML document a mapping reverse to the previ-
ously described mapping, i.e., it inputs an annotated
tree (possibly with dummy nodes) and outputs the
XML document. The following notations are used:
(1) ann(n): first digit in the annotation of the node n;
(2) chop(n): remove the first digit in the annotation of
n (always 0); (3) dec(n): decrement by one the first

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

34

Algorithm 3: Algorithm which inputs an annotated
tree and outputs the XML document.

Require: Called for the root of the annotated tree
1: function RESTORE(Node c)
2: n = LC(c);
3: while n ̸= /0 do
4: if ann(n) > 0 then
5: if n is not a dummy node then
6: output < + label of n + >;
7: end if
8: Restore(n);
9: else

10: chop(n);
11: end if
12: n = RS(n);
13: end while
14: dec(c);
15: if c is not a dummy node then
16: output </ + label of c + >;
17: end if
18: if ann(c) = 0 then
19: chop(c);
20: else
21: output < + label of n + >;
22: Restore(c);
23: end if
24: end function

digit in the annotation of n (never 0); and (4) LC(n)
and RS(n): respectively the leftmost child and right
sibling of n. Given the annotated tree T, to restore
the XML document, the following actions should be
executed: output <root label>; Restore(root
of T); output </root label> Algorithm 3 has
O(n2) complexity.

5 EXPERIMENTAL RESULTS
AND GENERAL ANALYSIS

This section describes an analysis of distribution of
text elements in semi-structured data, and the defini-
tion of a compressibility measure for annotated fol-
lowed by experimental results using an XML suite.
Finally, it provides a general analysis of XML com-
pression.

5.1 Quantification of Text Trees and
Mutual Information

The use of annotated representation of a tree T im-
plies the following hypothesis about the distribution
of text elements in the tree: Each equivalence class
in a tree T also defines a unique random variable
in which the text children are sampled from. The

hypothesis does not imply anything about the mutual
information within the set of random variables;
however, there are some implicit consequences as to
how mutual information is dealt with. Specifically,
mutual information is the amount of information that
one random variable contains about another random
variable; or the amount of reduction in uncertainty
of one random variable due to the knowledge of
the other. We define mutual information as I(X|Y),
the reduction in the uncertainty of X due to the
knowledge of Y and consider two general cases in the
transfer of information: (1) [I(Child|ParentN)] - the
transfer of information from a parent node to each
of its children, or the transfer of information from
a Nth ancestor to each of its Nth descendants; (2)
[I(Siblingi|Sibling j)|∀ j < i] - the transfer of informa-
tion from a sibling node to each of its prior siblings.
Although we cannot explicitly prove any general
relationships of the two clauses above, we can extract
information about the general use of semi-structured
data and their affects on these relationships.
I(Child|Parent): With respect to most semi-
structured data formats, e.g., XML and JSON, the
text of non-leaf elements is mostly the whitespace
data to make the semi-structured data human-
readable, i.e., there is almost no relation between the
information in any parent and the information of a
leaf node. However, there is a clear relation between
the information in any parent and the information
of any non-leaf child. The data is only whitespace,
and we can restrict the text alphabet to ASCII: SPC
(0x20), TAB (0x09), LF (0x0a), VT (0x0b), FF
(0x0c), and CR(0x0d). One caveat to this general
statement, for example, are formatting tags in HTML,
such as "display bold text" . However,
in the optimal case, and for semantic equivalence of
the XML, we can functionally, and not statistically,
relate the whitespace characters and the depth of the
node, i.e., the depth multiplied by an indent (tab,
sequence of whitespace, etc.)
I(Siblingi|Siblingj): The relationship among siblings
is slightly more complicated. If we consider the set of
text elements for each equivalence class of leaf nodes,
we can describe similarity between two sets using
Statistical and Alphabetical Similarities, Functional
Relations, and Temporal/Semantic and Structural
Relations. Although statistical and alphabetical
similarities form the basis of our hypothesis about
the relationship of data among individual equivalence
classes, they can also be used describe the relation-
ship of data across equivalence classes. For example,
two nodes: LastName and FirstName would be
highly informationally related. However, if two tags
consist of only free-formed English, the alphabets

Annotated�Trees�and�their�Applications�to�XML�Compression

35

may be similar, but the words, sentences, etc. may
be different. Therefore, while there may be some
statistical relationship among the character frequency,
it quickly declines as we increase the degree of our
statistics. Functional relations would describe the
tags whose information is just some deterministic
function of another tag. For example, a text tag
and a sha-256 tag are functionally related. Tempo-
ral/Semantic and Structural Relations, while being
a form of statistical similarity, describe the tags that
have some temporal or sequential relation with its
siblings. Consider this example: <Questions>
<Q>How many bits to an octet?</Q>
<A>There are 8-bits to an octet.
<Q>How many bits to a byte?</Q>
<A>Generally speaking, 8.
</Questions> . Although functional relations
can be exploited, they require the relationship to
be known before compression, i.e., there is an
underlying schema to the semi-structured data. Thus,
these type of similarities are often not considered
for general-purpose compression. With respect to
non-leaf children, we expect the data to be quite
statistically (and structurally) similar, because the
data of a sibling set would be consistently formatted
for human readability (or lack thereof). However,
with leaf children, the annotative representation of a
text tree will only exploit the sequence of character
data local to an equivalence class and will not
consider the sequence of character data local to some
subtree (as shown above). Therefore, no compression
algorithm will be able to use the knowledge of “How
many bits to an octet” to compress the information
of ”There are 8-bits to an octet.”. However, to
compress “How many bits to a byte”, we can use the
knowledge of previously asking “How many bits to
an octet”. Therefore, semantically related text of the
same vertex would have a high statistical similarity,
whereas semantically related text of the same subtree
will not be considered for compression.

5.2 Experimental Results

Throughout this section we use the following nota-
tions: D is a tree and A belongs to the set of annotated
trees Annotated(D). Recall from Section 2.2 that this
set uniquely represents D, therefore the description
provided in this section does not depend on the choice
of A. For any tree T (annotated or not), by |T| we de-
note the number of nodes in T . Let the width of D at
any level i be denoted by width(D, i) and let Ann(X)
denote the annotation list of the node X ∈ Nodes(A)
and let |Ann(X)| denote the length of the annotated
list. Finally let X1,X2, . . . ,XNi be all nodes in A at level

i (i.e., width(A, i) = Ni).
From the construction of an annotated tree, it fol-

lows that (see also Properties 2.4): (1) width(D, i) =
∑Ni

k=1 AnnotationSum(Xk); and (2) In A, for any node
X and its child Y, AnnotationSum(X) = |Ann(Y)|.
Therefore, the larger the sum of all annotations of
X , the longer the annotation list of Y . The implica-
tion of zeros appearing in the annotations of node X
is two-fold: (a) in A, they shorten the length of the
annotation list; (b) in D, Y does not appear as a child
of X . If D was “completely regular” and there were
no missing children, then there would be no 0s on
the annotation lists. From our experiments, it follows
that a leaf annotation lists are usually very long, while
for the leaf’s ascendants, annotations they are getting
progressively shorter. To analyze this phenomenon
consider a leaf node X in A, its parent Y , and Y ’s par-
ent Z (grandparent of X). Since AnnotationSum(Y) =
|Ann(X)|, the annotation list Ann(X) must have been
increased because of the structure of D, specifically
Y has “very often” appeared as a child of Z, likely
multiple times (resulting in annotations greater than
1). On the other hand, many 0s appearing in Ann(X)
indicates that X has “very rarely” appeared as a child
of Y .

Let us now consider the compressibility
measure, which measures the cost of storing the
annotated tree A compared to the cost of storing
the original document D. Our definition is to be
implementation-independent and data are not com-
pressed using a backend compressor. As discussed
before, in general A has fewer nodes than D, but
there is an additional cost of storing annotation lists.
Let C be the cost of storing a single information,
such as a single integer annotation or a node label.
Therefore, the storage cost of a single tree node is
3 ×C, and the cost of storing an annotation list of
length L is L×C. The total storage cost of D is equal
to the cost of storing all nodes in A, including all
annotation lists over the cost of storing all nodes in D,
resulting in (3×C×|A|)+(∑X∈A |Ann(X)|)×C

3×C×|D| . Performing
a few simplifications, gives the following formula
(independent of the cost C):

Definition 13. The compressibility measure is defined
as follows:

µc(D) = |A|+(∑X∈A |Ann(X)|)/3
|D| .

In this section we provide experimental results
showing values of the measure from Definition 13
applied to a suite of XML files . Characteristics of
these files are shown in the first four columns of Ta-
ble 2, where V(N) denotes the value V*10N, Size
is the size of file in Bytes, E:A denotes the number
of elements and attributes, AC denotes the number

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

36

Table 2: Overview of XML Test Suite and Results of Test-
ing.

XML File Size E:A AC AT C
1gig 1.17(9) 1.6(7):3.83(6) 2.05(8) 680 0.41
BaseBall 6.72(5) 2.8(5):0 6.6(5) 47 0.78
enw.books 1.56(8) 5.3(6):4.9(5) 6.38(5) 29 0.40
enw.latest 5.96(9) 1.84(9):1.85(8) 2.59(9) 39 0.47
lineitem 3.22(7) 1.02(6):1 9.6(6) 19 0.31
UniProt 1.15(8) 9.86(5):1.44(9) 1.05(9) 217 0.36

of annotations, AT denotes the number of nodes in
the annotation tree, and C denotes the compressibility
measure. The files are 1gig.xml (a randomly gener-
ated XML file, using xmlgen (xmlgen, 2013)), base-
ball.xml (Baseball.xml, 2013), enwikibooks.xml and
lineitem.xml from the Wratislavia corpus (Corpus,
2013), and uniprot sprot (Consortium, 2013). This
suite has been chosen because XML files included
there have an ability to represent specific extremes of
semi-structured data. For example, enwiki-latest.xml,
the current revision of English Wikipedia, while being
a very large document, encompasses two extremes:
the distribution of character data is very non-uniform
(i.e., the majority of the data falls within one node)
and that path is predominantly free-formed English.
Conversely, uniprot sprot.xml is a highly uniform
XML file (i.e., the data is evenly distributed), and the
file is predominantly markup. The file 1gig.xml has
the property that the subtree entropy is extremely low
(subtrees are quite similar); however, each subtree dif-
fers by a parent node (for example, /a/b/d/e/f vs.
/a/z/d/e/f). The file lineitem.xml, has the prop-
erty that it is an incredibly regular tree (few missing
nodes), and in addition, has a nice mixture of text and
numeric data. The file enwikibooks.xml is quite struc-
turally similar to enwiki-latest.xml but is a fraction of
its size. Finally, baseball.xml is an extremely irregu-
lar XML file. The last column of the Table 2 shows
the test results, specifically values of the compress-
ibility measures (see Definition 13) for the six XML
file. These results show that the annotated tree pro-
vides a well-compressed representation of the original
files, even in the presence of very large files.

5.2.1 Analysis of XML Compression

In measuring the compressibility of the annotated
transform, each XML file was transferred into three
separate files: (1) the annotated tree (a list of strings
encoded in depth-first ordering); (2) the annotations
(written in depth-first ordering); and (3) the text con-
tainers (written in depth-first ordering), see Algo-
rithm 4. Consequently, this transform does nothing
but to act as a pre-processor for other text compres-
sors.

Ignoring Kolmogorov complexity (and Kol-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

en
la

te
st

U
ni

pr
ot

1g
ig

en
w

ik
ib

oo
ks

Li
ne

ite
m

B
as

eb
al

l

GZIP
XZ

BZIP
PPMonster

ZPAQ
paq8pxd_v7

Figure 10: Compression of entire XML document with sin-
gle instances of Vanilla Compressors.

Algorithm 4: Annotated Process.
1: function ENCODE(AnnotatedTree A, File file)
2: write(encode(A.schema), file.schema)
3: DepthFirstIterator dfs
4: // For each node, its annotation list.
5: for (dfs = A.iterator(); dfs.hasNext();) do
6: AnnotatedNode node = dfs.next()
7: write(node.annotationList.length(), file.annot).
8: write(node.annotationList, file.annot).
9: end for

10: // For each node write its text container.
11: for (dfs = A.iterator(); dfs.hasNext();) do
12: AnnotatedNode node = dfs.next()
13: write(node.textContainer.length(), file.text).
14: write(node.textContainer, file.text).
15: end for
16: end function

mogorov compressors), we assume the XML data
to be distributed according to some random vari-
able (or set of random variables). Therefore, the
ideal way to analyze the compression benefits in-
duced by the annotated transform would be to an-
alyze how much benefit, with respect to the abso-
lute lower bound, was obtained. However, since it
is nearly impossible to calculate the exact entropy of
the XML sources, the next ideal step would be to ap-
proximate the entropy using a lossless compression
algorithm, which would be infeasible for the analy-
sis of the proposed transform. Analyzing the percent-
age increase in compression does not take into con-
sideration how substantial a percent decrease in size
is, but it will be used as the base metric of compari-
son. For this analysis, a series of different compres-
sors were used, see Figure10. LZ77-based (Ziv and
Lempel, 2006) compressors, GZIP1 and XZ2, BWT-
based (Burrows and Wheeler, 1994), BZIP23, Predic-

1gzip -9 FILE
2xz -9 -e FILE
3bzip2 -9 FILE

Annotated�Trees�and�their�Applications�to�XML�Compression

37

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

en
la

te
st

U
ni

pr
ot

1g
ig

en
w

ik
ib

oo
ks

Li
ne

ite
m

B
as

eb
al

l

GZIP
XZ

BZIP
PPMonster

ZPAQ
paq8pxd_v7

Figure 11: Compression of Annotated Tree (the number of
bytes to represent the XML Syntax/Structure) over Markup
Density.

tion by Partial Matching based PPMonster4, and the
Context-Mixing compressors ZPAQ (ZPAQ, 2013)5

and PAQ8PXD V76; for the source code, or executa-
bles, to each compressor see (Mahoney, 2012). Re-
sults of tests showing applications of the annotated
transform to each document and compressing only the
structure (Annotations + Annotated Tree

Markup Density) are shown in Fig-
ure 11. It represents the syntax of the each XML
document in a fraction a percent. The annotation list
of each equivalence class has two components: (1)
A single byte header, that signifies if any transform
(e.g., a run length encoding) has been applied to the
annotations; (2) A list of annotations, each encoded as
a 32-bit integer (although this can be much improved
by using variable sized bytes). In the worst case, the
annotated representation only requires one tenth of
a percent of the original markup amount (including
tag names, and XML syntax data). In the best case,
a very-regular (a complete tree) document, lineitem,
only requires one one-thousandth of a percent of the
original markup amount. In either situation, both of
these situations offer a very faithful yet succinct rep-
resentation of the XML data.

Finally, Figure 12 plots the compression ratio of
the size of the annotated tree over the compression ra-
tio of the XML document shown in Figure 10. The
first noticeable feature of Figure 12 is the fact that
paq8pxd and PPMonster compress the data much bet-
ter as vanilla compressors than with the annotated
transform for the smaller XML files. Since the files
are so small, these compressors can often build a
model of the entire document, allowing those com-
pressors to compress each tag-name, and the XML

4ppmonstr -m1700 -o64 FILE
5zpaq add FILE.zpaq FILE -method 69 -noattributes
6paq8pxd v7 -8 FILE

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

en
la

te
st

U
ni

pr
ot

1g
ig

en
w

ik
ib

oo
ks

Li
ne

ite
m

B
as

eb
al

l

GZIP
BZIP

XZ
PPMonster

ZPAQ
paq8pxd_v7

Figure 12: Compression of Annotated Transform (collec-
tion of Annotated Tree, Text Container, and Schema Tree)
over Compression of XML Data.

markup, quite compactly. In addition, by merging
all of the text-containers into one compressible docu-
ment, the data among container boundaries will often
harm the initial compression of the subsequent con-
tainer (the internal models have to adapt). The next
general trend shown in Figure 12 is that the more
markup-dense XML documents receive the more op-
timal compression ratios, whereas the more content-
dense XML documents, only receive slight improve-
ments for the larger XML documents. With respect
to enlatest and enwikibooks, the majority of text is
free-formed English, e.g., each <text> tag contains
a substantial amount of text data (all of the content
you would see on a Wikipedia page). If some nodes
text data were of significant size, only the compres-
sors that incorporate a very large scope of the data
would be able to exploit the tag-to-tag redundancy,
otherwise, it would only be able to exploit the redun-
dancy local to that tag, and the data at the boundary
of two tags. From this, we can infer that the scope of
compression is a necessary and sufficient factor in the
performance of compression shown in Figure 10 (i.e.,
because a larger scope allows better compression of
the XML syntax and the semantic/temporal relations
among subtrees). Another factor may be attributed to
the fact that the lower bound of lossless compression
for these documents is “close” to the obtained com-
pression ratios.

6 CONCLUSIONS AND FUTURE
WORK

This paper showed that annotated trees form a faithful
representation of the trees, and so the XSAQCT com-
pression process is lossless. The formal approach and

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

38

specific algorithms have both been provided. Besides
the formal and algorithmic approaches, experiments
showed that the annotated tree compressibility, with-
out using any backend compressors is high, on aver-
age approximately 0.4. Finally, a general analysis and
results of testing of compression of entire XML doc-
ument with single instances of vanilla compressors,
compression of annotated tree over markup density,
and compression of annotated transform over com-
pression of XML data were provided, showing the
usefulness of the annotated tree approach.

Simple queries, such as finding all children of a
given node can be efficiently evaluated using the an-
notated trees. Our future work will extend queries to
the subset of XPath expressions known as the core
XPath as defined in (Gottlob et al., 2005), as well as
more sophisticated navigational queries, e.g. asking
for the j-th level-ancestor of u.

ACKNOWLEDGEMENTS

The work of the first and third authors are par-
tially supported by the NSERC RGPIN grant and
NSERC CSG-M (Canada Graduate Scholarship-
Masters) grant respectively.

REFERENCES

Arion, A., Bonifati, A., Manolescu, I., and Pugliese, A.
(2007). XQueC: a query-conscious compressed XML
database. ACM Transactions on Internet Technology,
7(2).

Baseball.xml (2013). baseball.xml, retrieved October 2013
from http://rassyndrome.webs.com/cc/baseball.xml.

Benoit, D., Demaine, E., Munro, J., and Raman, V. (1999).
Representing Trees of Higher Degree. In Dehne, F.,
Sack, J., Gupta, A., and Tamassia, R., editors, Algo-
rithms and Data Structures, volume 1663 of Lecture
Notes in Computer Science, pages 169–180. Springer
Berlin Heidelberg.

Bille, P., Gortz, I., Weimann, O., and Landau, G. M. (2013).
Tree Compression with Top Trees. In In Proceedings
of the 40th International Colloquium on Automata,
Languages, and Programming.

Burrows, M. and Wheeler, D. (1994). A block-sorting loss-
less data compression algorithm. Technical Report,
Digital Equipment Corporation.

Busatto, G., Lohrey, M., and Maneth, S. (2005). Efficient
Memory Representation of XML Documents. In Bier-
man, G. and Koch, C., editors, Database Program-
ming Languages, volume 3774 of Lecture Notes in
Computer Science, pages 199–216. Springer Berlin
Heidelberg.

Busatto, G., Lohrey, M., and Maneth, S. (2008). Efficient
memory representation of XML document trees. Inf.
Syst., 33(4-5):456–474.

bzip2 (2013). bzip2 compression, retrieved October 2013
from http://www.bzip.org/.

Chen, S. and Reif, J. (1996). Efficient Lossless Compres-
sion of Trees and Graphs. In In IEEE Data Compres-
sion Conference (DCC).

Consortium, T. U. (2013). Update on activities at
the Universal Protein Resource (UniProt) in 2013.
http://dx.doi.org/10.1093/nar/gks1068. Retrieved on
June 20, 2013.

Corbin, T., Müldner, T., and Miziołek, J. (2013). Pre-order
Compression Schemes for XML in the Real Time En-
vironment. In The Ninth International Conference on
Web Information Systems and Technologies, Aachen,
Germany. WEBIST.

Corpus, W. (2013). Wratislavia XML cor-
pus, retrieved October 2013 from
http://www.ii.uni.wroc.pl/ inikep/research/wratislavia/.

Ferragina, P., Luccio, F., Manzini, G., and Muthukrishnan,
S. (2009). Compressing and indexing labeled trees,
with applications. J. ACM, 57(1):4:1–4:33.

Gottlob, G., Koch, C., and Pichler, R. (2005). Efficient al-
gorithms for processing xpath queries. ACM Trans.
Database Syst., 30(2):444–491.

GZIP (2013). The gzip home page, retrieved October 2013
from http://www.gzip.org.

Jacobson, G. (1989). Space-efficient static trees and graphs.
In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, SFCS ’89, pages
549–554, Washington, DC, USA. IEEE Computer So-
ciety.

Mahoney, M. (2012). Large Text Compression
Benchmark, Retrieved October 2013 from
http://mattmahoney.net/dc/zpaq.html.

Müldner, T., Corbin, T., Miziołek, J., and Fry, C. (2012).
Design and Implementation of an Online XML Com-
pressor for Large XML Files. International Journal
On Advances in Internet Technology, 5(3):115–118.

Müldner, T., Fry, C., Miziołek, J., and Durno, S. (2009).
XSAQCT: XML queryable compressor. In Balisage:
The Markup Conference 2009, Montreal, Canada.

XML (2013). Extensible markup language (XML)
1.0 (Fifth edition), retrieved October 2013 from
http://www.w3.org/tr/rec-xml/.

xmlgen (2013). The benchmark data generator,
retrieved October 2013 from http://www.xml-
benchmark.org/generator.html.

Ziv, J. and Lempel, A. (2006). A universal algorithm for
sequential data compression. IEEE Trans. Inf. Theor.,
23(3):337–343.

ZPAQ (2013). Zpaq, retrieved October 2013 from
http://www.w3.org/tr/rec-xml/.

Annotated�Trees�and�their�Applications�to�XML�Compression

39

