
Better Feedback for Educational Online Judges�

Anaga Mani1, Divya Venkataramani1, Jordi Petit2 and Salvador Roura2

1SASTRA University, Tanjore, India
2Computer Science Department, Universitat Politècnica de Catalunya, Catalunya, Spain

Keywords: Online Programming Judges, Automatic Assessment, Data Mining.

Abstract: The verdicts of most online programming judges are, essentially, binary: the submitted codes are either “good
enough” or not. Whilst this policy is appropriate for competitive or recruitment platforms, it can hinder the
adoption of online judges on educative settings, where it could be adequate to provide better feedback to a
student (or instructor) that has submitted a wrong code. An obvious option would be to just show him or her
an instance where the code fails. However, that particular instance could be not very significant, and so could
induce unreflectively patching the code. The approach considered in this paper is to data mine all the past
incorrect submissions by all the users of the judge, so to extract a small subset of private test cases that may
be relevant to most future users. Our solution is based on parsing the test files, building a bipartite graph, and
solving a Set Cover problem by means of Integer Linear Programming. We have tested our solution with a
hundred problems in Jutge.org. Those experiments suggest that our approach is general, efficient, and provides
high quality results.

1 INTRODUCTION

It is an established fact that practice is fundamental to
learn computer programming. Whether at secondary,
high school or university level, instructors usually as-
sign programming problems to beginner students in
order to help them acquire this skill. However, it is
unquestionable that, for instructors, correcting pro-
gramming assignments can be a slow, boring and
error-prone task. Fortunately, programming problems
are ideal candidates for automated assessment; see
(Douce et al., 2005) for a review on this topic, (Ihan-
tola et al., 2010) for an updated list of such systems
and (Kurnia et al., 2001; Cheang et al., 2003; Joy
et al., 2005) for some experiences in the classroom.

Currently, programming online judges are widely
used to assess solutions to programing problems. On-
line judges are web based systems that offer a repos-
itory of programming problems and a way to submit
solutions to these problems in order to obtain an auto-
matic verdict on their behavior when run on different
public and private test cases designed to be as exhaus-
tive as possible. The solutions of such problems are
complete programs or functions with a well defined
specification.

Historically, online judges were targeted to train

�Work supported by the Spanish project FORMALISM
(TIN2007-66523) and by the Generalitat de Catalunya’s
project ALBCOM (ref. 2009 SGR 1137).

participants for important programming contests as
the IOI1 or the ACM-ICPC2. UVa3, Timus4, Sphere5

and Codeforces6 are just a few examples of such
judges. More recently, some judges as TopCoder7

and InterviewStreet8 were built as a recruitment plat-
form where companies can find and try to hire highly
skilled programmers.

Additionally, some online judges were designed
with an educative purpose in mind. Some notable
examples are EduJudge9, URI Online Judge10 and
Jutge.org11. These systems offer an organized repos-
itory of graded problems, and integrate the features
of an online judge with those of a learning manage-
ment system to assist both students and instructors.
We refer to (Verdú et al., 2012; Tonin et al., 2012;
Petit et al., 2012) for an overview of their respective
capabilities, and to (Giménez et al., 2009) for an ex-
perience on the usage of Jutge.org in a first-year in-

1http://www.ioinformatics.org.
2http://icpc.baylor.edu.
3http://uva.onlinejudge.org.
4http://acm.timus.ru.
5http://www.spoj.pl.
6http://codeforces.com.
7http://www.topcoder.com.
8http://www.interviewstreet.com.
9http://eduvalab.uva.es/en/projects /edujudge-project.

10http://www.urionlinejudge.com.br.
11http://www.jutge.orgJutge.org.

176 Mani A., Venkataramani D., Petit J. and Roura S..
Better Feedback for Educational Online Judges.
DOI: 10.5220/0004842801760183
In Proceedings of the 6th International Conference on Computer Supported Education (CSEDU-2014), pages 176-183
ISBN: 978-989-758-021-5
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

troductory programming course.
A common feature of online judges is that their

verdict is, essentially, binary: Either the submitted
solution is correct or it is not. Clearly, these binary
verdicts hinder the adoption of online judges in ed-
ucative settings. Indeed, some students may feel frus-
trated when their solution is evaluated as wrong but no
example where it fails is offered by the system. Like-
wise, some instructors may be reluctant to use a tool
for which they cannot access the private test cases.
Since beginners tend to write overly complicated so-
lutions, online judges often detect errors that can be
very hard to find by just inspecting the source code,
even for experienced instructors.

As long as online judges require to keep secret
their private test cases, there does not seem to be much
to do to increase the feedback. However, in some par-
ticular settings it is feasible to automatically correct
some wrong solutions (Singh et al., 2013). Another
possible approach, the one used in this paper, is to re-
lax a bit the secrecy and consider that, for educative
purposes, it could be positive to reveal a subset of the
private test cases.

An obvious solution would be to just show users
an instance for which their code fails. However, we
feel that just providing an arbitrary example where a
program fails would encourage sloppy-thinking pro-
grammers, who first recklessly write a wrong pro-
gram, and afterwards try to patch it (several times)
using the given counterexamples, which, worse still,
could be too insignificant again. Clearly, this is not
the right way to proceed. Instead, we believe that
the counterexamples provided (at least to the instruc-
tors, and perhaps also to the students; see the conclu-
sions of this paper) should be as relevant as possible.
By “relevant” we mean that these test cases should
probably be helpful to most of the users. The goal of
this paper is to show how to create these relevant test
cases.

Our solution, which we call the distiller, consists
in data mining past incorrect submissions sent by all
the users of an online judge. We will present some
examples that indicate that this “distillation” process,
which we have implemented in Jutge.org, is quite
general and efficient. Although we lack a quantitative
measure for the quality of the produced test cases, we
will show that, in general, a set of a few small test
cases is enough to make (almost) all bad submissions
fail. Therefore, it could be argued that those auto-
matically generated test cases capture somehow the
essence of the problem, and thus should be of great
help when revealed to some users.

To the best of our knowledge, this is the first time
that such a study has been conducted.

Organization. The paper is organized as follows:
In Section 2, we give a more detailed overview of the
main elements of online judges and present some ba-
sic definitions. The basic description of the problem
we tackle is given in Section 3, together with the main
ingredients of our solution. An overview of the results
obtained by our tool for a few selected problems from
Jutge.org is shown in Section 4. Section 5 discusses
how to use the distilled test cases.

2 BACKGROUND

In this section, we first summarize the main elements
and resources of online judges, then properly define
the different types of test cases and submissions we
are interested in.

Main Elements of Online Judges. Although on-
line judges have differences among them, they all
have a common set of elements and resources and a
common way to interact with them. On one hand,
judges keep information on their users and provide
functionality to register, log in, etc.

On the other hand, judges offer a repository of
problems. Problems consist of a statement (typically
in HTML or PDF format), some test cases, and some
internal specification on how to run the test cases un-
der certain constraints as time or memory limits.

The basic interaction between a user and the judge
is the user submitting a solution to some problem in
the repository. At this point, the judge will queue the
submission to check for its correctness using the test
cases and, subsequently, the judge will provide a ver-
dict to the user.

Processing a submission is a somehow difficult
task, because it must be performed in a secure way
that defends the judge against possible attacks. We
shall ignore these important implementation topics as
they are not relevant to the current work, but refer the
interested reader to (Leal and Silva, 2003; Forišek,
2006; Petit et al., 2012).

Classification of Test Cases. Besides the state-
ment, problem setters define two kinds of test cases:

• Public Test Cases. Test cases that are visible by
the users. They are usually included in the state-
ment of the problem, in order to clarify it and to
provide a few examples of the expected input and
output.

• Private Test Cases. Internal test cases that are
never disclosed to the users. They are used to
check, in the most possible exhaustive way, the

Better�Feedback�for�Educational�Online�Judges

177

correctness of the submissions. These tend to in-
clude hand made tricky inputs and automatically
generated inputs.

Most problems expect solutions that read from the
standard input and write to the standard output. Thus,
the different test cases are stored in pairs of files, one
for the input and another for the correct output.

Because of practical reasons (for instance, the
overhead of creating a new process to do very small
work), many individual test cases are usually joined
in a few files. To clarify this, consider the problem of
computing the greatest common divisor of two num-
bers. Assume that this problem has n individual test
cases (say, n = 105). Then, instead of having n input
files and their corresponding n output files, we rather
have a single input file with the n pairs of numbers and
one output file with the n correct answers. Of course,
the problem statement asks to read a sequence of pairs
of numbers and, for each one, write their gcd. More-
over, in addition to this big file, the problem setter will
often add a few small files, to check, e.g., the correct
processing of a file with just one pair of numbers or
with no numbers at all.

In the following, we will stress this distinction by
denoting by test cases the individual tests that are
joined in a test file. In general, problems have a few
test files (say, at most a dozen) with many test cases
(say, some thousands). When needed, we will also
distinguish between input test files and correct output
test files and between input test cases and correct out-
put test cases. Likewise, we will use the terms user
output test files and user output test cases for the out-
puts generated by a (possibly incorrect) submission
from a user.

Classification of Submissions. Online judges tra-
ditionally classify submissions with a marking sys-
tem that is mainly binary. A solution is either “Ac-
cepted” (AC) when it efficiently produces satisfactory
results on all the test cases run by the judge, or it is
“Rejected”. Despite of that, “Rejected” submissions
usually carry some additional information to provide
a better verdict: “Compilation Error” (CE)12, mean-
ing that the submitted code cannot even be success-
fully compiled, “Execution Error” (EE) meaning that
some error appeared during the execution of some test
case (possibly reporting a refined diagnostic as divi-
sion by zero, invalid memory access, memory limit
exceeded, or the most common time limit exceeded...)
or “Wrong Answer” (WA), meaning that, despite a

12See, e.g., https://www.jutge.org/documentation/verdicts
or http://uva.onlinejudge.org/index.php?option=com content
&task=view&id=16&Itemid=31.

AC

45%

EE 10%

WA

35% CE
10%

Figure 1: Current distribution of verdicts for Jutge.org.

successful execution, the user output does not match
the correct output. This last verdict indicates a solu-
tion that is fast enough and does not crash, but which
is wrong. Note that the reason for a WA verdict can
range from a subtle bug in the code to a program that
has little or no sense at all. In any case, the contents
of the private test cases are never disclosed to the user.

Figure 1 shows the current distribution of verdicts
for Jutge.org.

For the purpose of this work, we are interested in
an alternative classification of submissions:

• “Good Submissions”. Submissions that pass all
test cases, public and private. These correspond
to “Accepted” submissions.

• “Bad Submissions”. Submissions that pass all
public test cases but fail in some private test cases.

• “Horrible Submissions”. Submissions that do not
even pass all public test cases.

In the rest of the paper we shall not be interested
in good submissions (because, being good, they do
not help us to find relevant test cases) nor in horrible
submissions (because these are so bad that they do not
reflect a minimum of quality). Thus, we focus in bad
submissions.

Please observe that the good, bad and horrible
terms are labels that we only associate to certain types
of submissions and should not be applied to their au-
thors. Moreover, these terms exclusively apply to the
black-box correction process of the judge, which is
based on the functional correctness and efficiency of
the submitted codes, but not on other important qual-
ities, such as readability, succinctness, elegance, etc.

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

178

3 PROBLEM DESCRIPTION AND
SOLUTION

Consider any particular problem in the repository of
an online judge. Our goal is to extract a relevant test
file with a small set of private test cases for which
all bad solutions fail for at least one test case in the
test file. For simplicity, we will generally assume that
the number of test cases in the relevant test file must
be minimized. When necessary, we will point to the
minor changes to apply so to reduce the total size of
the file itself.

In order to discover these relevant data sets, we
assume that the following information is available:

• A set of private input test files together with their
corresponding correct output test files.

• A “large enough” collection of bad submissions.

• For each input test file and each bad submission,
the corresponding user output file.

In the case of Jutge.org, all this information is per-
manently stored in the system databases, but in other
judges the user output files are not kept and should be
regenerated by resubmitting the bad submissions.

Let n denote the total number of test cases for the
problem, and let m be the total number of available
bad submissions.

Our solution is conceptually described in Figure 2
in the next column. In the following, we provide fur-
ther details for some of those steps.

Splitting Files (Steps 1, 2 and 3). To split an input
test file consists in parsing it in order to extract its
individual input test cases. Output test files are split
in a similar way.

The splitting phase is highly dependent on the spe-
cific syntax prescribed for the input and output files.
In the worst situation, an ad-hoc program to parse the
input and the output is necessary for each problem.
Fortunately, a large fraction of elementary problems
share the same types of input/output general parsing
schemes, possibly involving a few parameters. Of
course, each individual problem must still be tagged
by hand to specify how to split its inputs and outputs.

These are the most frequent parsing schemes that
we have identified among those implemented in our
tool:

• No split. No split needs to be done, as all the input
in each test file represents a unique test case.

• Split by lines. Each line of the file corresponds to
an individual test case.

1. Split all input test files into a list of input test
cases [I1; : : : ; In].

2. Split all correct test files into a list [C1; : : : ;Cn],
so that Ci is the correct output for Ii.

3. For each bad submission 1� j�m, split all its
user output test files into a list [O j

1; : : : ;O
j
n], so

that O j
i is the output of the j-th bad submission

for the i-th test case.

4. Build a bipartite graph:

– Its n left vertices correspond to each test
case.

– Its m right vertices correspond to each bad
submission.

– For each submission j that fails on a test
case i, (i.e., O j

i 6=Ci), add an edge between
i and j.

5. Compute a minimum subset S � f1; : : : ;ng of
left vertices whose induced edges hit all right
vertices.

6. Output all the Ik, for all k 2 S, as the relevant
test cases for the problem.

Figure 2: Distiller algorithm.

• Split by words. Each word of the file corresponds
to an individual test case. Here, a word is under-
stood as a sequence of non-blank characters.

• Split by K words. Each K consecutive words of
the file corresponds to an individual test case.

• Split with counter. Each test case is made up of
several elements (lines, words, K words,...) and
the number of them is specified with an initial
counter.

• Split with separator. Each test case is made up of
several elements (lines, words, K words,...) and
they are separated with a special separator to be
specified as a parameter.

In the case that a problem needs a non predefined
splitting scheme, our implementation allows us to de-
fine a customized scheme (see Section 4).

Solving the Set Cover Problem (Steps 4 and 5).
Step 4 builds a bipartite graph where left vertices cor-
responds to test cases, right vertices to submissions,
and edges correspond to failure to report the correct
output for a particular submission on a particular test
case. Step 5 asks for solving the following problem:
Given a bipartite graph G = (U;V;E), find a mini-
mum subset S of U such that each vertex in V has
some neighbor in S. Figure 3 illustrates it.

Better�Feedback�for�Educational�Online�Judges

179

1

2

3

4

5

1

2

3

4

U

V

Figure 3: The Set Cover problem: Given a bipartite graph
G = (U;V;E), find a minimum subset S of U such that each
vertex in V has some neighbor in S. In this example, the
minimum solution is obtained with S = f1;5g.

It turns out that this problem is one of the formu-
lations of the Set Cover problem, which is a classical
problem in computer science. Its decisional version
is NP-complete, as proved in (Karp, 1972). Some
heuristics have been considered to efficiently obtain
solutions of good quality for this problem. It is known
(Chvatal, 1979) that the obvious greedy algorithm (at
each stage, choose the test case connected the largest
number of still uncovered submissions) has a logarith-
mic approximation ratio. Unfortunately, this is essen-
tially the best possible ratio under the usual P 6= NP
assumption (Alon et al., 2006).

Despite the theoretical intractability of Set Cover,
we are able to exactly solve our instances using Inte-
ger Linear Programming (ILP). Let xi be the binary
variable that encodes whether Ii 2 S or not. Also, let
Ei; j 2 f0;1g indicate whether there is an edge con-
necting the i-th test case with the j-th submission.
Then, the set cover problem is modeled as

minimize
n
å

i=1
xi

subject to
n
å

i=1
xi �Ei; j � 1 8 j = 1; : : : ;m

xi 2 f0;1g 8i = 1; : : : ;n:

Output Distilled set (Step 6). In order to output the
input test cases that make up the distilled set, these
must be joined in the opposite way that they were
split. To do so, each parsing scheme must implement
this reverse operation.

Further Details. Let us finally point to some addi-
tional details relevant to our implementation:

• To speed-up the running time of our solution, our
complete implementation does not work with the
output test cases themselves, but with numeric
hashes instead. This enhancement keeps true neg-
atives, but can introduce false positives (a wrong
test case might be deemed correct) with a tiny
probability, which we decide to ignore for the sake
of efficiency.

• In some rare cases, we have found that some bad
submissions are “really bad”. These are detected
by observing that the number of user output test
cases is different than the number of correct out-
put test cases or, when being equal, these differ in
too many positions. To avoid junk into the graph,
our algorithm ignores these submissions in a pa-
rameterizable way.

• In order to optimize the total size of the distilled
set, we can simply change the objective function
of the ILP so to weight each input test case by
its size. Other variations such as maximizing the
number of bad submissions caught by a distilled
set of a given maximal size could be defined in
the same style.

4 RESULTS

We have implemented a program in Python using a
commercial product (Gurobi, 2013) to solve the ILP.

For testing, we have chosen about a hundred dif-
ferent problems from the introductory programming
course of Jutge.org and their corresponding submis-
sions of about 7200 users since September 2006. In
the sake of providing results on the most popular
problems, the selection was based on their number of
submissions.

Each of these problems with identifier id is freely
available at http://www.jutge.org/problems/id. All statis-
tics are at the time of writing this paper.

Validating Dates (P29448). This problems asks for
a program that reads a list of triples of integers and,
for each one, prints whether it is or not a valid date in
the Gregorian calendar. Its public test cases are shown
in Table 1(a).

Any experienced programmer would agree that
this problem is easy but presents a few complications
for a beginner, because it requires a thorough case
analysis for the validation on the number of days for
each month, with the additional difficulty of copying
with leap years.

This problem has five private test files, which fea-
ture a total of 129458 elemental test cases (128163

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

180

Table 1: Results for problem “Validating dates”.

(a) Public samples

Sample input Sample output
30 11 1971 Correct Date
6 4 1971 Correct Date
4 8 2001 Correct Date
29 2 2001 Incorrect Date
32 11 2005 Incorrect Date
30 11 2004 Correct Date
-20 15 2000 Incorrect Date

(b) Statistics

Submissions 6903
Accepted 1600
Rejected 5303

Compilation Error 378
Wrong Answer 4856
Execution Error 69

Users with accepted problem 1115
Users with rejected problem 276

Good submissions 1600
Bad submissions 3718
Horrible submissions 1585

(c) Distilled input test cases

29 2 4900 13 9 1800 29 2 1870
7 2 1900 28 0 1852 31 2 1964
31 8 8298 31 1 7709 1 12 2002
29 1 1942 31 12 5741 30 1 3157
30 2 1864 29 2 6592 0 2 1910
31 7 3535 31 9 1948 29 2 2000
31 2 2000 32 12 2008 0 3 2000
5 13 2000 31 11 2000

without duplicates). The statistics for this problem
are shown in Table 1(b).

The parsing scheme for this problem was set to
split by 3 words and the parsing scheme for the out-
put was set to split by lines. The application of the
distillation process took about 35 seconds (including
1.10 seconds to exactly solve the Minimum Set Cover
problem with ILP) and produced a distilled set with
23 test cases, shown in Table 1(c).

As could be expected, those test cases feature lim-
iting values for the number of the day (such as 0
and 32) and stress years (such as 2000) for which the
leap year rule may be wrongly coded.

Roman Numbers (P18298). This problems asks
for a program that reads several (decimal) numbers
and prints their equivalent Roman numbers. All num-
bers are in the range [1;3999], and the rules to tran-
scribe to Roman numbers are given. Its public test
cases are shown in Table 2(a).

Table 2: Results for problem “Roman numbers”.

(a) Public samples

Sample input Sample output
1 1 = I
4 4 = IV
10 10 = X
16 16 = XVI
2708 2708 = MMDCCVIII
999 999 = CMXCIX
3005 3005 = MMMV

(b) Statistics

Submissions 2338
Accepted 1352
Rejected 986

Compilation Error 178
Wrong Answer 758
Execution Error 50

Users with accepted problem 1087
Users with rejected problem 39

Good submissions 1352
Bad submissions 867
Horrible submissions 119

(c) Distilled input test cases

2490 3470 1000 3049

This problem has three private test files, which
feature 127977 elemental test cases (but just 3999
without duplicates; the remaining ones are there just
to ensure that the programs are not too slow). The
statistics for this problem are shown in Table 2(b).

The application of the distillation process to this
problem took five seconds, and produced a distilled
set with just four test cases, shown in Table 2(c).

Anagrams (P71916). This problems asks for a pro-
gram that reads n pairs of lines and tells, for every
pair, if the lines are anagrams of each other (i.e., if one
line can be obtained from the other simply reordering
the letters and forgetting the spaces and the punctua-
tion symbols). It has the peculiarity that the number
n is given at the beginning of the input. Its public test
cases are shown in Table 3(a), and its statistics are
shown in Table 3(b).

This problem uses the predefined split by lines
output scheme, but requires an ad-hoc input scheme.
We need to specify how to parse the input tests (for
this case, the easiest is to forget the first line and group
the remaining lines in pairs) and how to rewrite them
(print the number of pairs followed by the pairs them-
selves). The following simple code is all we need to
do this customization:

Better�Feedback�for�Educational�Online�Judges

181

Table 3: Results for problem “Anagrams”.

(a) Public samples

Sample input
3
ROME.
MORE.
AVE MARIA, GRATIA PLENA, DOMINUS TECUM.
VIRGO SERENA, PIA, MUNDA ET IMMACULATA.
ARMY.
MAY.

Sample output
YES
YES
NO

(b) Statistics

Submissions 2454
Accepted 922
Rejected 1532

Compilation Error 274
Wrong Answer 949
Execution Error 309

Users with accepted problem 636
Users with rejected problem 136

Good submissions 922
Bad submissions 1093
Horrible submissions 439

(c) Distilled input test cases

6
R.
RRR.
.
RR.
,,.
,.
A.
.
WINSTON CHURCHILL.
I’LL CRUNCH THIS NOW.
.
.

c l a s s C u s t o m I n p u t S p l i t t e r (S p l i t t e r) :
def r e a d (s e l f , f) :

re turn group (f . r e a d l i n e s () [1 :] , 2)
def w r i t e (s e l f , i n p u t s , f) :

p r i n t >>f , l e n (i n p u t s)
f o r i n p u t in i n p u t s :

p r i n t >>f , i n p u t [0] + ”XXn” + i n p u t [1]

The generated distilled file for this problem is shown
in Table 3(c) and evidences some corner cases.

Brackets and Parentheses (P96529). We finally
consider a problem that is more difficult from an al-

Table 4: Results for problem “Brackets and parentheses”.

(a) Public samples

Sample input Sample output
[]([]()) yes
(([])() no
[](no
(([])) yes

(b) Distilled input test cases

(
[]
][
]]
)]
[[[
([)[]
[((())]]
[[(())](
[(()[])][([]]])(())]

gorithmic point of view: To read words made up
of brackets and parentheses and, for each one, tell
whether the brackets and the parentheses close cor-
rectly. Its public test cases are shown in Table 4(a).

In this case, the distillation process produced 11
individual test cases out of the 1766 private test cases.
However, the distilled set has a big issue: its total
size is quite big (18360 characters). Clearly, although
these test cases catch all bad submissions, they are
too long to be helpful to humans. Our solution to this
trouble consisted in modifying the ILP so as to min-
imize the total size of the distilled set by weighting
each variable in the objective function by the length
of the corresponding input. Doing so, we obtained
13 test cases, whose total size is 1254 characters, and
where three test cases still have more than 350 charac-
ters each. By removing these three long test cases, we
got the distilled set shown in Table 3(b), which still
catches 91% of the bad submissions.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we have considered how to identify small
and relevant test cases for problems in online judges.
The main idea of our solution is to data mine past
wrong (but not too wrong) submissions to automat-
ically extract the relevant test cases.

To do so, we have provided an elegant solution
that we have applied and tested on several problems
of Jutge.org, a virtual learning environment for com-
puter programming. The results suggest that our so-
lution is general, efficient, and generates high quality

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

182

test cases. Taking into account the amount of effort
spent by problem setters in creating huge and exhaus-
tive private test cases, it is almost deceiving to see a
posteriori that only a few of these test cases are, in
fact, relevant.

These relevant test cases can improve the feedback
of educative online judges which, until now, just re-
port a negative verdict in the event of a wrong submis-
sion. However, an important question that remains to
be addressed is how to use these distilled sets in the
workflow of educative online judges.

A first option would be to disclose the distilled
test cases to students that request them after they
have submitted a bad submission. A similar approach
would be to disclose only one distilled test case for
which the student’s code fails (assuming there is at
least one, which should happen most of the times).
Although this could be a way to help beginners to spot
their errors and fix them, it also could induce a “trial
and error” behavior similar to the one already criti-
cized in the introuction of this paper. At the very least,
the counterexample where the code fails, being part of
the distilled set, should provide a deeper insight to the
users than just a random counterexample.

An alternative to mitigate the above option would
be to keep distilled test cases private from students,
but available to instructors. Looking both to the
code of their mentored students and to the distilled
test cases (where the code fails), instructors could be
able to provide better individual answers, including,
if deemed suitable, some of the distilled test cases.

The community of instructors using Jutge.org is
currently debating these options and some variations
of them.

ACKNOWLEDGEMENTS

We thank all the users of Jutge.org: without their nu-
merous mistakes, this work would have never seen the
light.

REFERENCES

Alon, N., Moshkovitz, D., and Safra, S. (2006). Algorith-
mic construction of sets for k-restrictions. ACM Trans.
Algorithms, 2(2):153–177.

Cheang, B., Kurnia, A., Lim, A., and Oon, W.-C. (2003).
On automated grading of programming assignments
in an academic institution. Computers & Education,
41(2):121–131.

Chvatal, V. (1979). A greedy heuristic for the set-
covering problem. Mathematics of Operations Re-
search, 4(3):233–235.

Douce, C., Livingstone, D., and Orwell, J. (2005). Auto-
matic test-based assessment of programming: A re-
view. ACM Journal on Educational Resources in
Computing, 5(3).

Forišek, M. (2006). Security of Programming Contest Sys-
tems. In Dagiene, V. and Mittermeir, R., editors, In-
formation Technologies at School, pages 553–563.

Giménez, O., Petit, J., and Roura, S. (2009). A pure
problem-oriented approach for a CS1 course. In Her-
mann, C., Lauer, T., Ottmann, T., and Welte, M., ed-
itors, Proc. of the Informatics Education Europe IV,
pages 185–192.

Gurobi (2013). Gurobi Optimizer Reference Manual.
http://www.gurobi.com.

Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O.
(2010). Review of recent systems for automatic as-
sessment of programming assignments. In Procs.
of the 10th Koli Calling International Conference on
Computing Education Research, pages 86–93. ACM.

Joy, M., Griffiths, N., and Boyatt, R. (2005). The BOSS on-
line submission and assessment system. ACM Journal
on Educational Resources in Computing, 5(3).

Karp, R. M. (1972). Reducibility Among Combinatorial
Problems. In Miller, R. E. and Thatcher, J. W., ed-
itors, Complexity of Computer Computations, pages
85–103.

Kurnia, A., Lim, A., and Cheang, B. (2001). Online judge.
Computers & Education, pages 299–315.

Leal, J. P. and Silva, F. (2003). Mooshak: a web-based
multi-site programming contest system. Software:
Practice and Experience, 33(6):567–581.

Petit, J., Giménez, O., and Roura, S. (2012). Jutge.org: an
educational programming judge. In Procs. of the 43rd
ACM technical symposium on Computer Science Ed-
ucation, SIGCSE ’12, pages 445–450. ACM.

Singh, R., Gulwani, S., and Solar-Lezama, A. (2013). Auto-
mated feedback generation for introductory program-
ming assignments. In Boehm, H.-J. and Flanagan, C.,
editors, PLDI, pages 15–26. ACM.

Tonin, N., Zanin, F., and Bez, J. (2012). Enhancing tradi-
tional algorithms classes using URI online judge. In
2012 International Conference on e-Learning and e-
Technologies in Education, pages 110–113.

Verdú, E., Regueras, L. M., Verdú, M. J., Leal, J. P., de Cas-
tro, J. P., and Queirós, R. (2012). A distributed system
for learning programming on-line. Computers & Ed-
ucation, 58(1):1 – 10.

Better�Feedback�for�Educational�Online�Judges

183

