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Abstract: Cloud Computing is facing an increasing attention nowadays as it is present in many consumer appliances by
advertising the illusion of infinite resources towards its customers. Nevertheless it raises severe issues with
energy consumption: the higher levels of quality and availability require irrational energy expenditures. This
paper proposes a Pliant system based virtual machine scheduling approach for reducing energy consumption of
IaaS datacenters. In order to evaluate our proposed solution, we have designed a CloudSim-based simulation
environment, and applied real-world traces for the experiments. We show that significant savings can be
achieved in energy consumption with our proposed Pliant-based algorithms, and by fine-tuning the parameters
of the proposed Pliant strategy, a beneficial trade-off can be set between energy consumption and execution
time.

1 INTRODUCTION

Cloud computing incorporates many aspects of shar-
ing software and hardware solutions, including com-
puting and storage resources, application runtimes
or complex application functionalities. The cloud
paradigm changed the way people look at computing
infrastructures. First, one does not need to be expert
in infrastructure administration, operation and main-
tenance even if large scale systems are utilized. Sec-
ond, the elasticity of Infrastructure as a Service clouds
allows these systems to better follow the users’ actual
demands. However, there is also an adversary effect:
the virtualized nature of these systems detaches users
from several operational issues like energy efficient
usage, that has been addressed previously in the con-
text of parallel and distributed systems, and largely
remains unnoticed (Buyya et al., 2009; Schubert and
Jeffery, 2012).

The Cloud computing technology made a qualita-
tive breakthrough as it is present in many consumer
appliances including various mobile devices. They
advertise the illusion of infinite resources towards
the consumers, meanwhile it also raises severe issues
with energy consumption: the higher levels of qual-
ity and availability require irrational energy expendi-
tures, according to some experts the consumed energy
of resources spent for idling represent a considerable
amount (Lefèvre and Orgerie, 2009). Current trends

are claimed to be clearly unsustainable with respect
to resource utilisation, CO2 footprint and overall en-
ergy efficiency. It is anticipated that further growth is
limited by energy consumption, furthermore compet-
itiveness of companies are and will be strongly tied to
these issues.

As cloud services become more and more popular,
small- and medium-sized cloud service providers will
soon face increasing user demands that cannot be met
with their current infrastructures. These user demands
range from occasional needs for extreme amount of
resources (compared to the provider’s current infras-
tructure) to the need for multi-site virtual machine de-
ployment options that enable enhanced services such
as disaster recovery. Thus these providers need to in-
crease the size of their infrastructure by introducing
multiple datacenters covering various locations, and
offering unprecedented amount of resources. Cur-
rent IaaS solutions provide the opportunity for ser-
vice providers to satisfy these needs by focusing their
attention to non-technical issues like the increased
operating cost of their datacenters. Despite energy
consumption is a major component of these operat-
ing costs, current IaaS solutions barely handle the in-
frastructure with energy aware solutions. Therefore
providers were restricted to reduce their consumption
on the hardware level so far, independently from the
applied IaaS solution. Energy costs are also increas-
ing, and datacenter equipment is stressing power and

519Benyi A., Daniel Dombi J. and Kertesz A..
Energy-aware VM Scheduling in IaaS Clouds using Pliant Logic.
DOI: 10.5220/0004842905190526
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 519-526
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



cooling infrastructures, thus the main issue is not the
current amount of data center emissions but the fact
that these emissions are raising faster than any other
carbon emission (Berral et al., 2010). Although these
improvements in hardware are crucial, we believe that
the energy consumption could also be significantly
reduced with software in over-provisioned IaaS sys-
tems. Over-provisioning is a key behaviour at smaller
sized providers, who offer services for users with oc-
casional peaks in resource demands.

Reducing the carbon footprint of European coun-
tries is also a must and expected by the European
Commission, as well as to increase the number and
size of European Cloud providers (Schubert and Jef-
fery, 2012). By federating these providers, more com-
petitive initiatives can be founded, that can be sophis-
tically managed to meet these expectations. The gen-
eral goal of the management layer in a Cloud fed-
eration is to distribute load among the participating
cloud providers, to enhance user satisfaction by fil-
tering out underperforming providers, and schedule
and execute service calls with minimized energy con-
sumption within the selected IaaS system. To achieve
this, we have already proposed an architecture called
Federated Cloud Management (FCM – as introduced
in (Kecskeméti et al., 2012)). In this holistic ap-
proach a two-level brokering solution is used: a meta-
brokering component is used to direct service calls to
providers, and then a cloud-brokering component to
map these calls onto an optimized number of virtual
machines.

In this paper we target the later, cloud-brokering
layer, and we focus on the energy-aware manage-
ment of datacenters of single cloud providers special-
ized for provisioning task-based cloud applications.
In order to enable experimentation in this field, we
have developed a CloudSim-based simulation envi-
ronment. To cope with the high uncertainty and un-
predictable load present in these heterogeneous, virtu-
alized large-scale systems, we apply a Pliant system
based approach (Dombi, 2012) to the management
of these systems, which is similar to a fuzzy system
(Dombi, 1982).

Therefore the main contributions of this paper are:
(i) the development of a cloud simulation environ-
ment for task-based cloud applications, (ii) the design
of an energy-aware and Pliant-based VM scheduling
algorithm for VM management Clouds, and (iii) the
evaluation of the proposed algorithms in the extended
simulation environment with real-world traces.

The remainder of this paper is as follows: Sec-
tion 2 presents the related VM management ap-
proaches in datacenters; Section 3 introduces our ex-
tended simulation architecture; Section 4 introduces

the advanced scheduling algorithms using the Pliant
method for VM scheduling; and Section 5 describes
the evaluation methodology and the simulation re-
sults. Finally, Section 6 summarizes the main con-
tributions of the paper.

2 RELATED WORK

Regarding energy efficiency in a single cloud, Cioara
et al. (Cioara et al., 2011) introduced an energy aware
scheduling policy to consolidate power management
by using reinforcement learning techniques to restore
a service center to an energy efficient state. Feller
et al. proposed a dynamic cluster manager called
Snooze (Feller et al., 2010), which is able to dynam-
ically consolidate the workload of a heterogeneous
large-scale cluster composed of resources using vir-
tualization. In a later work (Feller et al., 2012), they
use power meters to monitor energy usage of cloud
resources, and estimate the resource usage of VMs.
Their mechanisms address VM placement, relocation
and migration by keeping VMs on as few nodes as
possible.

Cardosa et al. (Cardosa et al., 2009) presented
a novel suite of techniques for placement and power
consolidation of VMs in datacentres taking advantage
of the min-max and shares features inherent in virtu-
alization technologies, like VMware and Xen. These
features allow to specify the minimum and maximum
amount of resources that can be allocated to a VM,
and provide a shares based mechanism for the hyper-
visor to distribute spare resources among contending
VMs. Lee et al. (Lee et al., 2010) discuss service re-
quest scheduling in Clouds based on achievable prof-
its. They propose a pricing model using processor
sharing for composite services in Clouds.

Lucas-Simarro et al. (Lucas-Simarro et al., 2013)
proposed different scheduling strategies for optimal
deployment of services across multiple clouds based
on various optimization criteria. The examined
scheduling policies include budget, performance, load
balancing and other dynamic conditions, but they ne-
glected energy efficiency, which is the aim of our
work.

Regarding fuzzy approaches, Salleh et al. (Salleh
et al., 1999) have shown how to set up and use fuzzy
logic in a traditional way for dynamic task schedul-
ing in multiprocessor systems. We have already pub-
lished a paper (Dombi and Kertész, 2011) on applying
the Pliant approach to job scheduling in Grids. In this
current paper we would like to show that it is also pos-
sible to use Pliant system for scheduling, with only a
few rules. The novelty of this contribution lies in the
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way we apply the Pliant system to Clouds: the way
we select cloud-specific properties as parameters of
the Pliant system.

Concerning cloud simulations, Berge et al.
(vor dem Berge et al., 2012) have designed a simu-
lator called SVD within the CoolEmAll project for
investigating energy consumption in datacenters. It
is an extended version of the GSSIM simulator, and
they are planning to support application modeling and
profiling through benchmarks. Regarding federation-
wide simulations, Sotiriadis et al. (Sotiriadis et al.,
2013) investigated inter-cloud simulations by devel-
oping the SimIC simulation toolkit that is able to
mimic the inter-cloud service formation to enable the
investigation of service-oriented cloud utilization, but
they neglect energy efficiency.

3 SIMULATION OF CLOUDS

We have used the CloudSim simulator (Calheiros
et al., 2011) to develop a simulation environment for
our research. Beloglazov and Buyya (Beloglazov and
Buyya, 2012) have already started to examine how en-
ergy efficiency could be investigated within this sim-
ulator. Datacenters consume huge amounts of energy
resulting in high operating costs and increased car-
bon dioxide emissions. The dynamic consolidation
of VMs using live migration and switching off idle
nodes can be used to optimize resource usage and re-
duce energy consumption, but they argue that aggres-
sive consolidation may lead to performance degrada-
tion. They proposed adaptive heuristics for dynamic
consolidation of VMs based on an analysis of histor-
ical data from the resource usage by VMs, while en-
suring a high level of adherence to the Service Level
Agreements (SLA). They used PlanetLab trace files
(Park and Pai, 2006) workload logs to simulate load
changes of continuously running services in VMs.
These traces contain records of each VM’s periodic
utilization, thus the simulation assumes each VM is
going to process only one task (called as cloudlet in
CloudSim) at a time as a service.

In this work our goal was to investigate task-based
(HPC/HTC) cloud applications executed by a single
cloud provider possibly having more than one data-
center. Since CloudSim is tailored to the evaluation
of continuously running web-based applications (Be-
loglazov and Buyya, 2012), we decided to extend this
simulation environment to suite our needs.

Our approach is slightly different to the one used
by the original version of CloudSim, as we tried send-
ing cloudlets with varying parameters, such as start
time and length at random intervals. For that purpose

Listing 1: Pseudo code of the default OptUtil algorithm

lowestVm = f i r s t VM wi th t h e same
queue t y p e as t h e c l o u d l e t ;

FOREACH ( v m l i s t a s vm)
IF (vm . u t i l i z a t i o n ( ) <

lowestVm . u t i l i z a t i o n ( )
AND vm . queueType ==

lowestVm . queueType )
lowestVm=vm ;

IF ( lowestVm . u t i l i z a t i o n > 100)
IF ( t r y t o c r e a t e a new vm)

lowestVm = new vm ;
c l o u d l e t . setVm = lowestVm ;

we used the log files provided by Prezi Inc. (Prezi,
2013) (discussed in detail in Section 5). These log
files contain detailed data on each cloudlet received,
such as its start time, length and queue type. To
adapt CloudSim to the new features, several changes
had to be made. One of the crucial changes was in
the CloudletScheduler component, so each VM could
handle multiple cloudlets at the same time. As long
as the VM’s utilization is below 100%, it can process
new cloudlets, and once a VM reaches its full utiliza-
tion, further cloudlets get queued. Once a VM has no
cloudlets left to process, it is shut down, and if a host
has no remaining VMs, it is shut down as well. Each
host’s power consumption is based on a power model,
which is based on a benchmark result provided by
SPEC (SPEC, 2013). We used 5 different power mod-
els to make the difference between varying algorithms
more obvious. Each datacenter sums up the power
consumed by its hosts for every timeframe a cloudlet
is being processed, giving us a close approximation
of the amount of power and time needed to complete
all the requested cloudlets. For each cloudlet a VM
is chosen by our default VM scheduling algorithm
called ’OptUtil’ shown in Listing 1. The hosts (physi-
cal machines) created during the simulations differ in
their characteristics, altogether 5 types of hosts were
used. However, while there are different hosts, only
one type of VM was used in all simulations.

In case every VMs utilization is over 100%, the
algorithm will try to create a new one, thus ensuring
the lowest process time. For each new VM the host
is chosen based on its power model, and we are as-
suming that every host will be fully utilized, so the
host with the lowest power consumption on 100% uti-
lization will be submitted, ensuring the lowest power
consumption. In the following section we discuss the
Pliant-based VM scheduling solution.
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4 PLIANT SCHEDULING
APPROACH

Fuzzy sets were introduced by Lofti Zadeh in 1965
with the aim of reconciling mathematical modeling
and human knowledge in the engineering sciences.
Most of the building blocks of the theory of fuzzy
sets were proposed by him, especially fuzzy exten-
sions of classical basic mathematical notions like log-
ical connectives, rules, relations and quantifiers. The
Pliant system (Dombi, 2012) is a kind of fuzzy theory
that is similar to a traditional fuzzy system (Dombi,
1982). The difference between the two systems lies
in the choice of operators. The Pliant system has a
strict, monotonously increasing t-norm and t-conorm,
and the following expression is valid for the generator
function:

fc(x) fd(x) = 1; (1)

where fc(x) and fd(x) are the generator functions for
the conjunctive and disjunctive logical operators, re-
spectively. This system is defined in the [0,1] interval.
In our previous paper (Dombi and Kertész, 2011), we
developed a scheduling component that uses the Pli-
ant system to select a good performing Grid broker
for a user’s job even under conditions of high uncer-
tainty. The algorithm we developed calculates a score
for each cloudlet using the cloud’s properties. The
calculation step includes a normalization step, where
we apply a special Sigmoid function. In the normal-
ization step it should be mentioned that if the normal-
ized value is close to one, it means it is a more valu-
able property, and if the normalized value is close to
zero, it means it is a less prioritized property. For ex-
ample, if the counter of power consumption is high,
the normalization algorithm should give a value close
to zero. In our previous work (Dombi and Kertész,
2011) we found that if we use the aggregation opera-
tor to calculate the score number, we can achieve bet-
ter results.

Here, we created two scheduling algorithms in or-
der to handle the energy aware management case with
a similar approach. One considers time and the other
considers energy for optimization. There are hosts in
the simulated datacenters, and each host can run sev-
eral VMs. This environment can be described with the
same three properties, namely a power usage counter
(PUC), the power consumption counter (PCC) and the
number of processors (PROC):

� The power usage counter gives performance of the
CPU usages of the given simulation time. The
value can be larger than 100, which means that
there are more cloudlets in the VM’s queue.

Table 1: Parameters of the Sigmoid function.

Property Time Energy
Property Alpha Lambda Alpha Lambda
PUC 0.5 -4.0 0.5 -4.0
PCC 85.0 -0.08 75.0 -0.08
PROC 1.0 0.8 1.0 0.8

� The power consumption counter gives the energy
usage of the given host at a given time. The value
is generally between 40 and 120 MIPS, but it de-
pends on the actual physical processor.

� The number of processors gives the available
number of processors of a host.

We have developed two Pliant decision making al-
gorithms that take into account the above-mentioned
properties and decide to which VM a cloudlet should
be submitted: one optimizes cloudlet executions for
time, and the other one for energy. We use differ-
ent normalization for the two strategies. First we start
with a normalization step and we apply different kinds
of Sigmoid functions to normalize the environment’s
property value. We examine the environment’s vari-
able and define the value of the Sigmoid’s parameter.
Table 1 shows the predefined values of the parameters
of the normalization functions.

In this environment every host has 4 processors, so
after the normalization the normalized property value
is the same for all instances. We would like to em-
phasize that it is better if we use less power, therefore
we created two different parameter sets: one for time-
aware and one for energy-aware scheduling. As we
can see in Figure 1, the minimum energy in this en-
vironment is around 40 and the maximum is around
120. Here we can see that if the number of power
consumption is increasing then the value of the nor-
malized function is decreasing. The opposite is true
for the number of processors.

After the normalization step we modify the nor-
malized value to emphasize the importance of the re-
sult. To achieve this we will modify the normalized
value by using the Kappa function with n = 0:4 and
l = 3:0 parameters:

k
l
n(x) =

1

1+
�

n

1�n

1�x
x

�l
(2)

Finally to calculate a VM’s score number for the
given cloudlet, we use the aggregation operator:

an;n0(x1; � � � ;xn) =
1

1+ 1�n0
n0

n

1�n
Õ

n
i=1

1�xi
xi

; (3)

where n is the neutral value and n0 is the threshold
value of the corresponding negation. Here we don’t
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Figure 1: Utilized normalized function for the power con-
sumption (PCC).

want to threshold the result so both parameters have
the same value 0:5. The result of the calculation is
always a real number that lies in the [0,1] interval. So
we calculate the score for all VM to find which VM
is the most suitable for our strategy. If the best score
value is very low (the value depends on the strategy),
then we try to create a new VM.

5 EVALUATION

In order to investigate the energy consumption of
cloud providers in our extended simulation environ-
ment, we have used real-world trace files of an inter-
national company called Prezi Inc, who offers a pre-
sentation editing service, which is available on multi-
ple platforms, therefore they have to convert some of
the uploaded media files to other formats before they
can display them on all devices. In April 2013, they
launched a competition titled ”Scale Contest” (Prezi,
2013) for university students to test their knowledge
of control and queueing theories on real-life prob-
lems. Their conversion processes are carried out on
virtual machines: at peak times, they need to launch
more instances of these VMs, but over the weekend
they can stop most of them. This campaign was initi-
ated in order to find a suitable algorithm that launches
the exact number of VMs for a given workload. They
published log files on their website containing work-
load traces for two weeks of utilization, which serves
as a basis for algorithmic experimentations.

They operate three queues in their system for the
jobs participating in the conversion processes:
� export: contains jobs which result in download-

able zipped prezis.

� url: these jobs download an image from a URL
and insert them into a prezi.

� general: all other conversion jobs (audio, video,
pdf, ppt, etc).

The lines of the published workload traces have
the following format: ”2012-12-14 21:35:12 237 gen-
eral 9.134963”. This means that at the given time, a
job enters the general queue with the id 237, and the
job will take 9.134963 seconds to run. These logs had
to be used as input by the competitors. They con-
tain three weeks of actual data accumulated by Prezis
conversion system, and the first two weeks of logs are
publicly available. They planned to use unpublished
logs from the third and fourth week to evaluate your
submissions to the competition.

Table 2: Evaluation results for RoundRobin.

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100 10000 1< 63.20 25200
100 50000 1< 104.66 39000
500 50000 1< 143.62 48600
500 100000 1< 381.37 70200

Table 3: Evaluation results for OptUtil.

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100 10000 1< 18.90 7500
100 50000 1< 87.12 32400
500 50000 1< 90.41 7200
500 100000 1< 197.26 15000

For a preliminary evaluation phase we used the
trace file of the first week. We have performed ex-
periments with datacenters having 100 to 500 hosts,
and submitted 10000 to 100000 jobs from the log. By
default we used a round robin strategy to schedule the
logs to the available VMs (1 at the beginning), and
if no more available VM was present in the system
(that could execute the job without any delay) at a
given time, we have deployed another one continu-
ously. The results of this evaluation can be seen in
Table 2. We have also executed similar simulations
by applying our proposed optimized utilization strat-
egy called ’OptUtil’, that deploys another VM, if the
available ones are at least 80% loaded. The results of
this second evaluation can be seen in Table 3.

From these preliminary evaluation we can see that
our proposed algorithm performed better than the
round robin, both in energy consumption and execu-
tion time.
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To develop Pliant-based algorithms, we created
three initial strategies: the first one uses only one VM
to execute all submitted jobs (MINIMUM), the sec-
ond deploys a new VM for all jobs (MAXIMUM),
and the third uses randomized VM selection from the
available VMs (smartly prioritizing the less loaded
ones), and deploys a new one, if no free VM is found
(SMARTRANDOM). Tables 5, 4 and 6 summarize
the results of evaluating these algorithms. From these
results we can see that utilizing the lowest number of
VMs results in the lowest energy consumption, but of
course on the expense of the execution time, which is
the highest in this case.

Table 4: Evaluation results for MAXIMUM.

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100 1000 241 7.64 759
100 10000 241 76.35 4088
100 50000 241 365.35 14220
100 100000 241 934.22 39224

Table 5: Evaluation results for MINIMUM.

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100 1000 3 0.19 8179
100 10000 3 1.91 81008
100 50000 3 6.54 240940
100 100000 3 13.87 461724

Table 6: Evaluation results for SMARTRANDOM.

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100 1000 3 0.20 8619
100 10000 3 1.53 60298
100 50000 3 5.77 198060
100 100000 3 12.50 386074

Based on these preliminary evaluations we have
created a Pliant-based strategy (PLIANTDEFAULT),
first focusing on execution time reduction with some
energy savings. For its default algorithm Table 7
shows the results of the simulation. This table shows
that it could achieved significant performance gains
in terms of execution time as expected, but it also
had much higher energy consumption than the MINI-
MUM and SMARTRANDOM initial strategy.

Therefore we have modified the parameters of the
applied Pliant system, and created more focused al-
gorithms. In Table 8 we used a Pliant version that
is more focused on execution time savings (PLIANT-
TIME), while in Table 9 we modified a Pliant param-
eter to focus on energy savings (PLIANTENERGY).

Table 7: Evaluation results for PLIANTDEFAULT.

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100 1000 14 0.26 749
100 10000 16 2.87 3768
100 50000 24 17.26 14240
100 100000 25 53.21 39304

Table 8: Evaluation results for PLIANTTIME.

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100 1000 13 0.21 629
100 10000 16 2.77 4128
100 50000 21 15.20 14380
100 100000 21 43.55 39274

Figure 2 shows comparison diagrams concerning the
last rows of the tables.

As a result of the evaluations we can state that
for minimal energy consumption the least amount of
VMs should be used with smartly randomized VM
selection. Nevertheless, when there is a need for ex-
ecution time optimizations, we have to find a trade-
off between energy consumption and execution time.
With our proposed Pliant-based VM scheduling algo-
rithms we have shown that significant savings can be
achieved in energy consumption with moderate exe-
cution time reductions.

6 CONCLUSION

Cloud Computing is facing an increasing attention
nowadays and it raises severe issues with energy con-
sumption: the higher levels of quality and availability
require irrational energy expenditures. Reducing the
carbon footprint of European countries is also a must
and expected by the European Commission, as well
as to increase the number and size of European Cloud
providers.

In this paper we have proposed a Pliant system
based virtual machine scheduling approach for reduc-
ing energy consumption of IaaS datacenters. We have
designed a CloudSim-based simulation environment
for task-based cloud applications, and applied real-
world traces for the performed experiments. We have
shown that significant savings can be achieved in en-
ergy consumption with our proposed Pliant-based al-
gorithms, and by fine-tuning the parameters of the
proposed Pliant strategy, a beneficial trade-off can be
set between energy consumption and execution time.

Our future work aims at automating the parame-
ter selection in different IaaS systems, and adapting

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

524



Figure 2: Comparison diagrams for 100000 cloudlets.

Table 9: Evaluation results for PLIANTENERGY.

Hosts Cloud- VMs Energy Time
lets (kWh) (sec)

100 1000 12 0.18 669
100 10000 16 2.34 3788
100 50000 18 12.99 14380
100 100000 18 34.55 39274

the proposed approach in production-level academic
Clouds.
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