
Improving Resource Utilization in Cloud Environments
using Application Placement Heuristics

Atakan Aral and Tolga Ovatman
Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey

Keywords: Application Placement, Resource Allocation, Cloud Computing, Software as a Service.

Abstract: Application placement is an important concept when providing software as a service in cloud environments.
Because of the potential downtime cost of application migration, most of the time additional resource acquisi-
tion is preferred over migrating the applications residing in the virtual machines (VMs). This situation results
in under-utilized resources. To overcome this problem static/dynamic estimations on the resource require-
ments of VMs and/or applications can be performed. A simpler strategy is using heuristics during application
placement process instead of naively applying greedy strategies like round-robin. In this paper, we propose a
number of novel heuristics and compare them with round robin placement strategy and a few proposed place-
ment heuristics in the literature to explore the performance of heuristics in application placement problem.
Our focus is to better utilize the resources offered by the cloud environment and at the same time minimize the
number of application migrations. Our results indicate that an application heuristic that relies on the difference
between the maximum and minimum utilization rates of the resources not only outperforms other application
placement approaches but also significantly improves the conventional approaches present in the literature.

1 INTRODUCTION

In addition to software delivered as services over the
Internet, hardware and software systems that make
the delivery possible are referred as cloud comput-
ing (Armbrust et al., 2010). In cloud computing, re-
sources such as CPU, memory, bandwidth and stor-
age are treated as utilities that can scale up and down
on demand. It also allows per-usage metering and
billing of these resources. By means of cloud comput-
ing, cloud users can handle unexpected high demands
without over-provisioning and they do not need to in-
vest for abundant hardware resources initially. Cloud
providers, on the other hand, have the opportunity of
reallocating idle resources for other cloud users.

Cloud computing services are categorized into
three layers according to the level of abstraction they
provide. These are, in ascending order of abstraction:
(1) Infrastructure as a Service (IaaS) that provide vir-
tual raw resources, (2) Platform as a Service (PaaS)
that provide virtual development environments, and
(3) Software as a Service (SaaS) that provide online
applications on demand (Buyya et al., 2011).

One general research challenge in cloud comput-
ing is the efficient allocation of cloud resources to
users since cloud providers should satisfy quality of

service (QoS) objectives while minimizing their oper-
ational cost (Zhang et al., 2010). In this paper, we ap-
proach this challenge from the perspective of a SaaS
provider. Provider receives user applications with het-
erogeneous resource requests and assigns these appli-
cations to the virtual machines (VMs) with finite ca-
pacities. Multiple requests can be assigned to a single
VM so the SaaS provider would prefer to fully utilize
the VM resources at hand before hiring new ones. It
is also possible to move applications between VMs,
but this would cause a temporary halt of the migrating
application and would reduce QoS. Consequently, the
objective is to maximize the number of applications
assigned to VMs and at the same time, minimize the
number of application migrations.

For the sake of simplicity, we make the following
four assumptions regarding the characteristics of the
applications and VMs.

1. Cloud provider possesses constant number of
VMs with homogeneous capacities. These capac-
ities are four dimensional (namely CPU, memory,
bandwidth and storage). It is not possible to add
new VMs or resize existing ones.

2. Similarly, applications have the same four con-
stant consumptions (requests).

527Aral A. and Ovatman T..
Improving Resource Utilization in Cloud Environments using Application Placement Heuristics.
DOI: 10.5220/0004848005270534
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 527-534
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

3. Requests of the applications are foreknown.

4. Cloud provider receives one application at a time
and after this application is assigned to a VM, it
runs infinitely (i.e., it does not have a life span).
However, it may temporarily suspend, migrate to
another VM and continue its execution there.

These assumptions may seem too restrictive at
first but our approach can be easily generalized to real
world cloud scenarios. We use static values (VM ca-
pacities, counts etc.) because we aim to use current
resources at hand in most efficient way. When these
resources are almost fully utilized, SaaS provider pos-
sibly increases them, and our algorithm immediately
adapts and starts to make decisions according to the
new configuration. Similarly, when resource con-
sumption changes over time or even terminates, new
decisions will be made considering the current utiliza-
tion. Third assumption of foreknown resource con-
sumptions is based on the Service Level Agreements
(SLAs) made between the cloud provider and cloud
user where expected performance criteria is defined.

Fundamentally, the problem of optimally placing
applications to VMs can be formulated as an NP-hard
multidimensional bin packing problem and solved via
optimization techniques such as linear programming
(Zhang et al., 2010). However, it would be computa-
tionally expensive to run the optimization algorithm
at each application arrival especially for more than a
few VMs. Moreover, optimization would incur large
number of application migrations. Our solution is
to distribute applications to VMs using an intelligent
heuristic until the point that a migration is inevitable
(i.e. when no VM has enough capacity to accept in-
coming application). After this point, an optimization
technique can be employed to rearrange the applica-
tions.

Contributions in this paper may be summarized as
follows.

1. A Mixed Integer Programming (MIP) formulation
of the application placement problem that mini-
mizes the number of migrations

2. Novel heuristics to assign applications to VMs ef-
ficiently and intelligently

3. Comparison of the heuristics to the existing ones

4. Analysis of the heuristic approach on various VM
counts and capacities

The following section gives an overview of previ-
ous work in resource allocation and application place-
ment literature. Section 3 explains the details of
our method including MIP formulation and heuristics,
while Section 4 contains the experiments, their results
and discussion. Finally, we conclude the paper with
final remarks in Section 5.

2 RELATED WORK

Allocation of a cloud provider’s resources to its cus-
tomers is entitled as resource allocation, resource se-
lection or application placement depending on the
context and what is meant by the term resource. In
this section, we review different approaches to the
problem in the cloud computing literature. It should
be noted that similar problems are encountered and
extensively studied before the arrival of cloud com-
puting (Urgaonkar et al., 2005). However cloud com-
puting brings some unique challenges to the problem
such as inclusion of network as a resource and as a re-
quest, geo-diversity and location limitations (jurisdic-
tion), multi-tenancy, more heterogeneous resources
and less predictable demands.

2.1 VM Assignment Strategies

Selection of physical machines to host virtual ma-
chines while fulfilling the requirements and optimiz-
ing resource usage is a problem that can be solved via
optimization and approximation algorithms. Some
examples use heuristics, linear programming, artifi-
cial intelligence, nature inspired computing and game
theory (Endo et al., 2011).

In a recent study (Papagianni et al., 2013), the
problem is formulated as two phases that must be op-
timized together: node mapping and link mapping.
User request come in the form of VMs with defined
capacities and their connectivity as a graph. The aim
is to optimally assign these capacity request to phys-
ical machines (node mapping) and connectivity re-
quests to network entities (link mapping). They apply
a relaxed MIP approximation for the node mapping
and shortest path (or minimum cost flow) algorithm
for the link mapping in a coordinated way.

Another approach (Xiao et al., 2013), introduced
the skewness metric to measure unevenness in the uti-
lizations of various resources within a server. They
aim to find a trade-off between overload avoidance
and green computing concepts. Using a set of thresh-
old based heuristics and a prediction algorithm they
dynamically create a list of migrations that relieves
overloaded servers to ensure QoS and evacuates un-
derloaded ones to exploit green computing.

Following the improvements of the cloud systems,
VM migration is being used to increase utilization
of the virtual machines on the cloud infrastructure.
(Yang et al., 2011) considers the different VM migra-
tion strategies adopted by the host machines that have
different load states by taking into account four dif-
ferent resource types. In a more recent study (Wang
et al., 2013), migration is performed regarding the

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

528

queue model of the time of application deployment
requests from the clients. A centralized control man-
agement mechanism has been defined to inform the
client which server is available at a time.

2.2 Application Assignment Strategies

Literature in the area of allocation within a VM is not
as extensive as the one in allocation within a server,
as the most studies consider resource allocation for
the benefit of IaaS providers. A detailed model of
SLAs is given in the study (Wu et al., 2011) which
falls into the application placement category. SLAs
between cloud providers and users are taken into con-
sideration to quantitatively measure the service qual-
ity. They also suggest a simple heuristic: ‘assign the
request to the VM with the lowest (or the highest in
other variation) utilization’.

In another study (Tang et al., 2007) optimal load
balancing for dynamically changing demands is con-
sidered. Their approximation method aim to maxi-
mize satisfied demand and minimize application mi-
grations. Proposed application placement controller
estimates future demand and migrates applications
accordingly to avoid overloading.

A recent work (Espadas et al., 2013) offers a
resource allocation mechanism that exploits multi-
tenancy and provides tenant isolation, load balancing
and VM allocation. They also formally measure over
and underprovisioning of VM resources.

3 APPLICATION PLACEMENT
ALGORITHM

3.1 Overview

A high level pseudo code of both parts is given in Al-
gorithm 1. In part I (lines 4 to 12), migrations are not
allowed, and each arriving application is assigned to
the VM determined by an heuristic of evenness. Goal
of this part is to keep the utilization of four resources
in a VM approximately even. By increasing the re-
source evenness of all VMs, overall utilization of the
resources are maximized (Xiao et al., 2013).

To decide which VM is the best for a given appli-
cation, it is transiently considered to be assigned to
the VMs that has enough remaining capacity one by
one and evenness is calculated. Then, the application
is actually assigned to the VM with the best evenness
value (line 12). At one point of the part I, incoming
application’s resource request will not fit into the re-
maining capacity of any VM (the application is not

directly assignable and condition in line 11 is not sat-
isfied). However, rejected application can still be as-
signed to a VM if some applications are re-assigned.

Part II (lines 13 to 16) migrates some of the appli-
cations and tries to make room for the new applica-
tion. If part II succeeds to assign the application (line
16), part I of the algorithm continues to receive new
applications; otherwise, it is certain that there is no
placement that can assign received applications to the
VMs and the algorithm terminates (line 17).

Algorithm 1: Pseudo code for the application
placement strategy.

1 rejected← false
2 while rejected = false do
3 receive application A
4 assignable← false
5 foreach virtual machine VM do
6 if VM has enough capacity for A then
7 assignable← true
8 assign A to VM
9 calculate unevenness of VM

10 remove A from VM

11 if assignable = true then
12 assign A to VM with min unevenness

13 else
14 run optimization algorithm
15 if optimization succeeds then
16 assign A and migrate others

17 else rejected← true

One variation of part I can be obtained by calcu-
lating unevenness twice, i.e. before and after tenta-
tively assigning the application. In that case, actual
assignment is made to the VM whose unevenness de-
creases the most, instead of the one whose unevenness
becomes the minimum.

3.2 Heuristics

We propose four heuristics to approximate the un-
evenness in the utilization of the resources on a VM.
We also adapt the skewness heuristic originally sug-
gested for assigning VMs to servers (Xiao et al.,
2013). Finally we implement the greedy approxima-
tion algorithm, round-robin, to use as the baseline.

3.2.1 Standard Deviation (SD)

Standard deviation is a natural choice to find the un-
evenness of data points since it shows the amount of
dispersion from the average.SD of the resource uti-
lizations on a VMv can be calculated as follows.

Improving�Resource�Utilization�in�Cloud�Environments�using�Application�Placement�Heuristics

529

SD(v) =

√

m

∑
i=1

(ri− r̄)2 (1)

Here,ri denotes the utilization of theith resource,
while r̄ is the average utilization of all resources ofv.
m is the number of resources.

3.2.2 Span (SP)

For the trivial case of only four instances, a simpler
heuristic may be used. Since we are interested more
in outliers than inliers, difference between the max-
imum and minimum utilization rates can be a good
candidate for an unevenness heuristic.

SP(v) = max
i∈[1,m]

(ri)− min
i∈[1,m]

(ri) (2)

3.2.3 Cumulative Difference (CD)

Another candidate is the total difference of the uti-
lization rates of all resource pairs onv, as given by
the formula below. This heuristic also considers the
inliers similar toSD, but it is simpler.

CD(v) =
∑m

i=1 ∑m
j=1 |ri− r j|

2
(3)

3.2.4 Cumulative Difference from Minimum
(DM)

A similar heuristic toCD is to calculate differences
from the minimum utilization rate. This approach
tries to ensure that no resource is under-utilized (low
outlier) relative to others, while previous approaches
are trying to prevent both low and high outliers.

DM(v) =
n

∑
i=1

(

ri− min
j∈[1,m]

(r j)

)

(4)

3.2.5 Skewness (SK)

Formulation ofSK is given in (Xiao et al., 2013).

SK(v) =

√

m

∑
i=1

(ri

r̄
−1
)2

(5)

3.2.6 Round-Robin (RR)

Round-robin algorithm is a very straightforward solu-
tion to the application placement problem. For each
application, the greedy algorithm attempts to assign it
to the next VM. If that VM is not available, consecu-
tive ones are tested in order. In the ideal case where
all VMs are always available, it assigns equal number
of applications to each of them. Naturally, it does not

consider the evenness of resource types within a VM
as opposed to the heuristics mentioned above.

3.3 MIP Formulation

To determine an optimal application placement
scheme, we use MIP techniques. We minimize the
number of migrations when determining the place
(VM) of each application from the pool of VMs.
In achieving this, for each solution we compare the
place of each application with its former place and
try to maximize the number of applications that don’t
change their place.

We have used the native library lpsolve and Java
ILP API to solve the MIP problem introduced earlier.
We have simulated four VMs residing in a host ma-
chine which let us to run our simulations on a decent
personal computer. Heavier analysis on a large num-
ber of VMs residing in federated cloud environments
can also be simulated, however MIP performance ex-
ponentially decrease for such cases.

3.3.1 Variables

When using MIP, it is required to build formulae that
represents the constraints of the system and an ob-
jective function to be optimized during the process.
In constructing such formulae variables that repre-
sent the overall properties of the system shall be used.
Below, the variables we used in our model and their
meanings are explained briefly:

• #VMs: Number of VMs present in the cloud en-
vironment.

• #Apps: Number of applications to be placed upon
the present VMs.

• oldAsgn: A boolean matrix that holds the present
assignment of each application upon a VM.

• newAsgn: A boolean matrix that holds the result-
ing assignment by MIP.

• resNeed: An integer matrix that holds the amount
of resource needed by each application for the
four different type of resources mentioned before.

• resAv: An integer matrix that holds the amount of
resource available for each VM and each resource.

3.3.2 Objective Function

In modeling resource consumption for a cloud envi-
ronment, we provide the MIP solver with Equation 6
to maximize. We try to maximize the sum of old and
new application-VM assignment products which pro-
duce a value of 1 if the assignment didn’t change and
0 if a migration is present.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

530

#VMs

∑
i=0

#Apps

∑
j=0

(newAsgn[i][j]×oldAsgn[i][j]) (6)

3.3.3 Constraints

Naturally, we also apply a number of constraints in
order to drive the MIP to produce meaningful results.
In Equation 7 we guarantee that each application has
been assigned to exactly one VM. Additionally in
Equation 8 resource needs of each application that has
been assigned to a specific VM for each type of re-
sources are summed up to be less than the available
resource assigned to the VM.

#VMs∧

i=0

(

#Apps

∑
j=0

newAsgn[i][j] = 1

)

(7)

#V Ms∧

i=0

#Res∧

j=0

((

#Apps

∑
k=0

newAsgn[i][k]× resNeed[j][k]

)

≤ resAv[i][j]

)

(8)

4 EXPERIMENTS

A simple simulator is implemented to conduct the ex-
periments explained in this section. Simulator gen-
erates applications with uniformly random resource
requests within a given range and manages VMs
with user defined count and capacity. For all ex-
periments, applications are generated with resource
requests within the range of[0,30] units while VM
count and capacities varied.

4.1 Postponement of Migration

This first experiment aims to compare the power of
heuristics to assign maximum number applications
before a migration is necessary. As mentioned before,
migrations should be avoided since they may cause
temporary downtimes for an application. So, a good
heuristic should place applications in a way that mi-
grations become compulsory as late as possible.

4.1.1 Experimental Setup

Part II of the algorithm is not required for this experi-
ment since we are only interested in the performance
of the heuristics before the optimization starts. Ex-
cluding the computationally expensive part of the al-
gorithm allowed to test heuristics for a great number
of configurations and repetitions. Two variants (mini-
mum and most decreasing) of five heuristics as well as
round-robin are compared on 100 different VM con-
figurations. This consists of 10 VM counts ranging

from 3 to 12 and 10 VM capacities ranging from 75
to 300 units per resource.

All 11 strategies are run on each configuration
30.000 times to avoid randomness of applications af-
fect the results. Execution of a strategy on a config-
uration is stopped when no VM is available for the
received application. After that, the total number of
applications assigned to all VMs are logged and the
average of 30.000 runs are calculated.

4.1.2 Results and Discussion

Due to the great number of configurations tested in
this experiment, it is not possible to include all results
here. We instead present five configurations with a
fixed VM count (8 VMs) on the left half of the Table
1 and five configurations with a fixed VM capacity
(200 units per resource) on the right half. Remaining
90 configurations follow the same pattern as them.

For each configuration, Table 1 contain average
number of applications assigned by 11 strategies, ex-
pected number of applications to fully utilize VMs
and the rate of improvement by the best performing
strategy in comparison to the baseline (RR). Sub-
scriptsmin anddec stand for the minimum and most
decreasing variants of the strategies, respectively.

Our results indicate that in 477 of 500 cases
(95,4%),min variant outperformed thedec variant of
the same strategy. In most of the 23 cases wheremin
variant performed worse, tiny VM capacities and the
DM strategy are used. This clearly demonstrates that
arriving application should be assigned to the VM that
becomes the most even with the assignment, instead
of the one whose evenness increases the most.

It is also evident that intelligent heuristics always
perform better than the greedy assignment. In all
100 configurations, all 10 strategies manage to assign
more applications than the round-robin. The worst
improvement rate is 4,3% (3 VMs with 300 units of
capacity per resource) while the best one is 12,1%
(12 VMs with 75 units of capacity per resource). Uti-
lization rate of round-robin is between 73,8% and
90,2% while utilization rate of the heuristics is be-
tween 80,5% and 96,4%.

Improvement rate gets better as the number of
VMs increase (as seen in the right half of the final
row in Table 1) but their capacities decrease (as seen
left half of the same row). With high capacities and
small number of VMs, randomness of resource re-
quests tend to cover imperfect assignments while with
low capacities and large number of VMs, decisions
are more critical and should be made with more care.
In cases that are ideal for cloud computing benefits
(i.e. many distributed VMs with relatively low capac-
ities), heuristics show their real strength.

Improving�Resource�Utilization�in�Cloud�Environments�using�Application�Placement�Heuristics

531

Table 1: Partial result of the application count experiment.

VM Capacity 100 150 200 250 300 200 200 200 200 200
VM Count 8 8 8 8 8 4 6 8 10 12

RR 42,0 67,2 92,7 118,4 144,3 46,0 69,3 92,7 116,2 139,7
SKmin 45,8 72,3 98,8 125,3 151,9 48,1 73,4 98,8 124,3 149,9
SKdec 45,5 72,0 98,6 125,2 151,9 48,1 73,2 98,6 124,1 149,7
SPmin 46,2 73,2 100,2 127,2 154,3 48,7 74,4 100,2 126,2 152,3
SPdec 46,0 72,6 99,3 126,0 153,2 48,4 73,8 99,3 124,9 150,7
SDmin 46,2 73,2 100,2 127,3 154,3 48,7 74,4 100,2 126,2 152,3
SDdec 45,8 72,3 98,9 125,5 152,1 48,2 73,4 98,9 124,4 150,1
CDmin 46,2 73,2 100,2 127,3 154,3 48,8 74,4 100,2 126,2 152,3
CDdec 45,9 72,5 99,1 125,9 152,7 48,3 73,7 99,1 124,8 150,5
DMmin 45,7 72,6 99,6 126,5 153,6 48,3 73,8 99,6 125,4 151,5
DMdec 45,8 72,5 99,2 126,2 153,1 48,3 73,6 99,2 125,0 150,8

Expected 53,3 80,0 106,7 133,3 160,0 53,3 80,0 106,7 133,3 160,0
Improvement 10,0% 8,9% 8,1% 7,5% 6,9% 6,1% 7,4% 8,1% 8,6% 9,0%

Since it is already demonstrated that heuristics
make better assignments than the greedy algorithm
and themin variants are better thandec variants, we
can finally make a comparison among them. In triv-
ial cases where capacity per resource is less than 100
units, all heuristics perform more or less the same,
while in all other casesSP, SD andCD perform sig-
nificantly better thanSK andDM.

Although being still much better than greedy,
skewness algorithm is outperformed by the best three
heuristics by 1,2% on average. Our observations
show that both variants ofSK are sensitive to aver-
age resource utilization of the VMs. As a result, they
tend to assign new applications to the VMs that con-
tain more applications although better alternatives in
terms of evenness are available. This causes their
placements resemble greedy first-fit algorithm.

4.2 Minimization of Migration Count

Goal of this experiment is to assess the quality of ap-
plication placement of the strategies. A good place-
ment is expected to allow assignment of a new appli-
cation after a small number of migrations, or in the
ideal case, fully utilize VMs without any migrations.
It should be noted that the objective of the optimiza-
tion algorithm is to minimize the number of migra-
tions so the migration counts are guaranteed to be the
smallest possible values.

4.2.1 Experimental Setup

Both part I and II are included in this experiment and
that forces us to decrease repetition count. That’s
why, only the best three heuristics of the first exper-
iment, round-robin and skewness algorithms are exe-

cuted for a single configuration: three VMs with ca-
pacities of 300 units per resource. Greater number of
VMs causes a significant increase in running time.

An execution is stopped on the following two con-
ditions: (1) In part I, when remaining capacities of all
VMs are less than the expected value of the four re-
source requests (i.e., 15 units), (2) In part II, when the
optimization algorithm runs once. We call the first
condition a perfect placement since all VMs are al-
most fully utilized without any migrations. Second
condition is only considered when a perfect place-
ment is not achieved and the algorithm continues to
part II. In that case, if the algorithm succeeds to as-
sign the application to a VM, number of migrations
are logged. Otherwise, if the application is rejected, it
is also considered as a perfect placement because MIP
proved that it was impossible also for the heuristic to
make that placement.

Each strategy is executed 1.000 times calculating
the average number of migrations and the number of
perfect placements. Number of migrations for a per-
fect placement is regarded zero.

4.2.2 Results and Discussion

Table 2 gives the average number of migrations in-
troduced by the optimization after each five strategies
(RR, SKmin and three best performers of experiment
1) failed to assign any more applications. The table
also contains the number of cases (among 1.000 ex-
ecutions) where heuristics made a perfect placement
so an optimization was not required.

Results demonstrate that placements made by the
heuristics allow assignment of new applications with
less changes sinceSDmin, SPmin and CDmin strate-
gies required 34,5%, 33,3% and 31,0% less migra-
tions thanRR, respectively. Similar to the first experi-

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

532

Table 2: Results of the migration count experiment.

Strategy Avg. Migr. Count Perfect Count
RR 8,4 26

SDmin 5,5 108
SPmin 5,6 100
CDmin 5,8 86
SKmin 7,2 88

mentSKmin performed somewhere in the middle with
14,3% better thanRR but 27,8% worse than the oth-
ers in average.SDmin andSPmin made perfect place-
ments in 10,8% and 10,0% of executions, followed
by SKmin with 8,8% andCDmin with 8,6%. Coin-
cidental perfect placements are made byRR in only
2,6% of cases.

It is clear that intelligent heuristics make bet-
ter placements that can be optimized with signifi-
cantly less migrations and that are already optimum
in roughly four times more incidents than the greedy
approach. Suggested heuristics also outperformSKmin
clearly with the average number of migrations. As a
result, they allow applications to run with less suspen-
sion as well as decreasing the need for time consum-
ing optimization algorithm.

Due to its simplicity, we chooseSPmin heuristic
to represent heuristic approach in the future perfor-
mance analysis.

4.3 Analysis on Constant Total Capacity

As explained before, partitioning total hardware ca-
pacity to higher number of virtual machines provides
benefits of cloud computing but reduces overall uti-
lization. This reduction can be especially significant
when different application types are not combined ap-
propriately and a certain resource of a VM runs much
shorter than the others. In this experiment, we aim to
observe utilization performance of our algorithm in
comparison to greedy approach given various number
of VMs sharing a fixed hardware capacity.

4.3.1 Experimental Setup

SPmin heuristic which is one of the best performing
and simplest strategies, is compared to the greedy
round-robin algorithm using 3 to 12 VMs. The VMs
share a total capacity of 1.000 units per resource.
Similar to the first experiment, part I of the algorithm
is executed 30.000 times for both strategies to calcu-
late average count of applications that are assigned.
Executions are stopped when a migration is necessary.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

3 4 5 6 7 8 9 10 11 12

Im
p

ro
v
em

en
t

R
at

e

N
u

m
b

er
 o

f
A

ss
ig

n
ed

 A
p

p
li

ca
ti

o
n

s

VM Count

GR HR Improvement

Figure 1: Results of the constant capacity analysis of the
heuristic approaches (HR) in comparison to gready (GR).

4.3.2 Results and Discussion

Chart in Figure 1 displays the number of applications
that are assigned by heuristic (SPmin) and greedy (RR)
approaches to the same constant total capacity that is
partitioned to varying number of VMs. It also shows
the rate of improvement provided by the heuristic
strategy on its secondary y-axis.

As expected, both strategies assign less applica-
tions as the number of VMs increase, however the
rate of decrease is different.RR starts with 60,0 ap-
plications and encounters a decrease to 50,7 applica-
tions with a slope of−1,03. SPmin, on the other hand,
starts with slightly more applications, 62,6, and ends
around 56,9 with a less steep slope around−0,63.

Other heuristics are also tested but the results are
omitted since their performance is nearly as good as
SPmin. That’s why we can consider this experiment
as a comparison of heuristic and greedy approaches
rather thanSPmin and RR. Experimental results in-
dicate that using a more intelligent heuristic instead
of the greedy algorithm slows down the decrease in
resource utilization while partitioning increases. Ac-
cordingly, improvement provided by heuristics gets
more significant. This is especially important when
we consider that benefits of cloud computing becomes
more evident with higher number of VMs.

5 CONCLUSION

In this paper we propose a method for assigning ap-
plications with multi-dimensional resource requests
to virtual machines with finite capacity. The method
employs heuristics and mixed integer programming to
optimally solve the application placement problem.
Our goal is to allow SaaS providers to host maxi-
mum number of applications with their resources at
the same time increasing their service quality.

While optimization algorithms such as our MIP

Improving�Resource�Utilization�in�Cloud�Environments�using�Application�Placement�Heuristics

533

formulation guarantee to assign maximum number of
applications, they decrease QoS in two ways: (1)
They are extremely time consuming for high number
of instances so they delay the decision making pro-
cess while the request is pending, (2) Their decisions
cause migrations of applications which require tem-
porary downtimes.

Suggested heuristics approximate to the optimal
placement before the optimization is inevitable. They
do so by combining workloads together to keep uti-
lization of resources as even as possible. Previously
suggested unevenness metric, skewness, fails to yield
good combinations while greedy algorithms such as
round-robin do not consider evenness at all.

Heuristics are evaluated via a simple simulator
that supports random generation of demands and
maintains VM capacities. Our experiments demon-
strate that heuristics provide the following improve-
ments to QoS in comparison to greedy approximation.

1. They make the optimal placement and almost
fully utilize VMs up to 10,8% of cases. This
is four times more than the rate provided by the
greedy algorithm. In such cases, service quality
is preserved since the execution of MIP algorithm
and application migrations are not required.

2. In the rest of the cases, they delay the requirement
for MIP algorithm up to 12,1% applications. This
means more applications can be accepted without
migrations and any effect on service quality.

3. When the execution of MIP algorithm is manda-
tory, their placements require up to 34,5% less ap-
plication migrations causing less applications to
suspend and less harm to service quality.

As future work, we aim to reproduce our results
on a state of the art cloud computing simulator and to
test our heuristics on other scenarios. These include
other random distributions of resource requests and
dynamic resource demands.

ACKNOWLEDGEMENTS

This work is performed in joint with “mCloud”
project of Simternet Iletisim Sistemleri Reklam San.
ve Tic. Ltd. Sti. “mCloud” project is supported by
The Scientific and Technological Research Council
of Turkey (TUBITAK) – TEYDEB project number
7130115.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing.Commun. ACM, 53(4):50–58.

Buyya, R., Broberg, J., and Goscinski, A. M. (2011).Cloud
computing: Principles and paradigms, volume 87.
Wiley. com.

Endo, P., de Almeida Palhares, A., Pereira, N., Goncalves,
G., Sadok, D., Kelner, J., Melander, B., and Mangs, J.-
E. (2011). Resource allocation for distributed cloud:
concepts and research challenges.Network, IEEE,
25(4):42–46.

Espadas, J., Molina, A., JiméNez, G., Molina, M.,
Ramı́Rez, R., and Concha, D. (2013). A tenant-based
resource allocation model for scaling software-as-a-
service applications over cloud computing infrastruc-
tures.Future Gener. Comput. Syst., 29(1):273–286.

Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris,
V., Cervello-Pastor, C., and Monje, A. (2013). On the
optimal allocation of virtual resources in cloud com-
puting networks.Computers, IEEE Transactions on,
62(6):1060–1071.

Tang, C., Steinder, M., Spreitzer, M., and Pacifici, G.
(2007). A scalable application placement controller
for enterprise data centers. InProceedings of the 16th
international conference on World Wide Web, WWW
’07, pages 331–340, New York, NY, USA. ACM.

Urgaonkar, B., Shenoy, P., Chandra, A., and Goyal, P.
(2005). Dynamic provisioning of multi-tier internet
applications. InAutonomic Computing, 2005. ICAC
2005. Proceedings. Second International Conference
on, pages 217–228.

Wang, Y., Chen, S., and Pedram, M. (2013). Service
level agreement-based joint application environment
assignment and resource allocation in cloud comput-
ing systems. InGreen Technologies Conference, 2013
IEEE, pages 167–174.

Wu, L., Garg, S., and Buyya, R. (2011). Sla-based resource
allocation for software as a service provider (saas) in
cloud computing environments. InCluster, Cloud and
Grid Computing (CCGrid), 2011 11th IEEE/ACM In-
ternational Symposium on, pages 195–204.

Xiao, Z., Song, W., and Chen, Q. (2013). Dynamic resource
allocation using virtual machines for cloud computing
environment.Parallel and Distributed Systems, IEEE
Transactions on, 24(6):1107–1117.

Yang, K., Gu, J., Zhao, T., and Sun, G. (2011). An op-
timized control strategy for load balancing based on
live migration of virtual machine. InChinagrid Con-
ference (ChinaGrid), 2011 Sixth Annual, pages 141–
146.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud com-
puting: state-of-the-art and research challenges.Jour-
nal of Internet Services and Applications, 1(1):7–18.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

534

