
Partial Correctness and Continuous Integration in Computer Supported
Education

Daniela Fonte1, Ismael Vilas Boas1, Nuno Oliveira1, Daniela da Cruz1,
Alda Lopes Gançarski2 and Pedro Rangel Henriques1

1Departmento de Informática, Universidade do Minho, Braga, Portugal
2Institute Telecom, Telecom Sud Paris, Paris, France

Keywords: Computer Uses in Education, Problem-based Learning, Competitive Learning, Collaborative Learning,
Automatic Grading System, Semantic Program Evaluation, Program Analysis.

Abstract: In this paper we support the idea that students and teachers will benefit from a computer-based system that
assesses programming exercises and provide immediate and detailed feedback: students would be able to
evolve in the right direction and teachers would follow and assess more fairly their students. This assessment
should outperform the typical right/wrong evaluation returned by existing tools, allowing for a flexible partial
evaluation. Moreover, we adopt a concept from Agile Development, the Continuous Integration (CI), to
improve students’ effectiveness. The applicability of CI reflects a better monitoring by the teams and their
individual members, also providing the ability to improve the speed of the development.
Besides the description of the capabilities that we require from an Automatic Grading System (AGS), we
discuss iQuimera, an improved AGS that we are working on, that implements our teaching/learning principles.

1 INTRODUCTION

When students start learning Computer Program-
ming, they can experience difficulties to understand
the basilar concepts due to a lack of adequate back-
ground (Milne and Rowe, 2002) or even adequate
proficiency. Actually, Programming is a very com-
plex task specially for beginners who need to have
special skills including a high abstraction capability.
Programmers need to be capable of understanding the
problem statement, analyze it, sketch algorithms and
implement them in a programming language. These
tasks are equally important and all of them require a
lot of effort to be dominated.

In particular, learning a programming language (to
code the algorithm and implement the problem reso-
lution) has a lot of complex details that need to be
mastered. However, semantic issues involved in any
programming language (besides the syntatic pecular-
ities of each one) are the main obstacles to this learn-
ing process. We believe that Problem-based Learning
approach is a good way to diminish this barrier. This
is, we advocate that Programming courses should be
highly practical; students should solve on the com-
puter practical exercises since the first class, to prac-

tice the new language syntax and semantics. Follow-
ing a problem-based approach, they should learn by
practice to deal with all the phases of programming
life cycle (since the problem analysis to the program
testing). However, to assist all the students in the con-
text of big laboratorial classes (with 20 or 30 students)
is almost impossible for the teacher. In real situations,
teachers can neither monitor individually all their stu-
dents nor provide them an exhaustive feedback re-
garding the exercises they solve. This leads students
to give up and fail to reach the course objectives.

From the teacher’s perspective, this problem-
based approach in Programming courses implies the
obligation of manually analyzing and testing the code
for each exercise. This time consuming task is neither
simple nor mechanical: it is a complex and arduous
process, prone to faults, that involves a lot of work.
Different teachers may assign different evaluations to
the same exercise, due to several factors like fatigue,
favoritism or even inconsistency.

Summing up, we recognize that teachers are not
able to fully support the students, giving feedback
about the mistakes they made in every exercise. This
strongly suggests that problem-based learning should
be supported by powerful software tools — that is pre-

205Fonte D., Vilas Boas I., Oliveira N., da Cruz D., Lopes Gançarski A. and Rangel Henriques P..
Partial Correctness and Continuous Integration in Computer Supported Education.
DOI: 10.5220/0004848802050212
In Proceedings of the 6th International Conference on Computer Supported Education (CSEDU-2014), pages 205-212
ISBN: 978-989-758-021-5
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



cisely the focus of the present paper.
Moreover, the changes introduced by Bologna

Process (Tauch, 2004) have generalized the concept
of Continuous Evaluation in Education. This tech-
nique fosters the work outside classes, providing
space for an active and collaborative learning. It also
aims at achieving a closer monitoring of each stu-
dent’s progress along a course, by issuing tests and
individual or group works. Group-work is another
relevant idea: in this way, students are able to share
knowledge and take advantage of collective and col-
laborative activities, like brainstorming or social facil-
itation; they can also improve soft skills like schedul-
ing, communication, distribution of tasks and leader-
ship (Forsyth, 2009). On the other hand, grouping
students in a team provides an efficient solution for
teachers to assess multiple students through a singu-
lar assessment process, with a significant reduction of
the amount of work required compared to individual
evaluation (Guerrero et al., 2000).

This new trend also introduces some difficulties
both for students (that need to comprehend how to
follow it), and for teachers (that must find a just way
to assess individually each student). These troubles
can, once again, be overcame resorting to the support
of intelligent software tools, like Automatic Grading
Systems (AGS), as will be discussed along the fol-
lowing sections (this topic is the second motivation
for the work here described).

After this motivation and before conclusion, the
paper has 3 sections. Section 2 discusses in general
the support that computers can bring to education. In
Section 3 we introduce our proposal — the main char-
acteristics that an effective AGS should have. Then,
in Section 4 we show the architecture of iQuimera, an
AGS that we are developing to realize our proposal.

2 COMPUTERS IN EDUCATION

Since a long time ago, computer scientists and soft-
ware engineers are working on the development of
tools to help teachers and students in the teach-
ing/learning process; this gave rise, in the eighties,
to the so called area CAE (Computer-aided educa-
tion) that also involved people from the Education
Science and Psychology fields. Two large classes of
computer applications were then developed: tutoring
systems, to help students learning (Natural and Ex-
act Sciences); learning management systems, to help
teachers to deal with students registry and follow-up.

The evolution of tutoring systems went in the di-
rection of the development of tools to assess individu-
ally students. In a first phase, using tests (in the form

of questionnaires, or similar devices) previously made
by teachers; in a second phase, generating automati-
cally those tests selecting questions from a repository
or creating them from templates.

Later, with the development of computer commu-
nications and the birth of computer networks, people
started the construction and use of the so called e-
Learning systems, on the one hand combining both
classes of tools, and on the other hand enabling the
distance learning process.

As previously said, in this paper we are interested
in a new generation of tools called Automatic Grad-
ing Systems (AGS) (Matt, 1994; Leal and Silva, 2003;
Hukk et al., 2011) devoted to the support of Computer
Programming courses. They can be distinguished ac-
cording to the approach followed to evaluate the sub-
mitted program: static or dynamic analysis. Dynamic
approaches depend on the output results, after running
the submitted program with a set of predefined tests.
The final grade depends on the comparison between
the expected output and the output actually produced.
Static approaches take profit from the technology de-
veloped for compilers and language-based tools to be
able to gather information about the source code with-
out executing it. The improvement of dynamic test-
ing mechanism with static techniques (like metrics or
style analysis), led to a new generation of hybrid sys-
tems such as CourseMaker, Web-CAT, eGrader, Au-
toLEP or BOSS that combine the best of both ap-
proaches. This symbiosis keeps providing immediate
feedback to the users, but enriched by a quality anal-
ysis – which is obviously a relevant extra-value.

In the past few years, with the spreading of
Agile Methodologies (Beck, 2001), some experi-
ments (Hazzan and Dubinsky, 2003; Jovanovic et al.,
2002) were conducted aimed at combining two top-
ics: Agile Development and Education. In this con-
text, the implementation of Continuos Integration
(CI) (Kim et al., 2008) concept within classrooms
seems to be perfectly acceptable as a way of track-
ing the real evolution of the students in what concerns
their programming skills and knowledge about the es-
sential programming concepts, as will be discussed
in Section 4.4. With this concept, the evaluation be-
comes truly continuous, as the name and the origi-
nal idea assumes. Nevertheless, this matter is not yet
deeply explored; to the best of our knowledge there
are no AGS which implement this concept.

As we discuss in Section 1, current educational
methodologies invest on group work and social col-
laboration between students to improve their overall
effectiveness in regard to learning. In fact, group
work is already a reality in education, reducing the
time spent by teachers on evaluation and improving

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

206



the students’ effectiveness on learning. What is miss-
ing, however, is to take full advantage of its benefits.
We will propose in the next section an improvement
of an AGS that supports the adoption of CI practices
in education, bringing to teachers valuable resources
that allow them to follow and assess the students’ evo-
lution with more accuracy.

3 A PROPOSAL FOR AN
EFFECTIVE AGS

According to the teaching/learning ideas exposed
along Section 1, a software tool to support, on the
one hand, the problem-based learning and, on the
the other hand, the continuous evaluation (based on
group-work) approaches should comply with the fol-
lowing requirements.

From the teacher’s perspective, it should alleviate
his tedious and error prone (manual) work of marking
and grading the programming exercises submitted by
students, allowing him to focus on the students’ actual
needs.

From the students’ perpective, it should make pos-
sible to have their works automatically evaluated,
finely measured and fairly graded in due time (this
means, as fast as possible after each submission).

To do that, the envisaged AGS shall provide de-
tailed reports on each submission. Those reports must
say if the answer is totally or partially correct, but
shall also include information on the code quality
(sofwatre metrics) and on eventual code plagiarism.
Student’s position when compared with other students
and evolution rate are other data that shall be consid-
ered in the report.

As discussed in Section 2, at this moment avail-
able AGS provide several of these basic features.
However, these tools still lack some important fea-
tures, mainly in what concerns the following: the ac-
ceptance of semantically correct answers, no matter
its lexico-syntatical appearance; the evaluation of par-
tially correct answers; and the ability to follow stu-
dents’ individual evolution in the context of a conti-
nous group work.

All of these considerations led us to build the sys-
tem that will be introduced in the next section.

4 iQUIMERA

iQuimera is an improved version of our AGS first ap-
proach – the Quimera system (Fonte et al., 2012) –
developed to support the features announced in Sec-

tion 3. This system is a web-based application to as-
sess and grade students’ programming exercises writ-
ten in the C programming language, either in learn-
ing or programming contest environments. It offers a
complete management system, allowing to set up and
manage contests; register students and associate them
in groups; and follow up and monitor the different ac-
tivities involved.

With iQuimera extension, we aim at improving
our original approach in two important directions:

� Flexibilization of the Grading process – on the
one hand, being able to accept as correct answers
semantically similar to the expected one, indepen-
dently of their syntactic differences1; on the other
hand, allowing the definition of a set of partially
correct answers that should also be accepted and
graded2.

� Collaborative learning – continuously assessing
the group work, providing individual feedback
about each group element.

The next subsections introduce iQuimera architec-
ture and its main functionalities. First, we describe
the basic features, already implemented in Quimera
first version, and then we discuss the improvements
(listed above) underdevelopment.

4.1 Quimera Initial Functionalities

Quimera is a system capable of evaluating and auto-
matically ranking programming exercises in learning
or programming contest environments, by combining
a very complete static source code analysis with dy-
namic analysis. Thus, Quimera is able to ensure the
grading of the submitted solution based not only on its
capability of producing the expected output, but also
considering the source code quality and accuracy. Our
system guarantees that different programming styles
will receive different grades even if they produce the
correct output and satisfy all the requirements; this
can be an advantage on learning environments, be-
cause the student is stimulated to find different correct
solutions. Teachers will not waste time searching for
problems that have only one solution; the approach
adopted allows problems that can be solved in differ-
ent manners. Moreover, they can settle more interest-
ing problems whose solutions are a set of values, in-
stead of a single value (this constraint, typical of the

1The structure of the output file produced by the student
program should not be taken into consideration when com-
paring it to the expected output file.

2Using the same semantic similarity approach to com-
pare the output produced by the student program with the
partially correct outputs.

Partial�Correctness�and�Continuous�Integration�in�Computer�Supported�Education

207



classic systems, heavily restrict the kind of statements
that can be proposed).

Quimera completes its static analysis with a pla-
giarism detection tool, in order to prevent fraud
among submitted solutions (a common issue in learn-
ing environments). To the best of our knowledge, this
feature is not provided by the tools referenced above.

Quimera also allies a simple and intuitive user in-
terface with several graphics exhibiting various statis-
tics concerning the assessment process flow. These
statistic graphics are useful for the students, as they
illustrate their individual and overall evaluation and
performance rates; but they are also useful for the
teachers, as they provide fast views over each student,
groups of students working on the same problem, or
over groups working on different problems.

Notice that the feedback returned to the program-
mer immediately after each submission and the possi-
bility to resubmit new solutions, encourages compet-
itive learning. The student, after receiving the infor-
mation that his submission is wrong, tends to locate
the error, rewrite the program to fix it and submit it
again.

4.1.1 Dynamic Analysis

Quimera Dynamic Analyzer module follows the tra-
ditional strict approach: the submitted (source) code
is compiled and then executed with a set of prede-
fined tests. Each test is composed of an input data
vector and the correspondent output vector. Running
the compiled code (submitted by the student) with
one input data vector, the output produced is saved
as a vector and is compared with the expected output.
The student’s submission passes that test if both out-
put vectors are strictly equal (the difference between
them is null). In this way, the submission under as-
sessment is correct if and only if all the tests succeed.

After the assessment (running the submitted code
with all the test vectors), the user can consult the per-
centage of tests successfully passed. However, he
does not know how many tests there are and only has
access to the tests included in the problem statement.
This is useful to avoid situations of trial and error for
test set guessing.

4.1.2 Static Analysis

Quimera Source Code Analyzer module produces a
complete report about the quality of the source code
submitted through a set of predefined metrics (cur-
rently 56 metrics), grouped by five classes, namely:
Size, Consistence, Legibility, Complexity and Origi-
nality (as detailed in (Fonte et al., 2012), here om-
mited for the sake of space).

The different values computed automatically by
this module using classic compiler technologies,
when combined with the dynamic evaluation (as dis-
cussed in subsection 4.1.1), provide a fine grain as-
sessment that is uttermost relevant for the student
learning process. However to be useful in the grad-
ing process, the numerical values obtained along the
metrics evaluation must be appropriately transformed.
For the sake of simplicity and space we do not discuss
here those transformations.

4.1.3 Automatic Grading Process

The Grader module takes into account the results de-
livered by the Dynamic Analyzer and by the Source
Code Analyzer and combines them using a grading
formula. This grading formula considers six different
assessment categories and uses appropriate weights
(that can be tuned by the teacher according to the
learning objectives). Those assessment categories
are the five metric classes introduced in the previous
subsection (Size, Consistency, Legibility, Complex-
ity, Cloning) plus one that results from the strict dy-
namic analysis and that mesures the execution success
(the number of tests passed and the execution time).
Cloning is obviously related with the Originality met-
ric, but more pragmatically measures the percentage
of duplicated code in the source code submitted.

At present we are using the following combination
of weights: Execution (75% + 5%), Size (2%), Con-
sistence (5%), Legibility (2%), Complexity (6%) and
Cloning (5%). In this way, we enhance the dynamic
analysis: the actual program ability to produce the
correct output corresponds to 80%; the source code
quality influences the final grading with just a factor
of 20%.

The report issued by Quimera after the Grading
phase, contains not only the final grade but all details
concerned with the two previous marking phases, as
depicted on both sides of Figure 1.

On the left side of Figure 1, we can see a report for
an answer that only passes in 22% of the tests. This

Figure 1: Two assessment report examples.

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

208



is a well documented answer (it has 15 commented
lines in 50 lines of code) and its Legibility has a final
score of 93%. The Complexity score is owed to the
number of used variables and data structures. Since its
50 lines of code exceed the average size of the contest
submissions for this problem, this penalizes the final
grade on the Dimension category (only 45.2%). In
the Consistency category, its 21.6% are owed to the
use of several returns through the code (assuming a
maximum of two returns per function as a reasonable
limit to the source code consistency) and also to the
use of pointers.

The right side of Figure 1 shows a report for a
correct answer that passes all the tests. This answer is
better documented (11 commented lines in 36 lines of
code), but its Legibility has a lower final score (88%)
once it did not used defines, as the other solution. The
Complexity score of 58% is owed to the implemented
loop. Its 36 lines of code improve its final grade on
the Dimension category to 88.6%. In the Consistency
category, its weak weight of 22% is also owed to the
use of several returns through the code.

Finally, it is possible to see that both solutions
have not been plagiarized (100% original) and stu-
dents follow the good practice of not repeating their
own code (0% of duplicated code). These assess-
ments led to a final grade of 29% on the first case
and a significant 89% on the second case. Quimera
also completes this evaluation with radial charts to a
quicker and easier comparison of the solution perfor-
mance in the different grading categories.

4.2 Architecture

iQuimera architecture is organized in four levels, as
depicted in Figure 2.

Grading Module

Quimera Core

Web Site

Continuous
Integration Engine

Course/Problem
Manager

Group/User
Manager

Code RepositoryProblem RepositoryUser Repository

Compiler

Statical Analizer

AST Builder

Metrics Evaluator

Command Line

Pl
ug

ga
bl

e
M

ai
n 

En
gi

ne
D

at
a

In
te

rfa
ce

Service Integration Engine

Dynamic Analizer

OSSL
Processor

Validator & Grader 

Test
Executer

Figure 2: iQuimera Architecture.

� The Data level represents the data abstraction
layer. It is composed of the modules related with
the storage of the data concerned with contests,
users, and problems in a relational Database. This
level also includes the Code Repository, where all
the students’ submissions are stored.

� The Main Engine level works as the system core,
linking and controlling the communication be-
tween the several components of the system.
This level includes: the Course/Problem and the
Group/User managers which are responsible for
the interaction with the data associated with the
problem and user management tasks; The Con-
tinuous Integration Engine that is responsible for
keeping the Code Repository integrity, managing
the tasks associated with Code Repository update
and with the continuous assessment process; and
finally, the Service Integration Engine that is the
API for the communication between the plugins
and the system.

� The Pluggable level encloses all the plugins cur-
rently available in the system. These plugins
represent the different tools that can be used in
the grading process. They are grouped in three
types, namely: Compilers, Static Analyzers and
Dynamic Analyzers.

� The Interface level is responsible for the interac-
tion between the user and the system. Like the
first version, iQuimera is a web-based system with
a nice and modern web interface; however we also
provide the possibility to active and work with the
system via the command line.

4.3 Flexible Dynamic Analysis

As said in Sections 2 and 3, one of the main draw-
backs of the existing AGS is their incapability of de-
tecting and correctly grading alternative answers. For
instance, they do not support situations where small
differences in the order of the output elements do not
mean a bad answer (which would be considered cor-
rect in a manual assessment).

To overcome this gap we propose a generic model
to obtain a more flexible and rigorous grading pro-
cess, closer to a manual one. More specifically, an ex-
tension of the traditional Dynamic Analysis concept,
by performing a comparison of the output produced
by the program under assessment with the expected
one at a semantic level. We aim at allowing not only
the specification of which parts of the generated out-
put can differ from the expected one, but also to define
how to mark partially correct answers (Fonte et al.,
2013).

Partial�Correctness�and�Continuous�Integration�in�Computer�Supported�Education

209



To implement this model, we perform a seman-
tic comparison between both outputs based on a Do-
main Specific Language (DSL), specially designed
to specify the output structure and semantics – the
Output Semantic-Similarity Language (OSSL). The
OSSL design also supports the mark of partially cor-
rect answers.

For this, we are extending the grading module of
Quimera with a Flexible Dynamic Analyzer (FDA).
Figure 3 depicts the architecture of that extension,
which is composed of three modules: the OSSL Pro-
cessor, the Flexible Evaluator and the Grader.

Flexible Dynamic Analyser

OSSL Processor Grader

Compiled
Program

∈
¬

≈

Extended 
Learning Object

Dynamic Analysis
Grading Report

Input 1
Input n

Flexible Evaluator

Grading Instructions

Test 
Report 1

Test 
Report n

Executer Validator

Program Output

Compilation Report

Output IR 1
Output IR 2

Figure 3: Flexible Dynamic Analyzer Architecture.

The OSSL Processor is responsible for producing
the set of resources required to execute, validate and
grade the submission under assessment. It receives an
Extended Learning Object containing the problem de-
scription, the associated metadata and the OSSL spec-
ification, and generates the set of Inputs, the set of the
Expected Outputs (through an intermediate represen-
tation, IR) and the Grading Instructions.

The Flexible Evaluator is responsible for execut-
ing and validating the submissions. It receives the set
of Inputs, extracted from the OSSL specification by
the OSSL Processor, and executes the Compiled Pro-
gram. If an execution is successful, the Flexible Eval-
uator module produces a Program Output file that is
validated against the respective Output IR – the inter-
mediate representation of the OSSL specification of
the expected output, generated by the OSSL Proces-
sor. This output IR allows to compare (at the seman-
tics level) the meaning of the expected output with
the output actually produced. This validation process
produces a Test Report for each test performed, con-
taining the details about time and memory consump-
tions and the test results.

The Grader module produces a Grading Report
resulting from the dynamic evaluation performed,
concerning the set of Test Reports produced by the
Flexible Evaluator and the Grading Instructions pro-
vided by the OSSL Processor. This Grading Report

is composed of the details about each individual test
report and the submission assessment, which is cal-
culated regarding time and memory consumptions,
the weight and score for each test and the number of
successful tests. Moreover, if the submission under
assessment fails the compilation phase, this grading
process is based on the Compilation Report provided
by the compiler, in order to give feedback about the
program under assessment.

Using the FDA only requires from the teacher to
describe the test set by providing the OSSL definition
of input and expected output for each problem. This
description has only to be written once for each dif-
ferent problem, since this module automatically gen-
erates all the data necessary for the student’s answers
validation.

As an example of usage, consider an exercise
where it is asked to write a program that tests which
points of a giving set of cartesian coordinates can de-
fine a square. As input, the program receives a file
with two integers per line, giving the cartesian coor-
dinates of each point. As output, is expected that the
student’s answer produces the set of four coordinates
that defines each square. Considering as input the
following set of coordinates: (0,0), (0,10), (10,10),
(10,0), (20,0), (20,10), (25,10), (25,0), it is possible
to define two squares as depicted in Figure 4.

20

10

0
0 10 20 30

Answer 1:
(20,0) (10,0) (20,10) (10,10)
(10,0) (10,10) (0,0) (0,10)

Answer 2:
(10,0) (0,0) (0,10) (10,10)
(20,10) (20,0) (10,10) (10,0)

Figure 4: Cartesian representation of the exercise input.

Traditional AGS only accept answers containing
the groups of four coordinates in a certain order.
Also, answers that output only one of the two possi-
ble squares are considered incorrect. With the proper
OSSL definition (as introduced in (Fonte et al., 2013),
here ommited for the sake of space), the FDA module
accepts answers with the correct coordinates for each
square in any order or with the squares also listed in
any order. Moreover, it can also accept as partially
correct answers solutions that only output one of the
two possible squares. On the right side of Figure 4,
we can see an example of two answers accepted by
the FDA module, that differ not only on the coordi-
nates order inside each square, but also in the squares
order.

We have confidence that the proposed approach is
easy to use (OSSL allows to specify the output mean-
ing in a simple way) and not difficult to implement.

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

210



We also argue that it effectively improves the role of
AGS as Learning Support Tools, ensuring the interop-
erability with existent programming exercise evalua-
tion systems that support Learning Objects (Hodgins
et al., 2002).

4.4 Continuous Integration to Track
Students’ Evolution

Continuous Integration (CI) is one of the main keys
for success within Extreme Programming. It grants
the quality of the software, by controlling the devel-
opment process on each small step.

CI takes advantage of the automation of a set of
pipelined tasks done in order to improve the produc-
tivity in the development (Duvall et al., 2007). It starts
by merging the code from multiple team members
in an integration machine. This machine stores the
latest version of the project and is able to integrate
new changes with the existing code, following the
synchronous model for team programming (Babich,
1986). This operation may produce collisions in the
merging server when two or more files were changed
by different team members.

Despite integration may take advantage of usual
repository version control tools (like SVN3 or Git4) to
easily handle colisions, CI goes further in the sense
that the code is always built and tested upon each
commit. A valuable coproduct is the generation of
success statistics and reports for every team member
who performs an integration (Miller, 2008).

We are enriching Quimera evaluation process by
taking advantage of the techniques used in CI, to im-
prove students’ effectiveness (Vilas Boas et al., 2013).
To the best of our knowledge, CI methodology was
never attempted as assessment tool within the edu-
cational environment, more specifically, in teaching
programming languages to beginners.

Figure 5 depicts the Quimera system extension to
include the CI methodology. This process requires the
implementation of a Code Integration Engine (CIE)
with capability to work with some of the common
Version Control Systems. New code integration will
be automated as much as possible, using the auto-
merge mode of those tools to minimize collisions.

After a successful Integration, CIE builds the
code, with the tools already available in the AGS.
Along this process, the warnings and errors found are
reported. Then, some metrics are evaluated directly
from the source code to enrich the final report. As
an optimization, files without changes are not reeval-
uated, speeding up the process.

3http://subversion.apache.org
4http://git-scm.com

Continuous 
Integration 
Engine

Report

Build

Deploy

Test

Code
Fragment

Measure

StatusWarnings
/ErrorsMetrics

Integration

Code 
Repository

Figure 5: Continuous Integration Engine activity.

Recurring to the AGS, the executable code pro-
duced is deployed to a sandbox running on protected
environment, in order to be tested. This allows to em-
ulate the real environment where the code should be
tested and prevents system failure that can come from
the execution of malicious code. After deployment,
the set of test units is run and a report about the code
correctness is generated. This report is the main result
of the integration. Finally, another report is generated
with details about the status of each step of the pro-
cess described. This report, available in several for-
mats, is sent to the students and teacher according to
their preferences.

iQuimera requires a new set of configurations. To
administrators, these new settings are applied at sys-
tem’s initial setup. A configuration routine and doc-
umentation will be available to simplify this process.
To teachers, the continuous integration process is au-
tomatic, so does not require any extra effort. To stu-
dents, the use of a CVS requires machine specific con-
figurations according to their development environ-
ment. This may be the most difficult step to the suc-
cess of its adoption.

As briefly referred in Section 2, there are some
good results that arose from the application of Agile
Development (mainly Extreme Programming) meth-
ods in educational environments. However, they are
applied mostly on advanced years of programming
courses due to the programming knowledge level re-
quired to follow the complex rules of Extreme Pro-
gramming. With novices, these will hardly bring pos-
itive results, which led us to design this approach to
be more suitable for beginners.

We have in mind that this proposal will not soften
the steep curve for programming concepts acquain-
tance, once the basilar concepts will remain hard to
grasp. However, with the feedback on continuous
evolution on this matter will allow to focus where the
problem really exists. Moreover, it also provides a fair

Partial�Correctness�and�Continuous�Integration�in�Computer�Supported�Education

211



assessment, since students are followed closely and
measured for their evolution and implicit effort. All
these ingredients contribute to augment the students
motivation and enthusiasm.

5 CONCLUSION

We discussed the difficulties inbred in teaching
and learning Programming Languages and proposed
iQuimera, a system developed in the scope of com-
puter aided education to help making this process
more successful through problem-solving paradigm.
iQuimera extends Quimera, an hybrid (static and dy-
namic) Automatic Grading System (AGS) in what
concerns students evaluation approaches.

Our contribution is two fold. On one hand, we
propose a more flexible assessment model accept-
ing answers that have syntactic differences (although
semantically correct), and also partially correct an-
swers. On the other hand, we propose to apply Con-
tinuous Integration (CI) principles for a continuous
assessment of group elements.

Although iQuimera requires more configuration
effort from the three actors enrolled than the tradi-
tional AGS—more time to specify the problem, test
vectors, and grading mechanisms (teacher), to man-
age all the participants and processes (admin), and to
use the system in collaborative mode (students), as
well as, more sensibility to tune appropriately the sys-
tem (teacher)—, it is not an effort necessary each time
someone wants to use the system, but it shall be done
only once per course or exercise. Thus, we believe
that this configuration effort is surpassed by the ad-
vantages iQuimera provides with CI and Flexible Dy-
namic Analysis adoption.

We plan (1) to finish the implementation of the
Flexible Dynamic Analyser and the CI engine; (2)
to develop new front ends in order for iQuimera to
accept other programming languages than C; (3) to
extend iQuimera such that it performs with minimal
students intervention. Afterwards, we plan to test
iQuimera with real users by means of a carefully
sketched real case study, in order to verify its useful-
ness and benefits.

ACKNOWLEDGEMENTS

This work is funded by National Funds through
the FCT - Fundação para a Ciência e Tecnologia
(Portuguese Foundation for Science and Technology)
within project ”Projeto Estratégico - UI 752 - 2011-
2012 - Ref. PEst-OE/EEI/UI0752/2011”.

REFERENCES

Babich, W. A. (1986). Software configuration management:
coordination for team productivity. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Beck, K. (2001). Manifesto for Agile Software Develop-
ment. http://agilemanifesto.org.

Duvall, P. M., Matyas, S., and Glover, A. (2007). Con-
tinuous Integration: Improving Software Quality and
Reducing Risk. Addison-Wesley Professional.

Fonte, D., Boas, I. V., da Cruz, D., Ganarski, A. L., and
Henriques, P. R. (2012). Program analysis and evalu-
ation using quimera. In ICEIS’12, pages 209–219.

Fonte, D., Cruz, D. d., Gançarski, A. L., and Hen-
riques, P. R. (2013). A Flexible Dynamic System
for Automatic Grading of Programming Exercises. In
SLATE’13, volume 2, pages 129–144.

Forsyth, D. R. (2009). Group dynamics. Wadsworth Pub-
lishing Company, Belmont, 5 edition.

Guerrero, L. A., Alarcon, R., Collazos, C., Pino, J. A., and
Fuller, D. A. (2000). Evaluating cooperation in group
work. In Groupware CRIWG 2000, pages 28–35.

Hazzan, O. and Dubinsky (2003). Teaching a software
development methodology: the case of extreme pro-
gramming. In CSEE&T 2003, pages 176–184.

Hodgins, W. et al. (2002). Draft Standard for Learning Ob-
ject Metadata. IEEE 1484.12.1-2002, pages i–44.

Hukk, M., Powell, D., and Klein, E. (2011). Infandango:
Automated Grading for Student Programming. In
ITiCSE ’11, page 330. ACM.

Jovanovic, V., Murphy, T., and Greca (2002). Use of
extreme programming (XP) in teaching introductory
programming. FIE’02, 2:F1G–23.

Kim, S., Park, S., Yun, J., and Lee, Y. (2008). Auto-
mated Continuous Integration of Component-Based
Software: An Industrial Experience. In Automated
Software Engineering, pages 423–426.

Leal, J. P. and Silva, F. (2003). Mooshak: a Web-based
multi-site programming contest system. Software:
Practice and Experience, 33(6):567–581.

Matt, U. v. (1994). Kassandra: the automatic grading sys-
tem. SIGCUE Outlook, 22(1):26–40.

Miller, A. (2008). A Hundred Days of Continuous Integra-
tion. In AGILE ’08, pages 289–293.

Milne, I. and Rowe, G. (2002). Difficulties in learning and
teaching programming—views of students and tutors.
Education and Information technologies, 7(1):55–66.

Tauch, C. (2004). Almost Half-time in the Bologna Process
- Where Do We Stand? European Journal of Educa-
tion, 39(3):275–288.

Vilas Boas, I., Oliveira, N., and Rangel Henriques, P.
(2013). Agile Development for Education effective-
ness improvement. In SIIE’13, Viseu, Portugal.

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

212


