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Veronika Peralta4 and Sophie Robert3
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Abstract: The Service Oriented Computing Paradigm proposes the construction of applications by integrating pre-
existent services. Since a large number of services may be available in the Cloud, the selection of services
is a crucial task in the definition of a composition. The selected services should attend the requirements of
the compound application, by considering both functional and non-functional requirements (including quality
and preference constraints). As the number of available services increases, the automation of the selection
task becomes desirable. We propose a method for the refinement of service compositions that takes the ab-
stract specification of a composition, the definition of concrete services and user preferences. Our algorithm
produces a list of refinements in preference order. Experiments show that our method can be used in practice.

1 INTRODUCTION

Cloud computing provides a cheaper, reliable infras-
tructure in which service providers may deploy appli-
cations or store data to be used by their customers.
Access to the resources is granted to users by offer-
ing a client-server infrastructure that can be used to
perform tasks at different levels of abstraction. Cloud
infrastructure includes models at three levels of ab-
straction : Cloud Infrastructure as a Service (IaaS),
Cloud Platform as a Service (PaaS) and Cloud Soft-
ware as a Service (SaaS). The three models of Cloud
computing propose the use ofservicesto access re-
sources. Services may be used to query data or to
perform computations.

The long-term goal of our work is the construction
of a platform (PaaS) to provide a high-level, abstract
way of specifying service compositions. The compo-
sitions would be obtained according to the software
development process composed bySpecification, Re-
finement based on user preferencesandCoding.

∗This work was partly supported by the National In-
stitute of Science and Technology for Software Engi-
neering (INES), funded by CNPq (Brazil) 573964/2008-
4 and 305619/2012-8; CAPES/UdelaR (Brazil) 021/10;
CAPES/STIC-AmSud (Brazil) 052/14.

In this paper, we only deal with the refine-
ment step: The specification of a compound service
is defined in terms ofabstractservices (i.e., speci-
fications of basic service capabilities). Abstract ser-
vices may be combined to specify the functional and
non-functional behaviour of the composition. This
abstract composition will be refined into a composi-
tion of concrete, available services. The refinement
algorithm presented here builds new compositions by
combining concrete services, in order to match the
specification. Concrete services are available in the
Cloud. We suppose that the capabilities of each con-
crete service are also specified in terms of abstract
building blocks, similar to those used in the abstract
composition. The choice among different possible
compositions is guided by user preferences.

In (Costa et al., 2013), we have outlined a refine-
ment technique that obtains all the possible combina-
tions of concrete services to match the specification.
This leads to an algorithm with NP time complexity.
In this paper we use the notion ofuser preferences
to set conditions to favour the use of certain services.
The search space (combinations of actual services in
the Cloud) may be ordered in accordance to these
preferences. This order may be used to produce the
solutions (concrete compositions) in an incremental
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way, so that the refinement process can stop when the
desired number of compositions is reached.
Paper Organisation:Section 2 presents related work.
Section 3 discusses how to use preferences to select
services. Section 4 presents our method. A prototype
is shown in Section 5. Section 6 concludes the paper.

2 RELATED WORK

In (Costa et al., 2013), we presented a method (re-
ferred here as Refinement1) for the automatic refine-
ment of web service compositions, based on MiniCon
algorithm (Pottinger and Halevy, 2001). This method
takes into account both functional and non-functional
requirements, as well as semantic information. User
preferences are not taken into account and no ranking
is provided for the produced refinements.

Several works (Zhao et al., 2011; Mesmoudi et al.,
2011; Paiva Tizzo et al., 2011) are close to Refine-
ment1. In (Zhao et al., 2011) the authors use the
original MiniCon algorithm to rewriteinformation-
providingcompositions in terms of available services.
The main difference between their approach and ours
is that we have substantially modified the original
MiniCon algorithm to support ontology alignment,
optional parameters, quality constraints and conver-
sion functions. In (Mesmoudi et al., 2011) the authors
propose a method of service discovery that builds
buckets of relevant services for each sub-goal in a
composition, by taking into account the semantics de-
scription of services. Like us, they distinguish be-
tween the phase of refinement (or discovery) and a
latter step of orchestration. In (Paiva Tizzo et al.,
2011) the authors propose a model to improve the
dynamic selection of services in the context of WS-
BPEL processes. Service compositions are described
as SPARQL queries; those queries are evaluated at
runtime by a SPARQL server to produce service end-
points; those endpoints are used to invoke the selected
services. The proposed approach is semi-automatic
and does not take user profiles or QoS into account.

Recently, the QoS-based web service selection
and composition in service oriented applications has
gained the attention of many researchers (Alrifai
et al., 2008; Alrifai et al., 2010; Sandionigi et al.,
2013; Zeng et al., 2003). These papers focus onhow
to select serviceson the basis of QoS,i.e., in solv-
ing a multi-criteria decision making problem which
corresponds to the identification of the best candidate
web services from a set of functionally equivalent ser-
vices. For instance, (Alrifai et al., 2008) models the
problem as the Multi-Choice Multidimensional Knap-
sack problem and proposes a scalable QoS computa-

tion approach based on a heuristic algorithm, which
decomposes the optimization problem into small sub-
problems. Their heuristic is a hybrid approach that
combines global optimization with local selection in
order to find a close-to-optimal selection more effi-
ciently. Improvements of this method are presented
in (Alrifai et al., 2010). Some approaches are very
specific to the targeted application. For example,
in (Sandionigi et al., 2013) the authors are capable
to express the service selection in situational com-
puting applications as a Mixed Integer Linear Pro-
gramming problem from decision variables express-
ing binding andad hocQoS constraints. Contrary to
them, our goal is to show howto usethe result of
a QoS-based service selectionto decrease the search
spacewhile looking for a concrete instantiation of an
abstract composition. Moreover, several QoS aspects
may be summarized in a given user preference.

Qualitative preference models, including condi-
tional and temporal clauses, are used in (Lin et al.,
2008; Sohrabi and McIlraith, 2010) in order to model
expressive service goals that should be satisfied as
much as possible. However, most works rely on quan-
titative preference models, expressing a utility func-
tion (generally a weighted sum that combines multi-
criteria preferences). For example, given a set of
concrete compositions, (Haddad et al., 2010) recom-
mends the compositions that maximize a utility func-
tion. As another approach, (Lamparter et al., 2007)
uses utility policies and linear programming for se-
lecting compositions. These proposals use user pref-
erences for choosing the best compositions among a
set of pre-generated compositions. Our goal is to use
user preferences for guiding and optimizing the gen-
eration process. The work of (Lemos et al., 2012)
use PreferenceSQL constructors for expressing hard
and soft preferences ; the former are used to prune
the set of candidate services while the latter are used
to order them (they do not address service composi-
tion). However, preferences are used after performing
a structural matching between a requested service and
each candidate service, while we aim at using prefer-
ences for optimizing the process.

3 BACKGROUND

Abstract compositions are specified by equations, in
accordance to the following:

Definition 1 (Abstract Composition) . Let

C(t̄)≡def A1(t̄1), . . . ,An(t̄n),Q1(t̄ ′1), . . . ,Qm( ¯t ′m). (1)

be the definition of an abstract composition. The left-
hand side of the specification defines the interface of
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the composition. The elements of the tuplet̄ are for-
mal parameters and represent input and output data.
We use the ? and ! markings to indicate input and
output parameters, respectively.

The right-hand side of the definition consists
of abstract services (A1, . . . ,An), and constraints
(Q1, . . . ,Qm), expressing capabilities of the composi-
tion. Abstract services correspond to semantic de-
scriptions of service functionalities and specifies the
relationship between their required inputs and ex-
pected outputs. Ontologies may be used to align the
representation of such concepts and to describe the
relationships between services.

Abstract services are the building blocks used to
specify the composition to be refined. Constraints
are relational expressions built on variables and con-
stants. They can express static conditions (to be veri-
fied during the refinement process) and dynamic con-
ditions (to be verified dynamically by the refined com-
position). The composition designer specifies an or-
der of importance between abstract services.

Example 1 . Let us suppose the specification of a
composite service for buying books over the Internet:

LookForBooks(Uid?,Pwd?, Isbn?,Loc?,Price!,Addr!,Ack!)
≡ Authentication(Uid?,Pwd?,Tkn!,Prot!,Form!),

BookStore(Tkn?, Isbn?,Loc?,Addr!,Price!, Invoice!),
Payment(Tkn?, Invoice?,Ack!),
Prot= “REST” ,Ack= “OK” .

The client supplies an identification, password,
ISBN and location and expects to receive the book’s
price, a pickup address and the transaction acknowl-
edgement. The composition begins with the authenti-
cation of the client. This step returns a token to iden-
tify the client in the store, as well as the exchange
protocol and format. The BookStore service also uses
the client’s location to return the nearest pickup ad-
dress for the book, as well as the price and the in-
voice, to process the payment. After looking up the
book’s price, the bill is paid by using the credit card
information.There are two constraints in the compo-
sition. The first one is a static constraint that specifies
the protocol to be used for authentication. The sec-
ond condition establishes that the whole process was
successfully finished (to be verified dynamically).

Concrete services are also specified by using abstract
services and constraints:

Definition 2 (Concrete Services) .Let

S(t̄)≡def A1(t̄1), . . . ,Ak(t̄k),Q1(t̄ ′1), . . . ,Qr(t̄ ′r). (2)

be the definition of a concrete service. As in the case
of Definition 1, the left-hand side of the specification
defines the interface of the service. The elements of
the tuplet̄ are formal parameters and represent input

and output data. We use the ? and ! markings to
indicate input and output parameters, respectively.

The right-hand side of the definition consists
of abstract services (A1, . . . ,Ak), and constraints
(Q1, . . . ,Qr ), expressing capabilities of the service.

In this case, the left-hand side of the definition
gives the name and interface of the concrete service.
The right-hand side uses abstract services and con-
straints to express the capabilities of the service. The
semantic information embedded in the abstract ser-
vices can help to broaden the number of available ser-
vices for the refinement process. We suppose that the
specification of each concrete service is given by the
service supplier/publisher.

Our refinement method matches the specification
of concrete services with that of the abstract com-
position. The algorithm considers the definition of
each available concrete service to cover parts of the
abstract composition. These matchings will be used
later by the algorithm, to build a concrete solution (re-
finement) of the specification.

The refinement process uses preference informa-
tion to guide the traversal of the search space of con-
crete services. This traversal should be done in an
order determined by the user preferences. In this way,
the refinement algorithm should be capable of propos-
ing concrete compositions that comply with the com-
position specification and that are presented in de-
creasing order of preferences. We associate a score to
each concrete service available to the composition de-
veloper. Services having a greater score are preferred
to the ones having lower scores.

Definition 3 (User Preferences) . Given a setS of
concrete services and a real-valued scoring function
function u: S 7→ [0,1], a preference P= (S ,<P) is
derived from the scoring function, where for two con-
crete services x,y∈ S , x<P y iff u(x)< u(y).

The above definition is interpreted as “I like y bet-
ter than x if it has a better score”. Notice that scoring
functions can represent very different types of prefer-
ences, ranging from simple scores (e.g.based on re-
sponse time) to complex, multi-criteria expressions
that combine various quality perspectives. These
scores may be manually defined by users or commu-
nities, may be deduced or estimated from user activ-
ity, or may be automatically assessed. Our approach
is independent of how the scoring function is defined.

The notion of preference classifies the available
concrete services in accordance to the user’s point of
view. However, this notion is orthogonal to the se-
mantics of each concrete service, since the definition
of preferences does not need to take into account the
functionality of concrete services.
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We aim to use preference information to produce
compositions that maximize the combined weight of
its component services. In order to adapt this infor-
mation to the context of our refinement procedure, we
introduce the notion ofCoverage Domain.

Definition 4 (Coverage Domain) . For each ab-
stract service Ai of an abstract composition we de-
fine the Coverage DomainAi , such that: (1)∀S∈
S s.t. S∈ Ai , S contains the abstract service Ai in
its definition. (2) For eachAi , there is a thresholdξi ,
defined at the same time as the abstract composition.
Only services S such that u(S) ≥ ξi will be included
in A i .

Notice that, since each abstract serviceAi is a se-
mantic annotation that denotes thatS provides a de-
fined functionality, the coverage domainAi represents
the set of services that can perform such a provision.
Also, according to Definition 4, an empty coverage
domainAi indicates that no concrete service inS will
provide the functionality described byAi . In this case,
no refinement can be produced overS .

4 REFINEMENT PROCESS

High-level compositions are specified in terms of ab-
stract services, constraints and a total order over the
coverage domains. Given this high-level composition
and the specification of the available concrete ser-
vices, our approach generates refined compositions,
built upon concrete services. The refinement process
incrementally generates concrete compositions, in ac-
cordance to the user’s preferences.

Algorithm 1 traverses a search space formed by
combinations of concrete services, in order to build a
list of concrete compositions that refine the abstract
composition specification.
Algorithm 1 . (Refinement Algorithm)

1procedure refinement (C,A)
2I:= BuildServiceOrganiser(C,A);
3BuildStorePCD(C,A , I);
4while number of desired solutions is not reacheddo
5for eachP := GetNextSetOfPCD(I);do
6R := ProduceRewriting(C,P );
7Publish(R); //R may be empty.
8end do
9end while
10end procedure

Given the abstract compositionC, and the cov-
erage domainsA = {A1, . . . ,Ak}, built from user’s
preferences as defined in Section 3, we suppose that
the order between coverage domains is defined by the
indices (1≤ i ≤ n) in the right-hand side of the spec-
ification ofC. The procedureBuildServiceOrganiser

initialises an index-like data structure to store the con-
crete services in the lexicographical order (based on
the score of concrete services and the coverage do-
main order). For each concrete service, the proce-
dureBuildStorePCDproduces mappings (called PCD
- Partial Coverage Descriptors) to cover parts of the
abstract specification. A PCD describes(i) which part
of the abstract composition is covered by a concrete
service and(ii) how to relate the data processed by
the composition with the parameters of this concrete
service.

The procedureBuildStorePCDassociates each
PCD to a concrete service and stores them for fu-
ture use. Algorithm 1 implements an iterator which
generates sets of PCD by traversing the indexI , in de-
creasing lexicographical order, according to the user’s
preferences. The preference of a PCD is that of the
concrete service to which it is associated. Notice that
the search space is segmented to be processed step-
wise. At each step, the iterator computes setsP of
PCD such that: (i) they have the same rank on the
lexicographical order and (ii) for eachP there is only
one PCD from each coverage domain. In line 5, func-
tion GetNextSetOfPCD returns one of these setsP ,
which, in turn will be passed to the last phase of the
refinement method. In line 6 the combination of the
PCD inP is verified and possibly published.

The rationale for the search space segmentation
is to reduce the number of produced combinations.
Indeed, Refinement1 generates all possible rewrit-
ings by testing all possible PCD’s combinations. In
this new approach the algorithm may exit before ex-
hausting all the possibilities, emphasizing our goal of
avoiding the cost of a combinatorial explosion.

The following sub-sections detail our proposal.

4.1 Partial Coverage Descriptors

Given the abstract composition defined as
C(. . . )≡def A1(. . . ), . . . ,An(. . . ),Q1(. . . ), . . . ,Qm(. . . ).
and each concrete serviceS, defined as
S(. . .)≡def Ai(. . . ), . . . ,A j(. . .),Qk(. . . ), . . . ,Ql (. . . ).
our algorithm tries to match some services on the
right-hand side of the definition of each concrete ser-
vice with the same abstract services appearing on the
right-hand side ofC. This matching consists in pro-
ducing a (semantic) mapping to make their parame-
ters compatible.

For each possible matching, a tuple containing
the mapping information will be produced. Each
of these tuples is a PCD. The definition of PCD is
based on the MiniCon Descriptions in (Pottinger and
Halevy, 2001). It was adapted in (Costa et al., 2013)
to the context of web services. Intuitively, a PCD
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〈S,h,ϕ,G,Def,hasopt〉 defines how a service can
be part of a concrete composition that meets the ab-
stract specification.S is the name of the concrete
service involved in the matching. A mappingϕ de-
fines the correspondence between the terms appear-
ing on the abstract composition and terms that appear
on the concrete service definition. For example, given
C(. . . )≡def A1(. . . ), . . . ,Ai(x,y), . . . ,An(. . . ),Q1(. . . ),
. . . ,Qm(. . .) and S(. . .) ≡def . . . ,Ai(u,v), . . . we
have that ϕ(x) = u and ϕ(y) = v. The map-
ping h corresponds to the head homomorphism
in (Pottinger and Halevy, 2001). For example,
given C(. . . ) ≡def A1(. . . ), . . . ,Ai(x,x), . . . ,An(. . . )
andS(u,v) ≡def . . . ,Ai(u,v), . . . we need to equateu
andv (i.e., h(u) = u, h(v) = u), so thatϕ may be de-
fined as a function (i.e., ϕ(x) = u). G is a set of ab-
stract service names and quality constraints covered
by S. The setDef contains conditions that cannot be
guaranteed bySalone. The flaghasopt indicates the
use of an optional parameter.

Given an abstract compositionC, the algorithm
below builds PCD and stores each one in the indexI .

Algorithm 2 . (Building and storing PCD)

1procedure BuildStorePCD(C,A, I)
2for each Ai in C do
3for each S∈ A i do
4// whereA i is the coverage domain of Ai
5if there are mappings h andϕ for Ai in the
6definitions of C and Sthen
7G := {Ai}; Def := /0;
8PCD := 〈 S, h,ϕ, G, Def, hasopt 〉;
9AS := {A′ | A′ is an abstract service or
10quality constraints in C sharing parameters
11with Ai or with other elements of AS}
12PCD OK := true;
13while AS6= /0 and PCDOK do
14A’ := choose an abstract service from AS;
15if ( h, ϕ can be extendedto cover A’) then
16Update PCD w.r.t. h,ϕ, G, Def, hasopt
17AS := AS− A’;
18else PCD OK := false;
19end if
20end while;
21if PCD OK then StoreInIndex(PCD,S,A i )

end if
22end if
23end for
24end for
25end procedure

In line 5, parameters appearing on the left-hand
side of a composition should only be mapped to pa-
rameters appearing on the left-hand side of concrete
service specifications or optional ones. Then, Algo-
rithm 2 looks for other abstract services or quality
constraints connected toA. Thus, in line 9, the set
AScontains all abstract services or quality constraints

of C that (i) have a data dependency toA and(ii) are
not mapped byϕ to the parameters ofS.

Example 2 . Let us consider the composition Look-
ForBooks specified in Example 1. Assume the follow-
ing concrete service specifications:

PickAndPayBooks(T?, I?, M?, A!, P!, K!)≡def
BookStore(T?, I?, M?, A!, P!, V!) ,
Payment(T?, V?, M?, K!).

Amazon(T?, I?, M?, A!, P!, V!)≡def
BookStore(T?, I?, M?, A!, P!, V!)

Visa(T?, V?, M?, K!)≡def Payment(T?, V?, M?, K!).

The PCD D1 = 〈PickAndPayBooks,h1,ϕ1,
{BookStore,Payment}, /0, false〉, where h1 is the
identity function andϕ1 maps terms Tkn?, Isbn?,
Loc?, Addr!, Price!, Invoice!, Ack! to terms T?,
I?, M?, A!, P!, V!, K!, respectively, is built by
Algorithm 2 since:(i) the parameters appearing on
the left-hand side of the composition are mapped by
ϕ1, and (ii) Invoice is a term that appears only on
the right-hand side of the definition of LookForBooks
and is mapped byϕ1 to V in PickAndPayBooks.
The inclusion of Payment in D1 is explained by the
fact thatϕ1(Invoice) is a term which does not appear
on the left-hand side of PickAndPayBooks and acts as
output parameter of BookStore and input parameter
of Payment. Thus, D1 can be used in the rewriting of
LookForBooks to cover BookStore and Payment.

Two other PCD can be built: D2 =
〈Amazon,h2,ϕ2, {BookStore}, /0, false〉 and D3 =
〈Visa,h3,ϕ3, {Payment}, /0, false〉 where ϕ2 and ϕ3
are the intuitively expected mappings. Since these
two PCD are feasible, then our approach can propose
a rewriting of LookForBooks with service Amazon
for BookStore and Visa for Payment.

Algorithm 2 detects two situations where the con-
struction of PCD is not possible (i.e., when nothing is
stored inI ): (i) In line 5, if no match between services
SandA exists and(ii) in line 15, if no match between
servicesS andA′ exists. In the second situation, as
A′ ∈ AS, Smust cover the abstract serviceA′.

When the construction of a PCD is possible, it is
stored inI . For each coverage domainA of an ab-
stract serviceA∈ G, the computed PCD is inserted in
I , associated to the concrete serviceS∈ A . After the
execution ofAlgorithm 2, the indexI contains all pos-
sible PCD, computed on the basis of a compositionC
and organised according to an user’s preferences.

4.2 An Iterator

Our method proposes an organiser, an index-like
structure, which is built for each abstract composi-
tion, according to the user’s preferences and the cov-
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erage domain order. An iterator traverses this organ-
iser in the decreasing lexicographical order and anal-
yses, progressively, each concrete service combina-
tion susceptible to be a composition rewriting. The
iterator avoids building useless compositions by re-
specting the following rules: (1) A concrete service
can take part in a composition iff it does not cover a
domain already covered by previous services. (2) A
coverage domain is not visited if it has already been
covered by a service in the composition.

The iterator generates each setP of PCD involved
in a generated composition. At each iteration, we ob-
tain all the setsP corresponding to the same prefer-
ence. The function GetNextSetOfPCD in Algorithm 1
returns one of these sets to be possibly completed by
the last step of our method.

Figure 1 illustrates the three-level structure used to
implement our index. The first level sets the order of
coverage domains. The second level is organised ac-
cording to the concrete service scores. For instance,
in Figure 1, concrete services inA0 having the high-
est weight are found in the slot labelledrank0.0 while
those having the lowest weight are found in the slot
labelledrank0.m0. In this figure, we suppose that for
domainA0 we havem0 ranks, while forA1 we have
m1 and so on. In the third level we use a hash ta-
ble to store concrete services. More precisely, a hash
function associates a slot to a concrete service and its
PCDs are stored in the corresponding linked list.

Domains
Coverage

rank0.0

rank0.m0

rank0.1

rank1.0

rank1.1

rank1.m1

. . .

. . .

3rd Level2nd Level1st Level

Preferences Concrete Services PCDs

. . .

PCDS3

PCDS1 PCDS1S1

S3

PCDS3

PCDS4S4

S3

A2

A1

A0

. . .

Figure 1: Organiser: to store PCD for concrete services ac-
cording to the user’s preferences.

4.3 Producing Refinements

Algorithm 3 is the last step of our approach. Its role
is to verify whether a given setP of PCD can be cor-
rectly combined in order to produce a composition
refinement. Algorithm 3 completes the composition
according to imposed quality constraints and optional
parameters, when they apply.

The input of Algorithm 3 is a setP containingk
partial coverages forn abstract services. The number

of PCD inP does not necessarily equal the number of
abstract services, since a concrete service may cover
more that one abstract service. The iterator guaran-
tees thatP respects the following properties: (i) PCD
in P cover all the abstract servicesA1, . . . ,An of C and
(ii) there are no overlapping between the abstract ser-
vices covered by different PCD. The only allowable
intersection between them is given by deferred qual-
ity constraints.

Algorithm 3 . (PCD Combination and Rewriting)

1function ProduceRewriting(C,P )

2if P = {PCD1, . . . ,PCDk} is such that

3(a) All deferred constraints in Def1 . . . Defk hold;

4(b) Input and output optional parameters should match.

5then

6Pre := /0; Pos := /0;

7for each var. x∈ Qi such that Qi /∈ G1∪ ·· · ∪Gk do

8if x is an input parameter of Cthen Pre := Pre∪ Qi

9end if;

10if x is an output parameter of Cthen Pos := Pos∪ Qi

11end if;

12end for

13return 〈Pre〉C′(EC(t̄))≡def S1(t̄1), . . . ,Sk(t̄k) 〈 Pos〉;

14end if

15end function.

Algorithm 3 tries to cover the definition of the ab-
stract compositionC, by verifying whether, for partial
coverages inP , the following conditions hold: (a) The
deferred quality constraints appearing in the PCDs
must hold when their variables are instantiated using
the mappings of the PCDs (line 3). (b) Each term in
C mapped to an optional output parameter (inside the
definition of Si) can only be mapped to optional in-
put parameters (inside the definition of any concrete
service) (line 4).

If the combination of PCD inP satisfies the con-
ditions above, one concrete composition is produced.
The refined composition is returned (line 13) with its
pre- and post-conditions. These conditions cannot be
statically verified and need to be checked at runtime
by the generated concrete composition. They repre-
sent quality constraints of the abstract composition
that are not ensured by the concrete services (since
they have a dynamic nature). An example is the con-
dition Ack= “OK” of Example 1.

The following example covers all the aspects of
our refinement algorithm.

Example 3 . Given the specification of the composi-
tion of Example 1, suppose that we have defined the
following coverage domains obtained from the avail-
able concrete services and user preferences:

Bookstore: Amazon (0.9), BarnesAndNoble (0.85).

Payment: Visa (0.4) and MasterCard (0.35).
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Authentication: OrangeAuth (0.8), YahooAuth (0.7),
Twitter (0.65), Facebook (0.6).

According to Algorithm 1, the first call to the func-
tion in line 5, will return a set of PCD built on the
concrete services Amazon, Visa and YahooAuth. No-
tice that, although OrangeAuth is preferred over Ya-
hooAuth, the service cannot be used in the composi-
tion since it uses the SAML protocol, instead of REST,
which is required by the specification. In this way, no
PCD is generated on this service. Thus, our proce-
dure generates the following refinement:

LookForBooks′(Uid?,Pwd?, Isbn?,Loc?,Price!,Addr!,Ack!)

≡de f YahooAuth(Uid?,Pwd?,Tkn!,Prot!,Form!),

Amazon(Tkn?, Isbn?,Loc?,Addr!,Price!, Invoice!),

Visa(Tkn?, Invoice?,Ack!),Ack= “OK” .

In the case in which further solutions are sought, our
algorithm will continue to produce refinements with
less preferred services.

Notice that Refinement1 modifies MiniCon by impos-
ing more restrictions (and thus avoiding some rewrit-
ings). We can see that the solutions obtained by our
algorithm are functionally correct. This claim is sup-
ported by the results in (Pottinger and Halevy, 2001)
and the following facts: (1) Algorithm 2 builds PCD
for each concrete service inS∈ A i . Each PCD is de-
signed to cover part of the abstract composition. It
matches the parameters of the abstract composition
with those of the concrete service and defines substi-
tution functions to maintain that matching during the
(future) execution of the service. (2) Algorithm 3 se-
lects those combinations of PCDs that covers the en-
tire abstract composition. The parameter substitutions
are combined to keep track of the data exchanged by
the concrete services.

5 OUR METHOD IN PRACTICE

Our iterator proposes concrete service combinations,
which implies an exponential time complexity (in the
number of PCDs generated by BuildStorePCD in Al-
gorithm 1). This is due to the combinatorial nature of
the problem, also faced by the original MiniCon and
our refinement method. As, in the worst case, one can
have (n.M.m) PCDs, the complexity isO(n.M.m)n

wheren is the number of abstract services in the com-
position, m is the maximal number of abstract ser-
vices in the specification of a concrete service andM
is the number of concrete services. The worst case
of our algorithm occurs when all services have the
same preference. In this case, the complexity of our

Figure 2: Execution time of our methodw.r.t.nb of required
(desired) rewritings. Varying nb of ranks and services: 10
or 20 (1 or 2 ranks) or 40 (2 or 4 ranks) services. Execution
time of Refinement1 method computing all possible solu-
tions for 10 and 20 services.

method if the same as that of MiniCon. Our solution
prunes the search space by introducing the notion of
coverage domains and by ordering solutions in accor-
dance to the user preferences. As coverage domains
offer a semantic classification of services, in general,
a PCD does not belong to all the coverage domains.
Our index structure organises PCDs according to cov-
erage domains, so that there is no need to build all
PCD combinations. By building solutions (concrete
compositions) in a decreasing order of user prefer-
ences the refinement process can stop when the de-
sired number of compositions is reached.

We have implemented a prototype of our method
in Java. Figure 2 shows the average time from 60 ex-
ecutions on a Intel Quad-Core 2.70GHz, 2GB over
synthesized services. Its goal is to show the result of
synthesized compositions, done in order to evaluate
the behaviour of our method in some bad situations.

Consider a composition with 10 abstract services
and a varying number of concrete services defined by
just one abstract service. Each concrete service covers
at most one abstract service of our composition. In
this case, a great number of rewritings is possible and
our new proposal offers a considerable time saving
when compared to our previous work.

We have run tests with 20 and 40 concrete ser-
vices equally distributed over the 10 coverage do-
mains (Figure 2). These tests have been chosen in
order to illustrate the worst cases in terms of complex-
ity. With only one preference rank all compositions
have the same priority. For instance, with 40 services,
4 per rank, our algorithm behaves like Refinement1
and we have 410 compositions with the same priority.
Improvements are reported in situations where differ-
ent priorities are assigned to services. For instance,
Figure 2 shows that for 20 services (2 ranks per do-
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main) we need 8.53msand 21.5msto offer 1 and 10
required rewritings, respectively. A similar execution
time is needed for 40 services, 4 ranks per domain,
since in both cases we have 1 service per rank. No-
tice that before executing ProduceRewriting (Algo-
rithm 1), the iterator generates all the combinations
having the same priority. In this case, even if one so-
lution is required, all of them are published. In Fig-
ure 2, for 40 services, 2 ranks per domain, we have
210 rewritings to propose.

Figure 2 also shows the running time for Refine-
ment1 when dealing with 10 and 20 services. For 10
concrete services only one solution exists: both meth-
ods have the same performance (≈ 9ms). For 20 ser-
vices, since there are 2 services per domain, Refine-
ment1 computes all the 210 rewritings in 550ms.

With our method we can compute the 210 rewrit-
ings in about 170mswhen we have one rank per do-
main and 2 services per rank. In this case all the solu-
tions are computed in one shot as they have the same
priority. In the case with 2 ranks per domain and
one service per rank, our method needs about 5ms,
70msand 210msto compute one solution, 100 solu-
tions and all the solutions, respectively. Notice that
the time generation of the 1024 solutions in the first
case is slightly smaller compared to the latter case as
the iterator computes at each step only one rewriting
(no two rewritings have the same priority). This dif-
ference illustrates the small price introduced by our
priority-oriented method.

6 CONCLUSIONS

Given the abstract specification of a composition, our
method produces combinations of services available
in the Cloud, in order to refine the specification. The
algorithm presented here extends improves our previ-
ous work in (Costa et al., 2013) by classifying solu-
tions according to an user’s profile. This new pro-
posal generates solutions in a preference order and
avoids the production of a combinatorial number of
rewritings. Our experiments show that efficiency has
been greatly improvedw.r.t. (Costa et al., 2013). An
important perspective is to consider web intelligence
techniques to better explore user’s preferences.
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