
Creo: Reduced Complexity Service Development

Per-Olov Östberg and Niclas Lockner
Dept. of Computing Science, Umeå University, Umeå, Sweden

Keywords: Service-orientated Architecture, Service Development Tools.

Abstract: In this work we address service-oriented software development in distributed computing environments, and
investigate an approach to software development and integration based on code generation. The approach is
illustrated in a toolkit for multi-language software generation built on three building blocks; a service descrip-
tion language, a serialization and transport protocol, and a set of code generation techniques. The approach
is intended for use in the eScience domain and aims to reduce the complexity of development and integration
of distributed software systems through a low-knowledge-requirements model for construction of network-
accessible services. The toolkit is presented along with a discussion of use cases and a performance evaluation
quantifying the performance of the toolkit against selected alternative techniques for code generation and ser-
vice communication. In tests of communication overhead and response time, toolkit performance is found to
be comparable to or improve upon the evaluated techniques.

1 INTRODUCTION

Cloud computing has in recent years evolved to an
established paradigm for provisioning of IT capacity.
While this approach can offer several benefits com-
pared to traditional static provisioning, e.g., facilita-
tion of more flexible service types (Armbrust et al.,
2010) and improvements in cost and energy efficiency
of large-scale computing (Walker, 2009; Berl et al.,
2010), it also places focus on a current problem in dis-
tributed computing: the increasing complexity of de-
velopment and management of systems in distributed
computing environments (Kephart and Chess, 2003).

Service-Oriented Computing (SOC) is a popular
approach to software development and integration in
large-scale distributed systems. SOC is argued to be
well suited for cloud environments as it places focus
on representation of logic components as network-
accessible services, and aims to facilitate develop-
ment and integration of systems through coordination
of service interactions. At architecture level, Service-
Oriented Architectures (SOAs) define service inter-
faces as integration points and address system compo-
sition at interface or protocol level. While a number of
SOA techniques have emerged, service development
and integration are still complex issues and there ex-
ists a need for development tools that provide non-
complex and low-learning-requirement environments
for efficient development of service-based systems.

To illustrate these issues, we here take the per-
spective of eScience application development. In
eScience1, distributed computing techniques are used
to create collaborative environments for large-scale
scientific computing. In comparison to commer-
cial software stacks, scientific computing tools are
typically prototype-oriented, developed in projects
with limited software development budgets, and of-
ten composed of heterogeneous components devel-
oped in multiple languages and environments. In ad-
dition, eScience applications often use distributed or
parallel programming techniques to exploit the inher-
ent parallelism of computational problems. As many
current eScience efforts are approaching construction
of virtual infrastructures using cloud technology, they
here serve as illustrative examples of the difficulties
of developing multi-language software stacks in het-
erogeneous distributed computing environments.

In this work we address reduction of complexity
in service-based software development, and present
an easy-to-use toolkit for efficient cross-language in-
tegration of software services. The toolkit is based
on three core components: a simplified syntax service
description language, a transparent data serialization
and transmission protocol, and a set of code genera-
tion tools designed to abstract complexity in service
and service client development.

1Computationally intensive science carried out in highly
distributed network environments.

230 Östberg P. and Lockner N..
Creo: Reduced Complexity Service Development.
DOI: 10.5220/0004854902300241
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 230-241
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



The remainder of the paper is structured as fol-
lows: Section 2 presents project background and a
brief survey of related work, Section 3 outlines the
proposed approach and toolkit, and Section 4 dis-
cusses use cases for the approach. In the second half
of the paper, Section 5 contains a performance evalu-
ation quantifying toolkit performance against selected
alternative techniques for code generation and ser-
vice communication, followed by conclusions and ac-
knowledgements in sections 6 and 7.

2 RELATED WORK

A number of tools for service development and mid-
dleware construction exist, ranging in complexity and
abstraction levels from very simple fine-grained in-
terprocess communication tools to advanced middle-
ware construction tools featuring advanced data mar-
shalling, call translation, and remote reference count-
ing techniques. In general there exists trade-offs be-
tween complexity and efficiency that make service
technologies more or less suitable for certain situa-
tions, and many technologies have been developed for
specific application scenarios.

For example, direct interprocess communication
technologies such as traditional remote procedure
calls (RPC) (Birrell and Nelson, 1984) and Java Ob-
ject Serialization (JOS) (Oracle, 2005) (over sock-
ets) provide transparent development models but of-
fer little in ways of complexity abstraction. Other
approaches such as Java Remote Method Invocation
(RMI) (Wollrath et al., 1996) and the Microsoft Win-
dows Communication Framework (WCF) (Mackey,
2010) offer development models tightly integrated
into mature commercial software development en-
vironments, but lose some applicability in multi-
platform application scenarios. There exists also
standardized approaches to multi-language and multi-
platform service development, e.g., the Common Ob-
ject Request Broker Architecture (CORBA) (Vinoski,
1993), but while such standardized approaches typi-
cally are very expressive and capable of application in
multiple programming styles, e.g., object-orientation
and component-oriented development, this general
applicability often comes at the price of very steep
learning curves and high development complexity.

In service-oriented computing and architectures,
programming models such as SOAP and REST-style
web services are widely used due to features such as
platform independence, high abstraction levels, and
interoperability. The SOAP approach to web ser-
vices favors use of standardization of XML-based ser-
vice description and message formats to facilitate au-

tomated generation of service interconnection code
stubs, dynamic service discovery and invocation tech-
niques, and service coordination and orchestration
models. SOAP-style web services are however of-
ten criticized for having overly complex development
models, inefficiencies in service communication, and
low load tolerances in servers (although developments
in pull-based parser models have alleviated some of
the performance issues (Govindaraju et al., 2004)).

The REpresentational State Transfer (REST)
(Fielding, 2000) web service model is often seen
as a light-weight alternative to the complexity of
SOAP-style web service development. The REST ap-
proach discourages standardization (of message for-
mats), promotes (re)use of existing wide-spread tech-
nology, and aims to give service developers more
freedom in, e.g., choice of data representation formats
and API structures. While this approach facilitates a
development model well suited for smaller projects,
it is sometimes argued to lead to more tightly coupled
service models (that require service client developers
to have knowledge of service-side data structures) and
introduce technology heterogeneity in large systems.

Although service models are considered suitable
for large-scale system integration, and some under-
standing of the applicability of web services has
been gained (Pautasso et al., 2008), neither ap-
proach fully addresses the requirements of service-
oriented software development and a number of
technologies for hybrid service-RPC mechanisms
have emerged. These include, e.g., interface def-
inition language (IDL) based technologies such as
Apache Thrift (Slee et al., 2007), an RPC frame-
work for scalable cross-language service develop-
ment, Apache Avro (Apache, 2009), a data serial-
ization system featuring dynamic typing, and Google
protocol buffers (Google, 2008), a method for seri-
alizing structured data for interprocess communica-
tion. For high performance serialization and trans-
mission, there also exists a number of non-IDL
based serialization formats and tools such as Jack-
son JSON (Jackson, 2009), BSON (MongoDB Inc.,
2007), Kryo (Kryo, 2009), and MessagePack (Fu-
ruhashi, 2011).

In addition to trade-offs for technical performance
and applicability, tools and development models of-
ten impose high learning requirements in dimensions
orthogonal to the task of building distributed sys-
tems. For example, the Distributed Component Ob-
ject Model (DCOM) requires developers to under-
stand data marshalling and memory models, Java
RMI distributed garbage collection, CORBA portable
object adapters (type wrappers), and SOAP web ser-
vices XML Schema (for type definition and valida-

Creo:�Reduced�Complexity�Service�Development

231



tion). As distributed systems are by themselves com-
plex to develop, debug, and efficiently analyze, there
exists a need for software development tools that pro-
vide transparent and intuitive development models,
and impose low learning requirements.

In this work we build on the service develop-
ment model of the Service Development Abstraction
Toolkit (Östberg and Elmroth, 2011), and investigate
an approach to construction of development tools fo-
cused on reducing complexity of service-based soft-
ware development. The aim of this approach is to
combine the high abstraction levels of SOAP-style
web services (using a simplified service description
syntax) with the communication efficiency of more
direct RPC-style communication techniques, and pro-
duce tools with low learning requirements that effi-
ciently facilitate service development. As the work
is based on code generation, the approach can be
seen akin to development of a domain-specific lan-
guage (Van Deursen et al., 2000) for service descrip-
tion, but the main focus of the work is to reduce
overhead for exposing component logic as network-
accessible services. The work is done in eScience set-
tings, and presented results are primarily intended to
be applied in scientific environments, e.g., in produc-
tion of tools, applications, and middlewares for scien-
tific simulation, experimentation, and analysis.

3 CREO

Service-oriented architectures typically expose com-
ponents and systems as platform independent,
network-accessible services. While this approach
gracefully abstracts low-level integration issues and
provides for high-level architecture design models, it
can often lead to practical integration issues stem-
ming from, e.g., complexity in service development
models, steep learning curves of service development
tools, and lack of distributed systems development ex-
perience in service client developers.

In this paper we build on earlier efforts presented
in (Östberg and Elmroth, 2011) and (Östberg et al.,
2012), and propose an approach to service develop-
ment that places the responsibility of service client
development on service developers. As this shift in
responsibility introduces noticeable additional com-
plexity in service development, e.g., in requirements
for multi-language service client development, we
note a need for tools to support the approach and
present Creo - a service development toolkit based on
automated code generation.

The Creo toolkit is aimed to reduce complexity
in construction of network-accessible services by pro-

viding a development model that lowers learning re-
quirements and increases automation in service de-
velopment. While the toolkit is designed to be sim-
ple to use and targeted towards developers with lim-
ited distributed systems development experience, it
also strives to provide service communication perfor-
mance high enough to motivate use of the toolkit in
mature service development scenarios.

To limit the scope of the work, we have initially
designed the toolkit to support development of ser-
vices in a single language (Java), and service client
development in four languages common in eScience
environments: C, C#, Java, and Python. The toolkit
implementation patterns are however transparent and
modularized, and all modules are designed to be ex-
tensible to code generation in additional languages.
The intent of the toolkit is to provide robust service
communication stubs in general purpose program-
ming languages that can later be used to build in-
tegration bridges into special purpose environments
such as R and Matlab. The choice of Java as ser-
vice language is motivated by the language’s rich de-
velopment APIs, robustness in performance, platform
independence, and wide-spread adoptance in operat-
ing systems and server platforms. The design phi-
losophy of the toolkit can be summarized as support-
ing advanced implementation of services while keep-
ing generated code for clients as transparent, light-
weight, and free of external dependencies as possible.

To combine the ease-of-use of high abstraction
level tools with the communication performance of
more fine-grained approaches, the toolkit develop-
ment model is based on the service description ap-
proach of SOAP-style web services combined with a
customized version of the RASP protocol presented
in (Östberg et al., 2012). The toolkit service develop-
ment process can be summarized in three steps:

1. Service description. Service type sets and inter-
faces are defined in a custom service description
(interface definition) language

2. Communication code generation. Service and
service client communication stubs are generated
from service descriptions.

3. Service integration. Logic components are ex-
posed as services through implementation of gen-
erated service interfaces, and service clients are
implemented based on the generated communica-
tion stubs for service interconnection.

In all steps of this process, the toolkit aims to re-
duce the complexity of service development by pro-
viding intuitive tools and formats for service descrip-
tion, data representation, and code generation.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

232



3.1 Service Description

Program 1 A sample Creo service description.
// annotations
@PACKAGE("packagename")

// type definitions
struct MetaData
{
String description;
long timestamp;

}

struct Data
{
MetaData metadata;
double[] samples;

}

// interface definitions
interface DataService
{
void storeData (Data[] data);
Data retrieveData (String description);

}

For data type and service interface definition, the
toolkit employs a service description language com-
prised of three parts:
� Annotations. Define code generation parameters,

e.g., service package names.
� Types. Specifies a basic set of primitive types and

a struct mechanism for type aggregation.
� Interfaces. Define service interfaces in terms of

methods and method parameters.
The service description language format is based

on the block syntax of the C/C++ family of lan-
guages. In the interest of simplicity, the primitive type
set is restricted to a basic type set commonly occur-
ring in most programming languages: byte, char,
int, long, float, double, and String. The lan-
guage supports direct aggregation of primitive types
in structs and arrays as well as construction of com-
pound types via aggregation of structs. This allows
construction of hierarchical data types such as trees,
but not cyclic data types such as graphs. Program 1
contains a sample service description demonstrating
the aggregation mechanisms of the Creo service de-
scription language.

While alternative representation formats with
more advanced features exist, e.g., schema-based type
set and data validation in XML and WSDL, the de-
sign philosophy of this work is to reduce complexity
rather that offer advanced features. The goal of the de-
scription language is to provide a convenient format

that has great expressive power, is as unambiguous
as possible, and introduces as few learning require-
ments as possible. The primitive type set defined, as
well as the concept of aggregation of fields in records
and arrays, are prevalent in programming languages
and should prove intuitive to developers regardless of
background. To minimize the learning requirements
of the tool, the type interpretations and syntax of the
description language are based on a subset of the well-
known Java programming language.

3.2 Data Representation

To promote transparency, the representation format
specified in service description also directly outlines
the data structures used in data serialization and trans-
mission. For language and platform independence,
all values are transformed to and from network byte
order in transmission and support code is generated
for programming languages not supporting descrip-
tion language features (e.g., byte order transforma-
tion, string classes, or array types). For aggregated
types, types are serialized in the order declared (and
stored in memory), with size counters prefixing data
for array types and strings. As data are declared and
stored in hierarchical structures (trees), data serializa-
tion is essentially a left-wise depth-first traversal of
data trees, where individual node values are stored se-
quentially. In terms of invocation semantics, Creo de-
fines call-by-value semantics for invocation of remote
service methods. As data are serialized by value, the
use of reference and pointer types inside data blocks
passed to services is not supported. In particular,
use of circular references (e.g., cyclic graphs) may
lead to inefficient transmission performance or non-
terminating loops.

For efficiency in transmission (i.e. minimization
of system calls and alignment of network package
sizes to maximum transfer units), all data are serial-
ized and deserialized via transmission buffers located
in the generated code stubs. The protocol used for
transmission of data between clients and services (il-
lustrated in Figure 1) is a customized version of the
Resource Access and Serialization Protocol (RASP)
of the StratUm framework (Östberg et al., 2012). The
description language does not support encoding of ex-
plicit exception messages for propagating error infor-
mation across process boundaries.

3.3 Code Generation

Service integration code is typically provided in one
of two forms: APIs or service communication stubs.
To reduce complexity in service client development,

Creo:�Reduced�Complexity�Service�Development

233



Figure 1: Byte layout of the Creo protocol request message for the sendData() method of Program 1. Data encoded in the
order defined in service descriptions, arrays and strings prefixed with item counts. Byte block sizes and primitive types in
black, protocol preamble (protocol and method ids) and aggregated (struct and array) types in red.

and increase the transparency of the service com-
munication mechanisms, the Creo toolkit uses a
code generation approach centered around immutable
wrapper types and call-by-value interfaces. The ratio-
nale of this design is to make use of generated client
code as intuitive as possible, and to facilitate a service
client development model that doesn’t require prior
distributed systems development experience.

Use of code generation techniques rather than
APIs fundamentally assumes that service descriptions
rarely change (as service-oriented architectures tend
to be designed in terms of service interfaces), and
have the added benefits of allowing typed languages
to catch type errors earlier while keeping service
client implementations loosely coupled to services.

3.3.1 Code Generator

From a high level, the Creo toolkit can be seen to be
composed of three components: a service description
parser, a framework generator, and a custom package
generator. To promote flexibility and facilitate adap-
tation to new requirements, e.g., support for new pro-
gramming languages or representation formats, the
architecture of the toolkit is designed to be modular
and extensible. The separation of code generation for
frameworks and custom packages (i.e. code specific
to data types and services defined in service descrip-
tions) serves to facilitate third party implementation
of code generator plug-ins. With this separation it is
possible to contribute plug-in modules to support al-
ternative implementations of, e.g., data serialization
routines and client implementations, without having
to deal with generation of framework code.

The service description parser is constructed using
a combination of in-memory compilation of the ser-
vice description types (after replacing selected key-
words to make service descriptions Java compliant),
use of the Java reflection API (to validate descrip-
tion structures), and a custom language parser (that
extracts parameter information). To isolate code gen-
erators from document parsing, the parser provides a
full internal API that completely describes the type
sets and document structures of service descriptions.

3.3.2 Generated Code - Framework

To establish a uniform model for client-service com-
munication, all service client code implements a
framework model for connection establishment, data
serialization, and transmission capabilities. This
framework is structured around an identified core fea-
ture set that includes, e.g., primitive type representa-
tion and serialization (including network byte order
transformations), array and string type wrapper types
(for languages not providing such types), and socket-
level read and write transmission buffers.

The purpose of the framework is to separate
service and client logic independent of the types
and services defined in service descriptions, and re-
duce the complexity of generating code for service-
dependent logic. Implementation of this frame-
work pattern keeps all service client implementations
lightweight and compatible with the service imple-
mentation, which facilitates development of client im-
plementations in additional languages. On the service
side, the framework code is connected to the service-
dependent code through a provider-pattern implemen-
tation for service data type serializer factories.

3.3.3 Generated Code - Service Side

On the service side, the generated framework is ex-
tended with a lightweight service hosting environ-
ment containing basic server functionality such as
thread and service management. The architecture of
the service framework is based on the principle of ab-
stracting as much as possible of the service boilerplate
code required to expose components as services. It is
the intent of the toolkit that service implementation
should consist only of two steps - generation of the
service framework from a service description file and
implementation of a service (Java) interface.

The basic structure of the generated services is de-
signed around the information flow in the system; a
server hosts services, parses incoming requests, and
passes request messages onto an incoming message
queue for the requested service. The service imple-
mentation processes requests, generates and pushes
response messages onto the outgoing message queue
for the service. The server continuously monitors

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

234



all service message queues and sends response mes-
sages when available. The core of the generated
service framework is message-oriented and defined
around the concept of asynchronous message queues,
and does not restrict service implementations to use
of only synchronous request-response communica-
tion patterns. However, while service implementa-
tions are free to define their own communication pat-
terns in terms of the messages exchanged between
clients and services, use of asynchronous communi-
cation patterns requires modifications of the gener-
ated service clients to fully support such exchanges.
For reference, an asynchronous client (in Java) is pro-
vided with the generated service framework.

3.3.4 Generated Code - Client Side

The architecture of the generated service clients fol-
lows the same pattern in all implementing service
client languages (C, C#, Java, and Python), and is de-
signed to abstract fine-grained service communication
tasks. A service API is generated exposing the meth-
ods defined in service descriptions, and all data are
managed in immutable wrapper types based on the
types defined in service descriptions. Service com-
munication details, such as connection establishment
and data marshalling, are abstracted by clients stubs.

The underlying philosophy of the toolkit is that
it should be the responsibility of the service devel-
oper to provide integration code (service clients) and
APIs for services, and the toolkit aims to abstract as
much as possible of that process. To promote trans-
parency, all client code generated is designed to fol-
low the same design pattern and all generated service
client code is designed to be as homogeneous as pos-
sible in architecture, code structure, and API func-
tionality support. When applicable, all code is gen-
erated along with sample build environment data files
(e.g., makefiles for C and ant build files for Java). In-
memory compilation and generation of Java Archive
(JAR) files are supported for Java.

4 USE CASES

To illustrate toolkit use, we here briefly discuss ex-
ample application scenarios in the eScience domain.
Envisioned use cases for the Creo toolkit include:

� Coordinated multi-language logging and config-
uration. Scientific applications in the eScience
domain often consist of multiple components and
systems developed in multiple programming lan-
guages. Coordinated logging of application state
information can be very useful for visualization

and management of application processes, which
can be achieved by, e.g., developing a database ac-
cessor component in Java and exposing it as a ser-
vice using the Creo toolkit. Client stubs generated
by the toolkit can then be used to coordinate sys-
tem logs from multiple sources without introduc-
ing external dependencies in systems. Similarly,
multi-component systems can also use this tech-
nique to coordinate system configuration, allow-
ing dynamic reconfiguration of systems (use cases
from the StratUm (Östberg et al., 2012) project).

� Multi-component system integration. The Aequus
system (Östberg et al., 2013)) system is designed
for use in high performance and grid computing
infrastructures. While the core of the system is
developed in Java, the system also contains spe-
cialized components and tools developed in other
languages, e.g., scheduler integration plug-ins in
C and visualization and statistics tools in Python
and Matlab. Use of the Creo toolkit allows smooth
integration of different parts of the system without
extensive distributed systems development effort.

� System evaluation experiments. Distributed
computing infrastructure systems constructed as
service-oriented architectures often require sim-
ulation experiments for testing and validation of
functionality. The previously mentioned Aequus
system is developed and evaluated using emulated
system environments for system tests and scal-
ability simulations. In these settings the Creo
toolkit allows easy integration of multiple simu-
lation components for surrounding systems (e.g.,
batch schedulers and accounting systems), and
construction of large-scale emulation systems for
system evaluation.

� Application cloud migration. Many eScience ap-
plications are initially developed for use on a sin-
gle machine and later (for performance and scala-
bility reasons) transformed into multi-component
systems using parallel and distributed computing
techniques. As part of this process, staging of ap-
plications into cloud environments often requires
some form of reformulation of computational al-
gorithms to better adapt to horizontal cloud elas-
ticity models. The Creo toolkit can here be used
to, e.g., build staging and monitoring tools or
to facilitate remote communication with applica-
tions running in cloud data centers.

Use cases such as these illustrate not only the ex-
pressive power of tools for service development and
component integration, but also the importance of
keeping such tools simple and reducing the complex-
ity of building distributed systems. Use of develop-

Creo:�Reduced�Complexity�Service�Development

235



Table 1: A brief overview of the feature sets of the evaluated service technologies.

Creo Thrift SOAP REST RMI
Interface type IDL IDL IDL protocol API / stubs
Integration style stubs stubs API / stubs API / protocol stubs
Data representation format binary text / binary text text / binary binary

ment tools with steep learning curves or advanced
knowledge requirements for, e.g., serialization for-
mats, marshalling techniques, and transmission for-
mats, can greatly add to the complexity of building
distributed systems. For many purposes, and proto-
type development in particular, reduction of complex-
ity and ease-of-use often outweigh the additional fea-
tures of more advanced approaches.

5 EVALUATION

Service-based software design is an area with many
competing approaches to service development and in-
tegration, making objective evaluation of new tools
non-trivial.

In this work we identify three abstraction levels
for development toolkits; low (fine-grained message
level integration), intermediary (remote procedure
call communication abstraction), and high (service-
oriented component integration); and evaluate the
proposed toolkit against selected tools from each ab-
straction level in the dimensions of serialization over-
head, transmission overhead, and service response
time. To facilitate future comparison against third
party tools, we select well-established and easily ac-
cessible tools for the evaluation.

For low level abstractions we compare the per-
formance of the toolkit against that of Apache
Thrift (Apache, 2010), a software framework for scal-
able cross-language service development. As the
toolkit primarily targets service development in Java,
we have for high and intermediary levels selected
Java-based tools. For intermediary level we evalu-
ate two related technologies: Java Remote Method
Invocation (RMI) (Wollrath et al., 1996), an object-
oriented remote procedure call mechanism that sup-
ports transfer of serialized Java objects and dis-
tributed garbage collection, and Java Object Serial-
ization (JOS) (Oracle, 2005), the object serialization
technology used by Java RMI. For high level, we
evaluate the toolkit against two popular web service
technologies: REST web services (using the RESTlet
framework version 2.0.15 (Restlet, 2013)) and SOAP
web services (using the Apache Axis 2 SOAP frame-
work version 1.6.2 (Apache, 2005)). Table 1 provides
a brief comparison of the feature sets of the evaluated

service technologies.

5.1 Testbed and Experimental Setup

To evaluate the technical performance of the toolkit
we measure three facets of service communica-
tion performance; serialization overhead, transmis-
sion overhead, and response time; and quantify these
against corresponding measurements of selected al-
ternative tools. Serialization overhead is here defined
in terms of the computational capacity used for gener-
ation and parsing of service messages, and is included
in tests as it can heavily impact the execution footprint
of service-based tools. Transmission overhead is here
defined to be the additional bandwidth requirements
introduced by service data representation formats, and
is measured by quantitative comparison of total mes-
sage sizes and message payload (raw data) sizes. To
isolate the communication overhead components in-
troduced by service tools in response time measure-
ments, thin service implementations (minimal request
processing times) are used.

Tests are performed using three types of request
data; coarse-grained data (byte chunks), fine-grained
number-resolved data (integer and float values), and
fine-grained string-resolved data (text segments). For
each test and request type, tests are performed with
request sizes grown by orders of magnitude (blocks
of 100, 1k, 10k, 100k, 1M, 10M and 100M bytes).
Coarse-grained requests consist of large chunks of
bytes without structured format. For clients based
on Creo, Thrift, RMI, and JOS coarse-grained data
are sent as raw byte arrays. For REST-based clients,
requests are sent in HTTP POST requests as raw
bytes with the MIME type ”application/octet-stream”.
In SOAP-based clients, request data are encoded as
Base64-encoded strings.

Data for fine-grained requests are created by
grouping data in blocks of 10 bytes, grown by aggre-
gating data blocks in groups of 10, and padded using
smaller data blocks to align sizes with even exponen-
tials of 2. For example, a 1k (1024 bytes) data block
consists of 10 groups of 10 blocks of 10 bytes plus
padding in the form of two 10 byte blocks and a 4-
byte pad value (a 32-bit integer or a 4-byte string de-
pending on type). Larger data blocks are grown us-
ing the same scheme, e.g., by aggregating ten 1k data
blocks to form a 10k data block. Numbers-based data

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

236



blocks contain pairs of 64-bit double-precision float-
ing point and 16-bit integer values. String-based data
blocks contain 10-character strings.

For serialization overhead and service response
time tests, all tests are done by measuring the client-
side makespans of full operations, starting at the point
of client invocation and ending when the client re-
ceives a uniform size 4 byte server response mes-
sage. To isolate overhead components, all measure-
ments are performed in closed loop system settings
using sequential invocation patterns on dedicated ma-
chines with no competing load and isolated network
segments. Experiments are repeated multiple (at least
ten) times to minimize the impact of external factors
on measurements. Parallel invocation tests are used to
evaluate the load sensitivity and scalability of service
tools. All services used in measurements are imple-
mented in Java and service clients are implemented
in C, C#, Java and Python. For tests of the service
response time of REST and SOAP tools, request seri-
alization is done in JSON (using the reference library
of json.org) and XML (using JAXB).

All tests are run on a dedicated symmetric cluster
where nodes are equipped with dual 16 core 2.1 GHz
AMD Opteron 6272 processors and 54 GB RAM.
Nodes are interconnected with 1 Gbps links and net-
works are configured using MTU sizes of 1500 bytes.
All nodes run Ubuntu Linux 12.04 kernel version 3.2,
OpenJDK 1.6, Python 2.7, Mono 2.10, and GLib 2.32.
All software are accessible from Ubuntu repositories.

5.2 Serialization Overhead

To isolate measurements of data serialization over-
head, it is necessary to exclude all artefacts from
transmission of data between clients and the servers
in tests. Additionally, as tools employ transmission
(read and write) buffers that consume computational
power and are orthogonal to data serialization, trans-
mission buffers need to be bypassed in tests. To quan-
tify the serialization overhead of Creo and Thrift ser-
vice clients, both generated code and runtime libraries
are modified so that no data are placed in transmission
buffers or sent to servers after serialization. Further-
more, both tool’s service clients are modified so that
they do not read data from servers after invocations.

To avoid modifications of Java RMI stacks, we
here include measurements of the underlying seri-
alization technology used (JOS) and assume mea-
surements are representative of the serialization over-
head of RMI. To quantify the serialization overhead
of JOS, ObjectOutputStream instances are wrapped
around non-buffered dummy output streams (no data
transferred to underlying sockets). After modifica-

tions, serialization overhead tests are performed in the
same way as service response time tests.

Results from data serialization overhead tests are
visualized in figures 2 and 3. For ease of comparison,
test results for multi-language tests (comparing Creo
to Thrift) using fine-grained data tests are presented
individually, separating tests using number-resolved
and string-resolved data. As can be seen in Figure 2,
Creo improves upon the the performance of Thrift for
fine-grained data on average of factors 1.16 to 5.23
for C#, Java, and Python clients. Compared to the less
mature Thrift C clients, Creo shows improvements of
factors 36.84 to 115.69. When comparing the perfor-
mance of Creo against that of other Java-based tools
(illustrated in Figure 3), Creo exhibits performance
improvements of on average of factors 5.66 to 388.56,
which is attributed to use of more complex serializa-
tion techniques and text-resolved data representation
formats in other tools.

These tests illustrate the magnitude of serializa-
tion overhead for complex serialization techniques, as
well as the impact serialization overhead can have on
service execution footprint and performance. For ex-
ample, the JAXB serialization engine used in SOAP
tests is unable to process messages of sizes 100 MB
in standalone settings, indicating a potential source
for load issues when used inside service engines.

5.3 Transmission Overhead

To evaluate transmission overhead for service com-
munication a simple server component that counts
and returns the number of bytes in requests is used.
Service invocation makespan is measured on the
client side and used to quantify transmission over-
head for service invocations with known request pay-
load sizes. Apache Thrift supports transmission of
data using three protocols: text-resolved JSON and
two binary protocols: TBinaryProtocol and TCom-
pactProtocol, where the former sends data as-is and
the latter uses variable-length encoding of integers.
The purpose of this encoding scheme; which for ex-
ample encodes 16-bit integers as 1-3 bytes, 32-bit in-
tegers as 1-5 bytes, and 64-bit integer as 1-10 bytes;
is to reduce the size of payload and commonly occur-
ring metadata such as the length of strings, arrays, and
collections. In tests we primarily use TBinaryProto-
col as it is supported in all languages, and evaluate
the efficiency of TCompactProtocol in the languages
supported (and quantify it against that of Creo and the
binary protocol) in separate tests.

For ease of comparison, test results for compact
binary representation formats (Creo, Thrift, and JOS)
and text-resolved formats (JSON REST and XML

Creo:�Reduced�Complexity�Service�Development

237



100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Se
ria

liz
at

io
n 

tim
e 

in
 m

ill
is

ec
on

ds

Thrift Python
Creo Python
Thrift C
Thrift C#
Creo C#
Thrift Java
Creo C
Creo Java

(a) Number-resolved data. On average Creo shows improvements of
factors 36.84 (C), 1.23 (C#), 3.51 (Java), and 5.23 (Python) in serial-
ization time.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Se
ria

liz
at

io
n 

tim
e 

in
 m

ill
is

ec
on

ds

Thrift Python
Creo Python
Thrift C
Thrift C#
Creo C#
Thrift Java
Creo Java
Creo C

(b) String-resolved data. On average Creo shows improvements of
factors 115.69 (C), 1.16 (C#), 2.03 (Java), and 3.24 (Python) in serial-
ization time.

Figure 2: Creo and Thrift serialization time (in milliseconds) for fine-grained messages. Axes logarithmic.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Se
ria

liz
at

io
n 

tim
e 

in
 m

ill
is

ec
on

ds

Axis2 SOAP (JAXB)
Restlet REST (JSON)
Java RMI (Java Object Ser.)
Thrift Java
Creo Java

(a) Number-resolved data. On average Creo shows improvements of
factors 388.56 (SOAP), 177.18 (REST), and 34.84 (RMI) in serializa-
tion time.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Se
ria

liz
at

io
n 

tim
e 

in
 m

ill
is

ec
on

ds

Axis2 SOAP (JAXB)
Restlet REST (JSON)
Java RMI (Java Object Ser.)
Thrift Java
Creo Java

(b) String-resolved data. On average Creo shows improvements of
factors 30.37 (SOAP), 20.25 (REST), and 5.66 (RMI) in serialization
time.

Figure 3: Serialization time (in milliseconds) of Java-based tools for fine-grained messages. Axes logarithmic.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

0x

1x

2x

3x

4x

M
es

sa
ge

 o
ve

rh
ea

d

Thrift fine-grained strings
Thrift fine-grained numbers
Java obj. ser. fine-grained numbers
Creo fine-grained strings
Java obj. ser. fine-grained strings
Creo coarse-grained
Creo fine-grained numbers
Thrift coarse-grained
Java obj. ser. coarse-grained

(a) Creo, Thrift, and JOS.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

5x

10x

15x

20x

25x

30x

35x

M
es

sa
ge

 o
ve

rh
ea

d

SOAP fine-grained numbers
SOAP fine-grained strings
REST fine-grained numbers
REST fine-grained strings
SOAP coarse-grained
REST coarse-grained

(b) REST and SOAP.
Figure 4: Transmission (message size) overhead for service invocation requests. Horizontal axis logarithmic.

SOAP) are presented separately. As can be seen in
Figure 4a, compact coarse-grained (binary) data are
represented with little overhead and fine-grained data
are represented with overhead within a factor of 2 in
size for Creo, Thrift and JOS. As can be seen in Fig-
ure 4b, the use of text-resolved representation formats
can introduce significant overhead for fine-grained
data, ranging in tests up to a factor of 20 for JSON
REST and XML SOAP (both of which are unable to
process messages larger than 10MB in tests).

5.4 Service Response Time

Having roughly quantified the impact of potential
overhead sources for data serialization and transmis-
sion, we analyze the communication performance of
the evaluated tools in terms of service request re-
sponse times. Using closed system loop settings (se-
quential invocations of services deployed in isolated
systems), we measure invocation makespan from the
client perspective and use it as a measurement of ser-
vice response time. To verify the transfer of results
from sequential tests to (more realistic) parallel invo-
cation scenarios, we also validate results using paral-

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

238



100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Re
sp

on
se

 ti
m

e 
in

 m
ill

is
ec

on
ds

Thrift Python
Creo Python
Thrift C
Thrift C#
Thrift Java
Creo C#
Creo Java
Creo C

(a) Number-resolved data. On average Creo shows improvements of
factors 19.76 (C), 2.77 (C#), 4.21 (Java), and 2.65 (Python) in service
response time.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Re
sp

on
se

 ti
m

e 
in

 m
ill

is
ec

on
ds

Thrift Python
Creo Python
Thrift C
Thrift C#
Thrift Java
Creo C#
Creo Java
Creo C

(b) String-resolved data. On average Creo shows improvements of
factors 13.42 (C), 2.15 (C#), 4.77 (Java), and 1.87 (Python) in service
response time.

Figure 5: Creo and Thrift service response time (in milliseconds) for fine-grained messages. Axes logarithmic.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Re
sp

on
se

 ti
m

e 
in

 m
ill

is
ec

on
ds

Axis2 SOAP
Restlet REST
Java RMI
Java Object Ser.
Thrift Java
Creo Java

(a) Fine-grained number-resolved data. On average Creo shows im-
provements of factors 135.69 (SOAP), 140.93 (REST), 6.97 (RMI),
and 5.04 (JOS) in service response time.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Re
sp

on
se

 ti
m

e 
in

 m
ill

is
ec

on
ds

Axis2 SOAP
Restlet REST
Java RMI
Java Object Ser.
Creo Java
Thrift Java

(b) Coarse-grained data. On average Creo shows improvements of
factors 7.66 (SOAP), 11.99 (REST), 0.83 (RMI), and 0.83 (JOS) in
service response time.

Figure 6: Service response time (in milliseconds) for Java-based tools. Axes logarithmic.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

0%

5%

10%

15%

20%

25%

30%

35%

40%

Re
du

ct
io

n 
of

 m
es

sa
ge

 s
iz

e

Fine-grained strings
Fine-grained numbers
Coarse-grained

(a) Reduction of service invocation request size for TCompactProtocol
compared to TBinaryProtocol.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Re
sp

on
se

 ti
m

e 
in

 m
ill

is
ec

on
ds

C fine-grained numbers
C (16k write buffer) fine-grained numbers
C fine-grained strings
C (16k write buffer) fine-grained strings
C# fine-grained numbers
C# (16k write buffer) fine-grained numbers
C# fine-grained strings
C# (16k write buffer) fine-grained strings

(b) Response time of Thrift’s C and C# clients when using 16kB write
buffers compared to using the default write buffers.

Figure 7: Transmission overhead in Thrift protocols and buffer alignment issues. Axes logarithmic.

lel invocation tests.
Results from response time tests are visualized in

figures 5 and 6. Figure 5 illustrates comparison of
the response time of Creo and Thrift services. On
average, Creo improves on the response time perfor-
mance of Thrift for fine-grained data on average of
factors 1.87 to 4.77 for C#, Java, and Python clients.
Compared to Thrift C clients, Creo shows improve-
ments of factors 13.42 to 19.76. However, for coarse-
grained data (unstructured binary data, not illustrated
in graphs), Thrift service response times are on av-
erage 16% (C), 26% (C#), 27% (Java), and 32%

(Python) lower than that of Creo (performance av-
erages calculated for request sizes of 1MB, 10MB,
and 100MB). The higher response times of Creo for
coarse-grained data are attributed to the use of asyn-
chronous message queues and immutable data struc-
tures on the service side, which cause redundant data
replications in message transmission.

When comparing the response time of Creo to that
of other Java-based tools (illustrated in Figure 6), we
note performance improvements of at least factor 4.91
for fine-grained data, and comparative performance
for coarse-grained data. As expected from analy-

Creo:�Reduced�Complexity�Service�Development

239



100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Re
sp

on
se

 ti
m

e 
in

 m
ill

is
ec

on
ds

Python TCompactProtocol
Python TBinaryProtocol
C# TBinaryProtocol
C# TCompactProtocol
Java TBinaryProtocol
Java TCompactProtocol

(a) Number-resolved data. On average TCompactProtocol shows im-
provements of factors 1.2% (C#), 26% (Java), and -51% (Python) in
service response time.

100 1k 10k 100k 1M 10M 100M
Request size in bytes

1

10

100

1k

10k

100k

1M

Re
sp

on
se

 ti
m

e 
in

 m
ill

is
ec

on
ds

Python TCompactProtocol
Python TBinaryProtocol
C# TBinaryProtocol
C# TCompactProtocol
Java TBinaryProtocol
Java TCompactProtocol

(b) String-resolved data. On average TCompactProtocol shows im-
provements of factors 7.4% (C#), 22% (Java), and -40% (Python) in
service response time.

Figure 8: Response time performance of Thrift protocols. Axes logarithmic.

sis of serialization and transmission overhead, REST
and SOAP web services exhibit response time perfor-
mance degradations from the use of text-based repre-
sentation formats and associated serializations.

5.5 Thrift Protocols

As mentioned, we use Thrift’s TBinaryProtocol in
tests as it is supported in all client languages. How-
ever, for selected languages, Thrift also supports the
TCompactProtocol that in theory provides more effi-
cient representation of data. To ensure fair compari-
son in tests, we here evaluate the use of this variable-
length encoding scheme protocol. As can be seen in
Figure 7a, Thrift’s TCompactProtocol reduces Thrift
transmission overhead of ca 27% (number-resolved
data) and 34% (string-resolved data) in tests using
fine-grained data. The greater reduction for string-
resolved data stems from all test data blocks con-
taining short strings (4 or 10 characters), causing
string lengths to be serializable in a single byte. The
variable-length encoding scheme has little effect on
unstructured (coarse-grained) binary data, but shows
an improvement for small messages as the protocol
contains less metadata.

In tests, we note oscillations in the performance
of Thrift’s C and C# clients for data sizes of 1kB and
10kB (see Figure 5). After analysis we speculate that
these effects arise due to buffer (size) alignment is-
sues in tests. To investigate this, we evaluate the per-
formance of the same clients with altered buffer sizes,
and note (as illustrated in Figure 7b) that the effects
can be alleviated using larger (16kB) message trans-
mission buffers.

Finally we evaluate the service response time of
Thrift’s two binary protocols to investigate the po-
tential impact of Thrift’s variable-length encoding
scheme on our tests. As illustrated in Figure 8, the
TCompactProtocol results in response time improve-
ments of 1.2% to 26% for C and C# clients, and per-

formance degradations of 40% to 51% for Python
clients. From these measurements we conclude that
use of the TCompactProtocol would not significantly
impact the findings of the evaluation.

6 CONCLUSIONS

In this work we investigate an approach to service-
based software development and present a toolkit for
reduction of complexity in service development and
distributed component integration. The architecture
of the toolkit is designed to be modular and extensi-
ble, and places focus on transparency and reduction
of complexity. To reduce learning requirements, the
toolkit employs a service description language based
on the syntax and type interpretations of the well-
known Java language. The service description lan-
guage defines a set of primitive types and mechanisms
for aggregation of types in arrays and structs.

The toolkit supports generation of code for con-
struction of Java-based services as well as service
clients in Java, C, C#, and Python. The toolkit uses
the same code generation pattern for all languages,
which defines immutable types that directly wrap the
aggregation patterns defined in service descriptions.
For transparency, the service communication proto-
col serializes data in the order and types defined in
the service description language. A performance eval-
uation quantifying toolkit performance (in terms of
overhead and response time) against Java Object Se-
rialization, Java RMI, SOAP web services, REST web
services, and Apache Thrift is presented. Toolkit per-
formance is found to be comparable to or improve
upon the performance of the alternative techniques.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

240



ACKNOWLEDGEMENTS

The authors acknowledge Mikael Öhman, Sebastian
Gröhn, and Anders Häggström for work related to
the project. This work is done in collaboration
with the High Performance Computing Center North
(HPC2N) and is funded by the Swedish Govern-
ment’s strategic research project eSSENCE and the
Swedish Research Council (VR) under contract num-
ber C0590801 for the project Cloud Control.

REFERENCES

Apache (2005). Apache Web Services Project - Axis2,
http://ws.apache.org/axis2, February 2014.

Apache (2009). Apache Avro, http://avro.apache.org/,
February 2014.

Apache (2010). Apache Thrift, http://thrift.apache.org/,
February 2014.

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., et al. (2010). A view of cloud computing.
Communications of the ACM, 53(4):50–58.

Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G.,
De Meer, H., Dang, M. Q., and Pentikousis, K. (2010).
Energy-efficient cloud computing. The Computer
Journal, 53(7):1045–1051.

Birrell, A. D. and Nelson, B. J. (1984). Implementing re-
mote procedure calls. ACM Transactions on Com-
puter Systems (TOCS), 2(1):39–59.

Fielding, R. T. (2000). Architectural styles and the design
of network-based software architectures. PhD thesis,
University of California.

Furuhashi, S. (2011). MessagePack, https://github.com/ ms-
gpack/msgpack/blob/master/spec.md, February 2014.

Google (2008). https://developers.google.com/protocol-
buffers/, February 2014.

Govindaraju, M., Slominski, A., Chiu, K., Liu, P., Van En-
gelen, R., and Lewis, M. J. (2004). Toward character-
izing the performance of soap toolkits. In Grid Com-
puting, 2004. Proceedings. Fifth IEEE/ACM Interna-
tional Workshop on, pages 365–372. IEEE.

Jackson (2009). https://github.com/FasterXML/jackson,
February 2014.

Kephart, J. O. and Chess, D. M. (2003). The Vision of Au-
tonomic Computing. Computer, 36:41–50.

Kryo (2009). https://github.com/EsotericSoftware/kryo,
February 2014.

Mackey, A. (2010). Windows communication foundation.
In Introducing. NET 4.0, pages 159–173. Springer.

MongoDB Inc. (2007). BSON, http://http://bsonspec.org,
February 2014.

Oracle (2005). Java Object Serialization,
http://docs.oracle.com/javase/7/docs/platform/
serialization/spec/serialTOC.html, February 2014.

Östberg, P.-O. and Elmroth, E. (2011). Increasing Flex-
ibility and Abstracting Complexity in Service-Based

Grid and Cloud Software. In F. Leymann, I. I., van
Sinderen, M., and Shishkov, B., editors, Proceed-
ings of CLOSER 2011 - International Conference on
Cloud Computing and Services Science, pages 240–
249. SciTePress.

Östberg, P.-O., Espling, D., and Elmroth, E. (2013). Decen-
tralized scalable fairshare scheduling. Future Genera-
tion Computer Systems - The International Journal of
Grid Computing and eScience, 29:130–143.

Östberg, P.-O., Hellander, A., Drawert, B., Elmroth, E.,
Holmgren, S., and Petzold, L. (2012). Reducing com-
plexity in management of escience computations. In
Proceedings of CCGrid 2012 - The 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, pages 845–852.

Pautasso, C., Zimmermann, O., and Leymann, F. (2008).
Restful web services vs. big web services: making the
right architectural decision. In Proceedings of the 17th
international conference on World Wide Web, pages
805–814. ACM.

Restlet (2013). Restlet Framework, http://restlet.org, Febru-
ary 2014.

Slee, M., Agarwal, A., and Kwiatkowski, M. (2007).
Thrift: Scalable cross-language services implementa-
tion. Facebook White Paper, 5.

Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-
specific languages: An annotated bibliography. Sig-
plan Notices, 35(6):26–36.

Vinoski, S. (1993). Distributed object computing with
corba. C++ Report, 5(6):32–38.

Walker, E. (2009). The real cost of a cpu hour. Computer,
42(4):35–41.

Wollrath, A., Riggs, R., and Waldo, J. (1996). A distributed
object model for the java system. Computing Systems,
9:265–290.

Creo:�Reduced�Complexity�Service�Development

241


