
A Cloud Application for Security Service Level Agreement Evaluation

Valentina Casola1, Massimiliano Rak2 and Giuseppe Alfieri2
1DIETI, University of Naples Federico II, Naples, Italy

2DIII, Second University of Naples, Aversa, Italy

Keywords: Cloud Computing, Security, Cloud Application, SPECS, Negotiation, SLA.

Abstract: Cloud security is today considered one of the main limits to the adoption of Cloud Computing. Academic
works and the Cloud community (e.g., work-groups at the European Network and Information Security
Agency, ENISA) have stated that specifying security parameters in Service Level Agreements actually en-
ables the establishment of a common semantic in order to model security among users and Cloud Service
providers (CSPs). However, despite the state of the art efforts aiming at building and representing Cloud
SecLAs there is still a gap on the techniques to reason about them. Moreover a lot of activities are being
carrying out to clearly state which are the parameters to be shared, their meanings and how they affect service
provisioning. In this paper we propose to build up a cloud application that is able to offer Security level Eval-
uation based on SLA expressed in many different ways. Such application can be offered as a service by Third
Parties in order to help customers to evaluate the offerings from providers. Furthermore it can be used to help
customers to negotiate security parameters in a Multi-Cloud system and perform Cloud brokering on the basis
of a quantitative evaluation of security parameters.

1 INTRODUCTION

Cloud security is today considered one of the main
obstacle to the widespread adoption of Cloud Com-
puting. In this paradigm, due to the self-service on-
demand characteristic, all data and servers reside on
the cloud and charged on a pay-per-use basis. Indeed,
this model brings great advantages from a business
point of view, as there are no maintenance and start-
up costs for any infrastructures, but there is a strong
negative perception of loss of control over the data
and resources.

To face security requirements in the Cloud, early
academic works like (Kandukuri B.R.,et. al., 2009)
and the Cloud Community (e.g., work-groups at the
European Network and Information Security Agency
(ENISA) (Dekker M. and Hogben G.,2011)) stated
that specifying security parameters in Service Level
Agreements (referred as Security Level Agreements or
SecLAs over this paper) actually enables the establish-
ment of a common semantic in order to model secu-
rity among users and CSPs.

However, despite the state of the art efforts aiming
at building and representing Cloud SecLAs (e.g., the
CSAs SLA and PLA working groups (Cloud Security
Alliance, 2012)), there is still a gap on the techniques

to reason about them.
Indeed, a lot of activities are carried out to clearly

state which are the parameters to be included in the
SecLAs, their meanings and how they affect service
provisioning. One of the biggest problems that arises,
even after Security parameters are clearly specified,
is the needing to help comparing and choosing dif-
ferent providers on the basis of such parameters: se-
curity features cover an incredible amount of differ-
ent aspects of the systems and the customers, often,
are not security experts, even if they have specific se-
curity constraints. As an example, let us consider a
health center that wants to use the Cloud to main-
tain a backup of its data. The information to be
stored have privacy and availability constraints, more-
over in many countries the law imposes constraints on
data localization. The advantage of using the cloud,
which can grant availability and in given conditions
privacy constraints, is annihilated by the absence of
clear grants on such security grants. Even if CSPs
offer SLAs specifying the security grants, it will be
hard for the customer to clearly compare the offerings
from different providers that offer the same service in
different ways, with different services and expressing
the grants through different policies and SLAs.

The work proposed in this paper born in the con-

299Casola V., Rak M. and Alfieri G..
A Cloud Application for Security Service Level Agreement Evaluation.
DOI: 10.5220/0004858702990307
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 299-307
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



text of the SPECS (SPE, ) FP7 project, which aims
at building a platform able to offer security services
to Customers for Multi-Cloud environments. We pro-
pose a cloud application that is able to offer Security
Level Evaluation over SLAs expressed in many differ-
ent ways. The evaluation founds on the REM method-
ology, which aims at enabling a quantitative evalua-
tion of security policy. Such application is offered as-
a-service by a Third Party in order to help customers
to evaluate the offerings from providers. Moreover it
can be used to help customers to negotiate security
parameters in a Multi-Cloud system as proposed in
(Liccardo et al., 2012; Amato et al., 2012).

In order to evaluate Cloud providers, we will fo-
cus on the security mechanisms provided to end users,
demonstrating that it is possible to use a standard lan-
guage to represent security parameters and enabling
the evaluation of different providers.

The reminder of this paper is organized as fol-
lows, next sections describe the key concepts to eval-
uate and compare different cloud providers and the
requirements for the development of a security evalu-
ation application; we will outline the background re-
lated to this paper, i.e. the mOSAIC Platofrm with the
API used to develop the Cloud Application and the
REM evaluation methodology. Section 4 describes
how to build policies from the security mechanisms
exposed to end users, in order to make a security eval-
uation. The following section, 5 describes the appli-
cation architecture and its reusable components. Pa-
per ends with section 6 dedicated to conclusions and
future works.

2 PROBLEM STATEMENT AND
APPROACH

As outlined in the previous section, our goal is the
development of an application able to help Cus-
tomers to evaluate and compare different Cloud Ser-
vice Providers (CSP) on the basis of the security they
are able to grant. In a companion paper we proposed
to evaluate providers on the basis of the STAR reposi-
tory, maintained by CSA, which contains the answers
that CSPs has given to a complex questionnaire dedi-
cated to Cloud Security. In this paper, instead, we will
focus on the real security mechanisms the CSPs ex-
pose to Customers and the implication they may have
on the security effectively granted.

We analysed different cloud providers (Amazon
EC2, Google Compute Engine, GoGrid), they offer
similar features (from customers point of view they
are mostly equivalent) but they use completely dif-
ferent technologies and techniques in order to en-

force security mechanisms into the service invocation
mechanism. As an example, Amazon Web Services
(aws) uses SOAP messages to control Amazon Ec2
services, they are secured through a set of HMAC
applied and evaluated to each message. GoGrid, in-
stead, performs an authentication through a dedicated
authentication server, which issues a security token to
be attached to each Web Service invocation. Such dif-
ferent choices have impact both on performances and
on the level of security offered.

Even if such features are clearly visible to end
users, so they can be explicitly evaluated by a third
party, the high number of different technologies of-
fered by different providers and the lack of a clear de-
scription of the adopted approaches, make such com-
parison a very difficult task, usually performed by ex-
perts or, intuitively, by Customers.

We propose to follow a more systematic approach,
adopting existing standards to represent the way in
which security mechanisms are described and ser-
vices are invoked: WS-Policy(Bajaj et al., 2006) and
WS-Security-Policy(Della-Libera et al., 2002).

WS-Policy is a container language that allows to
create a XML Policy based on Assertions. It mainly
allows the use of a group of statements that are al-
ternatives to each other (also the empty alternative)
(ExactlyOne statement) or a group of statements that
must be met (even 0 assertions) (All statement). Ws-
Security-Policy is a language that defines a set of Se-
curity Assertions to be used within Ws-Policy. These
Assertions are useful to specify both what is required
and what should be guaranteed on the messages and
communication protocols in terms of security when
using a particular service.

We want to point out that the semantic of Secu-
rity Assertions made available by Ws-Security-Policy
is often directly linked to the way in which Security
is managed in the SOAP WebServices (namely in the
structure of the SOAP messages described in the stan-
dard Ws-Security). Since, de facto, a REST message
does not exist, there is not yet a standard language to
describe what is required or offered in terms of Secu-
rity on REST communications.

Such standard representation offers a common ba-
sis to represent the security mechanisms adopted by
the CSPs and this will facilitate the adoption of the
REM methodology to evaluate and compare the of-
fered solutions. In particular, in order to use the REM,
we will build a common template, whose instances
will correspond to the mechanisms adopted by the dif-
ferent providers.

In synthesis the technique we propose is based on
the following steps:

1. Description. Collect WS-SecurityPolicy repre-

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

300



sentations of the security mechanisms offered by
different CSPs based on a standard template we
prepared. Such description can be offered directly
by a provider (rarely) or defined by third parties.

2. Comparison. Using the REM methodology we
quantitatively measure each policy, offering a
clear basis to compare the different offerings of
providers. Thanks to the flexibility of the REM
methodology different customers can specify dif-
ferent weights and evaluation criteria, obtaining
customized evaluations.

The main goal is the implementation of a cloud
application to provide the security evaluation as-a-
service. Before illustrating the details of such tech-
nique, in the next section, we will provide a technical
background to describe the the mOSAIC framework
to easily develop the cloud application and the REM
methodology.

3 TECHNICAL BACKGROUND

The solution we propose to build up a cloud appli-
cation to evaluate providers, founds on two existing
solutions, these will be summarized in this section.
In particular, in the following we will detail only the
key ideas needed to fully understand the proposed ap-
proach: the mOSAIC Framework to easily implement
cloud applications and the REM evaluation methodol-
ogy to evaluate security. For further details the inter-
ested reader may refer to the related papers.

3.1 The mOSAIC Framework

The mOSAIC framework aims at providing a sim-
ple way to develop cloud applications (Petcu et al.,
2011c; Petcu et al., 2011b; Petcu et al., 2011a); the
target user for the mOSAIC solution is the applica-
tion developer (mOSAIC user). In mOSAIC, a cloud
application is structured as a set of components run-
ning on cloud resources (i.e., on resources leased by
a cloud provider) and able to communicate with each
other. Cloud applications are often provided in the
form of Software-as-a-Service, and can also be ac-
cessed/used by users other than the mOSAIC devel-
oper (i.e., by final users). In this case, the mOSAIC
user acts as service provider for final users.

The mOSAIC framework is composed of a few
stand-alone components. Among them, the most im-
portant roles are played by the Platform and the Cloud
Agency. The first one (mOSAIC Platform) enables the
execution of applications developed using the mO-
SAIC API. The second one (Cloud Agency) acts as

a provisioning system, brokering resources from a
cloud provider, or even from a federation of cloud
providers.

mOSAIC can be used in three different scenarios:

� when a developer wishes to develop an applica-
tion not tied to a particular cloud provider;

� when an infrastructure provider aims at offering
“enhanced” cloud services in the form of SaaS;

� when a final user (e.g., a scientist) wishes to exe-
cute his own application in the cloud because he
needs processing power.

A mOSAIC application is built up as a collection
of interconnected mOSAIC components. Components
may be (i) core components, i.e., predefined helper
tools offered by the mOSAIC platform for performing
common tasks, (ii) COTS (commercial off-the-shelf)
solutions embedded in a mOSAIC component, or (iii)
cloudlets developed using the mOSAIC API and run-
ning in a Cloudlet Container. mOSAIC cloudlets
are stateless, and developed following an event-driven
asynchronous approach (Petcu et al., 2011c; Petcu
et al., 2011a).

The mOSAIC platform offers ready-to-use com-
ponents such as queuing systems (rabbitmq and ze-
roMQ), which are used for component communica-
tions, or an HTTP gateway, which accepts HTTP
requests and forwards them to application queues,
NO-SQL storage systems (as KV store and columnar
databases). mOSAIC components run on a dedicated
virtual machine, named mOS (mOSAIC Operating
System), which is based on a minimal Linux distri-
bution. The mOS is enriched with a special mOSAIC
component, the Platform Manager, which makes it
possible to manage set of virtual machines hosting the
mOS as a virtual cluster, on which the mOSAIC com-
ponents are independently managed. It is possible
to increase or to decrease the number of virtual ma-
chines dedicated to the mOSAIC application, which
will scale in and out automatically.

Defining a new application is very easy: a cloud
application is described in a file named Application
Descriptor, it lists all the components and the cloud
resources needed to enable their communication. A
mOSAIC developer has both the role of developing
new components and of writing application descrip-
tors that connect them together.

3.2 Evaluation of Security

The methodology implemented to evaluate security
is the Reference Evaluation Model (REM) (Casola
et al., 2007a; Casola et al., 2007b), it defines how
to express in a rigorous way the security policy, how

A�Cloud�Application�for�Security�Service�Level�Agreement�Evaluation

301



to evaluate a formalized policy, and how to state the
provided security level. Any policy is represented
through a tree, which contains all the policy provi-
sions (intermediate nodes and leaves).

In Figure 1 the three methodology phases are
shown: Policy Structuring, Policy Formalization
and Policy Evaluation:

The goal of the Structuring phase is to associate
an enumerative and ordered data type Ki to the n
leave-provisions of the policy. A policy space “P” is
defined as P =K1 �K2 � : : :�Kn, i.e. the vectorial
product of the n provisions Ki. The space is defined
according to a policy template that strongly depends
on the application context.
In the Formalization phase the policy space “P”
is turned into an homogeneous space “PS”. This
transformation is accomplished by a normalization
and clusterization process which allows to associate
a Local Security Level (LSL) to each provision; after
that the provisions may be compared by comparing
their LSLs.

The goal of the Evaluation phase is to pre-process
the “PS” vector of LSLs and evaluate the so called
Global Security Level LPx associated to the policy Px.
The Global Security Level has been defined on the
basis of an Euclidean distance among matrices and
some reference levels:

LPx =

8>>><>>>:
L0 i f f dx0 � d10
L1 i f f d10 < dx0 < d20
L2 i f f d20 < dx0 < d30
L3 i f f d30 < dx0 < d40
L4 i f f d40 � dx0

where di;0 are the distances among the references
and the origin of the metric space (denoted as /0). This
function gives a numerical result to the security; in-
deed the idea is to evaluate the security associated to
an infrastructure through the evaluation of its security
policy.

The GSL is a measure of the security provided by
an infrastructure according to its security policy; it is
obtained by formalizing the process that is manually
performed by security experts while trying to extend
trust to other domains. The details of the methodol-
ogy are out of the scope of this paper, and they can be
found in (Casola et al., 2007a).

4 A PRACTICAL EXAMPLE

In order to show in practice how the proposed ap-
proach works, in this section we propose the WS Se-
curity Policy template and the instances for the three
generic providers.

The apply the REM to three Cloud Service
Providers, denoted by ProviderA, ProviderB and
ProviderC we need to describe the security mecha-
nisms according to the WS-* models that we created.

To better understand the policy, we first summa-
rize the behaviour of the three providers.
ProviderA applies a redundant security mechanism,
it supports HTTPS for the Authentication of the Ser-
vice and the Message Confidentiality. At Message
Layer it supports HMAC to assure the identity of
the sender (with a Secret Key for Encryption) and it
also signs the body of the message ensuring the mes-
sage integrity (operation redundant because it is on
HTTPS).
ProviderB supports HTTPS for the REST call invo-
cations, offering:

� Authentication of the Service : The user knows
that he is sending the message to the right desti-
nation.

� Confidentiality of messages : No one can be aware
of content of a sent message, nor alter it.

At Message Layer it attaches an
AuthenticationToken that is created on the
basis of a shared secret (password), concatenates
the secret string to a string already containing a
username, a timestamp, the user agent (http field) and
then applies the MD5 hash function. The receiver
performs the same operations before accepting the
request.

ProviderC basically offers the same
mechanism of ProviderB : HTTPS and an
AuthenticationToken for the User Authenti-
cation. The only positive difference is that it uses
SHA-1 instead of MD5.

4.1 Building the Common Template

In order to represent such features, Ws-Security-
Policy supports three main types of containers:

� Transport Binding the security mechanism
is enforced at transport layer, it may con-
tain different subfields as HttpsToken and
TrasportToken;

� Symmetric Binding the security mechanism is
enforced at SOAP level as specified in Ws-
Security, by using symmetric keys; it also
allows to express other types of tokens as
SignatureToken and EncryptionToken;

� AsymmetricBinding the security mechanism is
enforced at SOAP level as specified in WS-
Security, by using asymmetric keys.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

302



Figure 1: Phases of the evaluation methodology.

In our template we will focus only on the first two
containers.

We defined a TransportBinding
container, giving to the sequence
TransportBinding/TransportToken the semantic
meaning of Security at the Transport Layer, and to
the HttpsToken subfield the semantic meaning of
support of the HTTPS protocol.

We gave to the sequence SymmetricBinding /
SignatureToken the semantic meaning of security at
the Message Layer (Http message), where there may
be some signed message parts. We did not add the se-
quence SymmetricBinding/EncryptionToken, be-
cause none of the analyzed Providers provides con-
fidentiality on the message at the message layer. Fur-
thermore, in SignatureToken we added predeter-
mined fields including AlgorithmSuite and Signed-
Parts.

In particular, among the possible
AlgorithmSuite alternatives we used: Md5,
SHA1, HMAC, No (from XMLSignature Specification).

Among the possible SignedParts subfields we
added :

� TimeStamp against replay attacks (WS-Trust
Specification);

� Password obtaining thus Authenticity of the
Sender (Ws-Security Specification);

� Body of Message obtaining thus Integrity of the
message;

By combining WS-Policy and WS-SecurityPolicy
to define the template, we built the template presented
in the following listing:

Listing 1: The Ws Security Policy Template.

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f �8”
?>

<w s p : P o l i c y xmlns:wsp=” h t t p : / /www. w3
. org / ns / ws�p o l i c y ”

x m l n s : s p =” h t t p : / / docs . o a s i s �open . o rg
/ ws�sx / ws�s e c u r i t y p o l i c y /200702 ”

x m l n s : d s =” h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 /
xmlds ig # ”

xmlns :wsse =” h t t p : / / docs . o a s i s �open .
o rg / wss / o a s i s �wss�w s s e c u r i t y

s e c e x t �1 .1 . xsd ”
xmlns :wsu=” h t t p : / / schemas . xmlsoap . /

ws / 2 0 0 5 / t r u s t
/ Ws�T r u s t . xsd ”>
<wsp:Exac t lyOne>
<w s p : A l l>
<s p : T r a n s p o r t B i n d i n g>
<w s p : P o l i c y>
<wsp:Exac t lyOne>
<w s p : A l l>
<s p : T r a n s p o r t T o k e n>
<w s p : P o l i c y>
<wsp:Exac t lyOne>
<w s p : A l l>
<s p : H t t p s T o k e n s p : I n c l u d e T o k e n =”

h t t p : / / docs . o a s i s
open . o rg / ws�sx / ws�s e c u r i t y p o l i c y

/200702
I n c l u d e T o k e n A l w a y s T o R e c i p i e n t ”

w s p : O p t i o n a l =” t r u e ” />
<!��N o t P r e s e n t < P r e s e n t��>
< / w s p : A l l>
< / wsp :Exac t lyOne>
< / w s p : P o l i c y>
< / s p : T r a n s p o r t T o k e n>
< / w s p : A l l>
< / wsp :Exac t lyOne>
< / w s p : P o l i c y>
< / s p : T r a n s p o r t B i n d i n g>
<s p : S y m m e t r i c B i n d i n g>
<w s p : P o l i c y>
<wsp:Exac t lyOne>
<w s p : A l l>
<s p : S i g n a t u r e T o k e n s p : I n c l u d e T o k e n =”

h t t p : / / docs . o a s i s �

A�Cloud�Application�for�Security�Service�Level�Agreement�Evaluation

303



open . o rg / ws�sx / ws�s e c u r i t y p o l i c y
/200702
I n c l u d e T o k e n A l w a y s T o R e c i p i e n t ”>

<w s p : P o l i c y>
<wsp:Exac t lyOne>
<w s p : A l l>
<s p : S i g n e d P a r t s>
<wsu:Timestamp w s p : o p t i o n a l =” t r u e ” />
<!��N o t P r e s e n t < P r e s e n t��>
<wsp:Body w s p : o p t i o n a l =” t r u e ” />
<!��N o t P r e s e n t < P r e s e n t��>
<wsse :Pas sword w s p : o p t i o n a l =” t r u e ” />
<!��N o t P r e s e n t < P r e s e n t��>
< / s p : S i g n e d P a r t s>
<s p : A l g o r i t h m S u i t e>
<w s p : P o l i c y>
<wsp:Exac t lyOne>
<w s p : A l l>
<wsp:Exac t lyOne>
<d s : S i g n a t u r e M e t h o d d s : A l g o r i t h m =
” h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig #

hmac�sha1 ” />
<d s : S i g n a t u r e M e t h o d d s : A l g o r i t h m =
” h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig #

sha1 ” />
<d s : S i g n a t u r e M e t h o d d s : A l g o r i t h m =
” h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig #

md5” />
<!��md5 < sha1 < hmac�sha1��>
< / wsp :Exac t lyOne>
< / w s p : A l l>
<w s p : A l l>
< / w s p : A l l>
< / wsp :Exac t lyOne>
< / w s p : P o l i c y>
< / s p : A l g o r i t h m S u i t e>
< / w s p : A l l>
< / wsp :Exac t lyOne>
< / w s p : P o l i c y>
< / s p : S i g n a t u r e T o k e n>
< / w s p : A l l>
< / wsp :Exac t lyOne>
< / w s p : P o l i c y>
< / s p : S y m m e t r i c B i n d i n g>
< / w s p : A l l>
< / wsp :Exac t lyOne>
< / w s p : P o l i c y>

Note that a security expert can perform different
kind of analysis on the policies. For example, being
ProviderA the only one supporting HTTPS, one will
expect it will perform better than the others. On the
other hand, ProviderB and ProviderC do not ensure
the integrity of the message, nor its confidentiality. If
an attacker applies the man in the middle technique,
he can replace the message with a different body. At
that point even the identity of the sender loses mean-
ing. If the attacker is not able to make the man in
the middle technique but only sniff the messages, he
could retrieve the md5 hash and crack it in seconds

obtaining the user password. The SHA1 is stronger
than md5 and he can only guess the password by a
bruteforce attack. If the communication is on HTTPS,
the attacker should perform a bruteforce attack and
the longer is the password, more secure will be the
mechanism.

About ProviderA, the attacker can not use the man
in the middle technique, because the user has signed
the content with HMAC, but he can observe it: the
Security is in the difficulty with which the attacker
can guess the key with a offline bruteforce attack.
In particular, with HTTPS, the attacker should force
with a brute force online attack which is impracti-
cal. From these considerations, it could be said that:
the TransportBinding/TransportToken branch should
leveling out differences however it makes appear the
ProviderA the most secure. On the SymmetricBind-
ing/SignatureToken branch the ProviderA should pro-
vide a Security Level quite high compared to the oth-
ers.

Once made these preliminary actions, and apply-
ing the methodology, the results we obtain in the eval-
uation give three different Global Security Level. For
brevity’s sake we cannot report the whole evaluation
process but the final result is:

� ProviderA GSL := 3;

� ProviderC GSL := 2.67;

� ProviderB GSL := 2.5;

Such results are coherent with an intuitive analysis
of the behaviours described at start of the section.

Even if such analysis can be done by an inde-
pendent expert, the approach we propose offers a
clear step toward an automatization of the proce-
dure, assuming a collection of Ws-Security-Policy de-
scriptions of the services offered by different Cloud
Providers, which can be done even by third parties.

5 THE SECURITY EVALUATION
APPLICATION

In this section we will illustrate the functionalities that
the cloud Evaluation Application can offer to a secu-
rity evaluator.

The evaluation of the Security Level of a SecLA
is an action that can be carried out by Security Ad-
ministrators who will have the task of managing their
Platform. They can be Developers who want to test an
application or Methodology Researchers who want to
use the application to run tests in order to study pos-
sible alternatives in the evaluation methodology field.
The role of the security evaluator can be clearly hired

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

304



Figure 2: The Application Users.

Figure 3: The Application Use Case diagram.

by End Users who use the application to choose a
Provider. It in turn may be classified as a Customer
End User, or as a Provider End User who wants to use
the service to test the Security Level of their standards
before entering the market. Figure 2 clarifies the rela-
tionships among all these actors.

The Application functionalities are reported in
Figure 3 with the UML Use Case diagram.

The user can request the evaluation of the secu-
rity requirements according to the REM Methodology
(Casola et al., 2007a), compare them with other secu-
rity policies (eventually supplied by cloud providers)
and classify the results in order to choose the best so-
lution.

In the next sections we will illustrate at first a
Java library that enables the application of the REM
Methodology, then we will present the mOSAIC com-
ponents that enable its execution in a cloud environ-
ment.

5.1 The Java Library

The Java Library consists of a set of Java Compo-
nents organized in packages.

The Representation Package supplies the data
structures and all the mechanisms required to repre-
sent data. In particular, the parsers package contains
a set of Java Classes to transform security policies ex-
pressed in an interoperable format (XML, for infor-
mation tranfers) into a format suitable for the elabo-
rations (Java Jung Tree) (Jun, ) being the latter de-
fined in the data structure package. The ”parsers”
and ”data structures” packages can be extended with
new Java Classes in case a new type of Security Pol-

Figure 4: Cloudlets organization.

icy (corresponding to a new template) should be pro-
cessed by the system. The distance evaluator pack-
age implements the specific evaluation technique.
The difference evaluator package provides classes
able to compare two instances of Security Policies.
These packages can be extended in order to imple-
ment new evaluation techniques which extend those
already defined.

5.2 The Cloud Application Components

The Cloud application, based on the mOSAIC frame-
work briefly described in section 3.1 is composed of
a set of ready-to-use Cloudlets, that embeds the Java
Components. The Cloudlets can be reused and com-
posed by a developer in order to realize its custom
evaluation application.

Figure 4, shows the implemented cloudlets orga-
nized by packages, depending on offered functional-
ities. The cloud representation package contains the
cloudlets offering to developers and final users a way
to convert their Security Policies from an human read-
able format to a platform readable representation (and
vice versa), ready to be elaborated. These cloudlets
implement, using the mOSAIC API, the classes de-
fined in the representation package of the Java Li-
brary; they are:

� QSTRepresentation (converts and stores the pol-
icy from readable format via user interface to in-
ternal representation);

� WeightsRepresentation (converts and stores infor-
mations about possible weights from user inter-
face to internal representation);

� ResultRepresentation (converts and stores results
internally represented to an human readable for-
mat from the interface);

The cloud elaboration package contains the
cloudlets offering to developers the Security Policy
evaluation functionalities, with likelihood to choose
between the various elaboration techniques. The
cloudlets contained in this package therefore imple-
ment, using the mOSAIC API, the classes defined

A�Cloud�Application�for�Security�Service�Level�Agreement�Evaluation

305



Figure 5: The mOSAIC Evaluation cloudlets.

in the elaboration package of the Java Evaluation
Framework.

The cloudlets contained in the package are:

� REMEvaluation (offers the evaluation functional-
ities. It implements, using the mOSAIC API, the
”distance evaluator” package of Java Evaluation
Framework);

� WeightsEvaluation (applies the weights to se-
curity policies in accordance with defined
techniques and the type of representation.
It implements using the mOSAIC API the
”weights evaluator” package of the Java Evalua-
tion Framework);

� RemCompare (offers comparation functionalities
between two instances of a Security Policy. It
implements, using the mOSAIC API, the ”differ-
ence evaluator” package of the Java Evaluation
Framework);

� Ranking (rankes the Security Policies conve-
niently evaluated and compared);

The cloud administration package contains essen-
tial cloudlets for the administration, the messages
management, and the interoperability of cloudlets de-
fined in the above packages.

Furthermore, in addition to defined packages, a set
of mangement kv-stores is managed by the system.
They keep the necessary informations for the correct
execution of the mOSAIC Evaluation Applications.

Figure 5 shows the mOSAIC application that eval-
uates a Security Policy submitted by an user.

To describe in greater detail the modus-operandi
of cloudlets, we proceed to illustrate in detail the op-
erations of two cloudlets of the mosaic application.

The QSTRepresentation takes in input a mes-
sage from an HTTP RESTful interface, extracts data,

stores them (eventually) in the QST kv-store, and con-
verts them in two different representations:

� RT (XML representation) (optional, for user re-
trieval);

� JJT (Java Jung Tree Data Structure representa-
tion);

The cloudlet sends the JJT representation of the
Security Policy on an exit queue.

The REMEvaluation takes in input a message
from a the representation cloudlet, containing the
JJT representation of a Security Policy, evaluates it
and stores the JJT evaluated. The cloudlet can send
the JJT list of evaluated Security Policies on an exit
queue.

Summarizing, the user defines the istance of his
Security Policy (in the QST format) and submits it
to the system through an HTTP interface (mhttpgw).
This transforms the data into a suitable elaboration
format through the QST Representation Cloudlet and
sends it to REMEvaluation Cloudlet, which executes
the evaluation according to one of techniques de-
scribed in the early section. The chosen technique
can be specified by the user through the same inter-
face. The Evaluation Result Cloudlet stores the result
in a manner that it can be referred later by the user.

6 CONCLUSIONS AND FUTURE
WORKS

The loss of control over the resources is the first cause
of the perception of low security in cloud computing.
In this paper we made a fist step in the direction of
offering to customers a new way to control the level
of security offered by provider over the resources they
control. We proposed a way to use standard languages

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

306



to build up comparable policies that enable customers
to compare different provider on the basis of the tech-
nologies adopted using an automated and quantitative
way. We proposed the adoption of WS Policy and
WS Security Policy as standard languages to describe
the mechanisms adopted by provider and, in future
works, we aims at building a collection of policies
describing the technological solutions adopted by dif-
ferent cloud providers. We have shown on real case
studies the application of the proposed technique over
real cloud providers, showing that the results obtained
are coherent with a manual evaluation of the technol-
ogy adopted. Moreover we proposed a Cloud appli-
cation able to automatize the process and support the
security evaluators to apply the technique. The results
in this paper will be improved in the future, build-
ing a dedicated framework which suppot the devel-
opment of custom evaluation application and able to
fully exploit the flexibility of the underling methodol-
ogy, which will be further extended.

REFERENCES

Jung - java universal network/graph framework toolkit.
Specs project.
Amato, A., Liccardo, L., Rak, M., and Venticinque, S.

(2012). Sla negotiation and brokering for sky com-
puting. In CLOSER, pages 611–620.

Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G.,
Hallam-Baker, P., Hondo, M., Kaler, C., Langworthy,
D., Nadalin, A., et al. (2006). Web services policy
1.2-framework (ws-policy). W3C Member Submis-
sion, 25:12.

Casola, V., Mazzeo, A., Mazzocca, N., and Vittorini, V.
(2007a). A policy-based methodology for security
evaluation: A security metric for public key infras-
tructures. Journal of Computer Security, 15(2):197–
229.

Casola, V., Mazzocca, N., Luna, J., Manso, O., and Medina,
M. (2007b). Static evaluation of certificate policies for
grid pkis interoperability. In Availability, Reliability
and Security, 2007. ARES 2007. The Second Interna-
tional Conference on, pages 391–399. IEEE.

Della-Libera, G., Gudgin, M., Hallam-Baker, P., Hondo,
M., Granqvist, H., Kaler, C., Maruyama, H., McIn-
tosh, M., Nadalin, A., Nagaratnam, N., et al.
(2002). Web services security policy language (ws-
securitypolicy). Public Draft Specification (Juli
2005).

Liccardo, L., Rak, M., Di Modica, G., and Tomarchio, O.
(2012). Ontology-based negotiation of security re-
quirements in cloud. In Computational Aspects of
Social Networks (CASoN), 2012 Fourth International
Conference on, pages 192–197.

Petcu, D., Craciun, C., Neagul, M., Lazcanotegui, I., and
Rak, M. (2011a). Building an interoperability api
for sky computing. In High Performance Computing

and Simulation (HPCS), 2011 International Confer-
ence on, pages 405–411. IEEE.

Petcu, D., Crăciun, C., Neagul, M., Panica, S., Di Mar-
tino, B., Venticinque, S., Rak, M., and Aversa, R.
(2011b). Architecturing a sky computing platform. In
Towards a Service-Based Internet. ServiceWave 2010
Workshops, pages 1–13. Springer.

Petcu, D., Craciun, C., and Rak, M. (2011c). Towards a
cross platform cloud api. components for cloud fed-
eration. In Procs. 1st International Conference on
Cloud Computing and Services Science, SciTePress–
Science and Technology Publications, Portugal, pages
166–169.

A�Cloud�Application�for�Security�Service�Level�Agreement�Evaluation

307


