
A Straightforward Introduction to Formal Methods Using
Coloured Petri Nets

Franciny Medeiros Barreto, Joslaine Cristina Jeske de Freitas,
Michel S. Soares and Stéphane Julia

Universidade Federal de Uberlândia - Faculdade de Computação, Uberlândia, Minas Gerais, Brazil

Keywords: Formal Methods, Coloured Petri Nets, Modelling.

Abstract: Coloured Petri Nets (CPN) arose from the need to model very large and complex systems, which are found
in real industrial applications. The idea behind CPN is to unite the ability to represent synchronization and
competition for resources of Petri nets with the expressive power of programming languages, data types and
diverse abstraction levels. Through this union, systems which study was previously impractical have become
amenable to study. The objective of this paper is to present a formal modeling of the Health Watcher System
applying the concepts of CPN using CPN Tools. Using a graphical language such as CPN often proves to be a
helpful didactic method for introducing formal methods. This paper presents a brief introduction to Coloured
Petri Nets, and illustrates how the construction, simulation, and verification are supported through the use of
CPN Tools.

1 INTRODUCTION

With the explosive involvement of technology in the
lives of humans, it is extremely important to design
software systems which are free from errors and are
able to satisfy their users in terms of performance, ef-
ficiency, correctness, and easy of use. If due to certain
reasons, these systems are designed and implemented
incorrectly the cost of correcting these errors becomes
enormous. Thus, it is very important to have a mech-
anism where design errors can be discovered and cor-
rected early (OMG, 2011).

Many modelling languages were proposed in past
years to design software systems. Currently UML is
one of the most used languages for software and sys-
tems modelling. UML (Unified Modelling Language)
(Booch et al., 2005) is a graphical language for vi-
sualizing, specifying, constructing, and documenting
information about software-intensive systems. The
language gives us a standard way to write a system’s
view, covering conceptual aspects such as business
processes and system functions, as well as elements
such as classes to be implemented in a specific pro-
gramming language, database schemas, and reusable
software components.

UML is a semi-formal modelling language, mak-
ing it difficult to analyze semantics and to verify
correctness of a system. Therefore, it is necessary

that a formal approach is applied. Various authors
have argued the advantages of such formal modelling
languages: they reduce the vagueness and ambigu-
ity of informal descriptions, they allow for valida-
tion of completeness and consistency through formal
proofs, and they bridge the gap between the infor-
mal model and the design of a system (Sommerville,
2010), (Thayer et al., 2002). However, other au-
thors believe that formal languages suffer from prob-
lems which severely limit their practical usefulness:
they are often not expressive enough to deal with real
world applications, formal models are complex and
hard to read, and constructing a formal model is a dif-
ficult, error prone and expensive process (Hall, 1990).

A Petri net is a formal language that allows the
modelling of systems, using as a foundation a strong
mathematical background. The language has the par-
ticularity to enable modelling parallel, concurrent,
asynchronous and non-deterministic characteristics of
systems (Murata, 1989). Like other industry stan-
dards such as UML Activity Diagrams or BPMN,
Petri nets offer a graphical notation for stepwise pro-
cesses that include choice, iteration, and concurrent
execution. Unlike these standards, Petri nets have an
exact mathematical definition of their execution se-
mantics, with a well-developed mathematical theory
for process analysis using different methods. How-
ever, when ordinary Petri nets are used for the mod-

145Medeiros Barreto F., Cristina Jeske de Freitas J., S. Soares M. and Julia S..
A Straightforward Introduction to Formal Methods Using Coloured Petri Nets.
DOI: 10.5220/0004861901450152
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 145-152
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



eling process, the size of very large and complex sys-
tems became an issue of major complication. Then,
the concept of CPN arose from the need to represent
these complex systems, which are found in real indus-
trial applications.

The idea of CPN is to unite the ability to rep-
resent synchronization and competition of Petri nets
with the expressive power of programming languages
with their data types. Through this union, systems
which study was previously impractical have become
amenable to study (Jensen and Kristensen, 2009).
CPN is a language for the modelling and validation of
systems in which concurrency, communication, and
synchronization play a major role (Aalst et al., 2013).
CPN is a discrete-event modelling language combin-
ing Petri nets with the functional programming lan-
guage Standard ML (Milner et al., 1997).

Recent examples of applications using CPN can
be found in (Noguera et al., 2010), in which the au-
thors provide a mapping between UML and Web On-
tology Language (OWL), through a set of mapping
rules. This mapping, which results in a formalization
of collaborative processes, also sets a basis for sub-
sequent construction of executable models using the
CPN formalism. For this purpose, the authors also
provide appropriate mappings from OWL-based on-
tological elements into CPN elements. In (Kolr and
Kvetonov, 2012), the paper presents how the whole
public transport system can be described by a Petri
net model, in particular by CPN Tools. In (Weidlich
et al., 2013), the authors take up the challenge of mod-
elling event processing networks using CPN. They
outline how this type of system is modelled and illus-
trate the formalization with the widely used showcase
of the Fast Flower Delivery Application (FFDA). Fi-
nally, they show how the net of the FFDA is employed
for analysis with CPN Tools.

The importance of validating software require-
ments has been widely discussed (Boehm, 1984),
(Queralt and Teniente, 2012), (Michael et al., 2011).
The advantages of providing formal validation for
software has been extensively explored (Berard et al.,
2010), (Goknil et al., 2010). In recent research, the
authors show how to validate UML models using
CPN Model. For example, in (Laxman, 2013), the
author defends the thesis that it is possible to validate
UML models for interactive systems with CPN and
the SPIN model checker. In (Ribeiro and Fernandes,
2009), the validation of scenario-based business re-
quirements with CPN is presented.

It is possible to realize that CPN is a general pur-
pose modelling language, i.e., it is not focused on
modelling a specific class of systems, but aimed to-
wards a very broad class of systems that can be char-

acterized as concurrent systems. The objective of this
paper is to present a formal modelling of the Health
Watcher System (Soares et al., 2002) applying the
concepts of CPN using the CPN Tools. Using a graph-
ical language such as CPN often proves to be a helpful
didactic method for introducing formal methods.

The requirements document for the Health
Watcher (HW) System was specified in 2002 (Soares
et al., 2002). Since then, the requirements, design
and implementation for HW have been used in sev-
eral studies, but none of them using a formal method.
For example, in (Cavalcante et al., 2012) the system
was the case study with focus on cloud computing.
Another example is presented in (Dyer et al., 2012),
in which the authors show an empirical study using
quantitative metrics to evaluate the Health Watcher
System. Additional examples of the use of Health
Watcher System can be found in (d’Amorim and
Borba, 2010), (Preece, 2010), (Dai, 2009) and (Siy
et al., 2007).

This paper presents a brief introduction to CPN,
and illustrates how the construction, simulation, and
state space analysis are supported by the use of CPN
Tools. The main contribution of this paper is to
show that it is possible to use CPN Tools for mod-
elling and validation of information systems without
initially modelling using UML and then validate the
model in CPN. Therefore, CPN are used not only for
the verification and validation activities, but also for
the modeling activities of a software system.

The reminder of this paper is as follows. Sec-
tion 2 introduces the concepts of CPN. Section 3 il-
lustrates the steps to create a model of CPN from
the requirements of the Health Watcher System pre-
sented in (Soares et al., 2002) using CPN Tools.
Section 4 shows how the simulation of the Health
Watcher model is supported. Section 5 shows results
obtained from the monitoring. Section 6 presents the
formal verification of the model. Finally, section 7
concludes the paper and provides references for addi-
tional works concerning the modelling language for
CPN, practical examples, and use of tools for Petri
nets.

2 CONCEPTS OF CPN

CPN is a graphical modelling language (Jensen and
Kristensen, 2009), which combines the strengths of
Petri nets (Wolfang Reisig, 2013) and of functional
programming languages (Milner et al., 1997). The
formalism of Petri nets is well suited for describing
concurrent and synchronizing actions in distributed
systems. Programming languages can be used to de-

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

146



fine data types and manipulation of data. An intro-
duction to the practical use of CPN can be found at
(Kristensen et al., 2004).

The CPN are designed to reduce the size of the
model, allowing individualization of tokens, using
colours assigned to them, so different processes or
resources can be represented in the same network.
Colours do not mean just colours or patterns. They
can represent complex data types (Jensen and Kris-
tensen, 2009).

CPN models are formal, in the sense that the CPN
modelling language has a mathematical definition of
its syntax and semantics. This means that they can
be used to verify system properties, i.e., prove that
certain desired properties are fulfilled or that certain
undesired properties are guaranteed to be absent.

Large and complex models can be built using hi-
erarchical CPN in which modules, which are called
pages in the CPN terminology, are related to each
other in a well-defined way. Without the hierarchi-
cal structuring mechanism, it would be difficult to
create understandable CPN models of real-world sys-
tems (Jensen and Kristensen, 2009).

2.1 Formal Definition of Coloured Petri
Net

The formal definition of a CPN is as follows (Jensen
and Kristensen, 2009):
A Coloured Petri Net is a tuple CPN =
(∑,P,T,A,N,C,G,E, I) satisfying the following
requirements

(i.) ∑ is a finite set of non-empty types, called
colour sets.

(ii.) P is a finite set of places.
(iii.) T T is a finite set of transitions.
(iv.) A is a finite set of arcs such that:

• P∩T = P∩A= T ∩A= /0.
(v.) N is a node function. It is defined from A into

PXT∪TXP.
(vi.) C is a colour function. It is defined fromP into

∑.
(vii.) G is a guard function. It is defined fromT into

expressions such that:

• ∀t ∈ T: [Type(G(t)) = Bool ∧
Type(Var(G(t)))⊆ ∑]

(viii.) E is an arc expression function. It is defined
from A into expressions such that:

• ∀a ∈ A: [Type(E(a)) = C(p(a))MS ∧
Type(Var(E(a)))⊆ ∑]
where p(a) is a place of N(a).

(ix.) I is an initialization function. It is derived from
P into closed expressions such that:

• ∀p∈ P : [Type(I(p)) =C(p)MS].

2.2 Hierarchical CPN

One of the problems presented in Petri nets is associ-
ated with the fact that, as the size of the system grows,
it becomes increasingly difficult to maintain the clar-
ity of the model.

CPN models can be structured into a number of
related modules. This is particularly important when
dealing with CPN models of large systems. The mod-
ule concept of CPN is based on a hierarchical structur-
ing mechanism, which supports bottom-up as well as
top-down working style. New modules can be created
from existing modules, and modules can be reused
in several parts of the CPN model. By means of the
structuring mechanism it is possible to capture differ-
ent abstraction levels of the modeled system in the
same CPN model.

2.3 CPN Tools

The practical application of CPN modelling and anal-
ysis heavily relies on the existence of computer tools
supporting the creation and manipulation of mod-
els. CPN Tools is a tool suite for editing, simu-
lating, providing state space analysis, and provid-
ing performance analysis of CPN models. It is cur-
rently licensed to more than 4000 users in more than
100 different countries and is available both for MS-
Windows and Linux platforms. The user of CPN
Tools works directly on the graphical representation
of the CPN model. The graphical user interface (GUI)
of CPN Tools has no conventional menu bars or pull-
down menus, but is based on interaction techniques,
such as tool palettes and marking menus. A license
for CPN Tools can be obtained free of charge via the
CPN Tools web pages http://www.cpntools.org.

3 CPN MODEL FOR HEALTH
WATCHER

The purpose of the system is to collect and then man-
age public health related complaints and notifications.
The system is also used to notify people about impor-
tant information regarding the Health System.

System users are employees of the Department of
Health and any citizen who wants to interact with the
system. A citizen can access the system through the

A�Straightforward�Introduction�to�Formal�Methods�Using�Coloured�Petri�Nets

147



Internet and make their complaint or request informa-
tion about the different health service sectors avail-
able. In the event of a complaint being made, it will
be registered on the system and addressed to a spe-
cific department. This department will be able to han-
dle the complaint in an appropriate manner and give a
suitable response to the client once the complaint has
been dealt with. This response will be registered on
the system and available to be queried. The system
should provide access to 20 users simultaneously.

Figure 1: The most abstract level of modelling for Health
Watcher.

The modelling approach is hierarchical, where
each transition can be replaced by a module with de-
tails of the activities associated with the transition.
The most abstract level of the modelling of the Health
Watcher system is depicted in figure 1.

Figure 2: Module: Access System, Process Access and Re-
turning Access.

As depicted in figure 1, the colsetACCESSis a
set of colours that contains only 20 tokens of theac-
cesstype as the system should only allow 20 concur-
rent accesses. The colsetUserTypeis a set of colours
that contains tokens of typescitizen and employee.
The transitionAccess Systemwill be ready for bind-
ing when there is at least one free access and one user
to use the system.

Figure 2 depicts, in details, three modulesAccess
System, Process AccessandReturning Access.

The transitionAccess Systemis enabled when
there is a token typeaccessand another token type
UserType. When the transition is binding, then the
two tokens are consumed and then they generate a
new token with functionNextTypeUserin placeUser,
and other token in placeSystem Released.

When there is a token in placeSystem Released,
the transitionProcess Accessis enabled. When the
transitionProcess Accessis binding, the token is con-
sumed and a token is produced in placeSeparate Ac-
cess. In this case, the transition to be enabled depends
on the type of token produced. The guard condition
tu = citizenor tu = employeeenables the correct tran-
sition. Besides, when the task ends - placeCompleted
- the token is returned to the placeFree Access.

There are several scenarios defined by the spec-
ification of the requirements of the Health Watcher
System and we can not show them all due to space
limitations. Therefore, the authors chose the scenario
in which the citizen accesses the system to make a
complaint.

3.1 Complaint Specification

According to the work presented in (Soares et al.,
2002), the main flow of events for the complaint spec-
ification is:

1. The citizen logs into the system; (figure 3)

2. The citizen chooses the optionSpecify Complaint;
(figure 4)

3. The citizen informs the system of the type of com-
plaint being made and reports data; (figure 5)

4. The system records the complaint; (figure 6)

5. Access is released. (figure 7)

The sequence of figures 3, 4, 5, 6, 7, show the
modelling of the scenario when the citizen decides to
make a complaint.

4 SIMULATION

A CPN model of a system describes the states of the
system and the events (transitions) that can cause the

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

148



Figure 3: The citizen logs into the system.

Figure 4: The citizen chooses the option Specify Complaint.

system to change state. By making simulations of
the CPN model, it is possible to investigate differ-
ent scenarios and to explore the behaviors of the sys-
tem. Very often, the goal of simulation is to debug
and to investigate the system design. CPN nets can
be simulated interactively or automatically. An inter-
active simulation is similar to single step debugging.
It provides a way to “walk through” a CPN model,
investigating different scenarios in detail and check-
ing whether the model works as expected. During an
interactive simulation, the modeler is in charge and
determines the next step by selecting between the en-
abled events in the current state.

Before and after an automatic simulation, the cur-

Figure 5: The citizen informs the system of the type of com-
plaint being made and reports data.

Figure 6: The system records the complaint.

rent marking and the enabled transitions are displayed
as described for the interactive mode. However, the
token game is not displayed during automatic simu-
lations. Of course, this typically constitutes less in-
formation than desired. A straightforward possibil-
ity to obtain information about “what happened” is to
use the simulation report, which is a textual file con-
taining detailed information about all the bindings of
transitions that occurred. Figure 8 shows a simulation
report of the first 8 steps from an automatic simulation
of the Health Watcher System.

A�Straightforward�Introduction�to�Formal�Methods�Using�Coloured�Petri�Nets

149



Figure 7: Access is released.

Figure 8: Partial sample simulation report.

5 MONITORING

In CPN Tools, monitors can be used to examine the
binding elements that occur and the markings that are
reached during a simulation. Different kinds of mon-
itors can be used for different purposes, and break-
point monitors can be used to stop simulations when
specific conditions are fulfilled. A transition enabled
monitor is a standard breakpoint monitor that can be
associated with a transition, and the monitor will stop
a simulation when the transition is enabled (or dis-
abled, as determined by an option for the monitor).

Figure 9: Monitoring Report.

The monitoring results are obtained during the
running of the simulation. After 10000 simulation
steps, a result of the monitoring is obtained and can
be seen in figure 9.

The result shows that the system was accessed
1046 times during the simulation, which was made up

of 508 employees and 535 citizens. However, moni-
toring shows that access allows employees to perform
several different tasks. For example, there were 497
activities related to the Register table, 485 activities
opinion of complaints, totaling 982 tasks associated
to the employee, and only 535 citizen - 116 activities
related to consult health guide, 147 activities related
to consult different information and 272 activities re-
lated to specify the complaint.

6 STATE SPACE ANALYSIS

CPN models are formal, in the sense that the CPN
modelling language has a mathematical definition to
its syntax and semantics. This means that they can be
used to verify system properties, i.e., prove that cer-
tain desired properties are fulfilled or that certain un-
desired properties are guaranteed to be absent. Ver-
ification of system properties is supported by a set
of state space methods. The basic underlying idea
of state spaces is to compute all reachable states and
state changes of the CPN model and represent these as
a directed graph where nodes represent states and arcs
represent occurring events. State spaces can be con-
structed entirely automatic. From a constructed state
space it is possible to answer a large set of verification
questions concerning the behavior of the system such
as absence of deadlocks, the possibility of always be-
ing able to reach a given state, and the guaranteed de-
livery of a given service.

Figure 10: State space report: statistics.

For the CPN model in Figure 1, the state space re-
port is the same as that shown in Figures 10 - 13. First
we have some state space statistics (see Fig.10) telling
how large the state space is. For the Health Watcher
System we have 17089 nodes and 58108 arcs. Statis-
tics about the SCC-graph are also received. It has
13131 nodes and 44343 arcs.

The next parts of the state space report contain
information about the boundedness properties. The
boundedness properties give information as to how
many (and which) tokens a place may hold, when all
reachable markings are considered.

Figure 11 specifies the best upper and lower inte-
ger bounds. The best upper integer bound of a place
specifies the maximal number of tokens that can re-

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

150



Figure 11: State space report: integer bounds.

side on a place in any reachable marking. The best up-
per integer bound of place Top’User is 1 which means
that there is at most one token in place Top’User, and
there exists reachable markings where there is one to-
ken in Top’User.

The best lower integer bounds for a place specifies
the minimal number of tokens that can reside in the
place on any reachable marking. The place Top’User
has a best lower integer bound of 1 which means that
there is always at least one token in this place. When
the best upper and lower integer bound are equal it im-
plies that the place always contains the same number
of tokens.

Figure 12: State space report: home properties.

Figure 12 shows the part of the state space report
that specifies the home properties. The home prop-
erties tell us that there does not exist a single home
marking.

Figure 13: State space report: liveness properties.

The liveness properties in Figure 13 specify that
there is not a single dead marking. A dead marking is
a marking in which no binding elements are enabled.

Figure 13 specifies that there are no live transi-
tions. A transition is live if from any reachable mark-
ing we can always find an occurrence sequence con-
taining the transition. In other words, we cannot do

things which will make it impossible for the transi-
tion to occur afterwards.

Figure 13 also specifies that there are no dead tran-
sitions. A transition is dead if there are no reachable
markings in which it has been enabled. There are
no dead transitions means that each transition in the
Health Watcher System has the possibility to occur at
least once. If a model has dead transitions then they
correspond to parts of the model that can never be ac-
tivated. Hence, we can remove dead transitions from
the model without changing its behavior.

7 CONCLUSION

Coloured Petri nets are a formal method in which
models depicting the exact functionality of the sys-
tem are designed, simulated and analyzed. This is a
technique with a lot of research done to prove the cor-
rectness of a vast variety of systems.

The focus of this paper was the modelling and
simulation of Coloured Petri Networks using the
CPN Tools. Normally, critical systems are mod-
elled through the use of formal methods. However,
the modelling of an information system, such as the
Health Watcher System, provides a different perspec-
tive to formal modelling. The CPN Tools unite all the
properties of a CPN, which makes its use extremely
practical and powerful, leaving the user with only the
job of how to create the semantic model. Another
factor which favors the use of the tool is the ease
by which it can be obtained. The CPN Tools is dis-
tributed free of charge, unlike other simulation soft-
ware.

As an important approach to modelling, UML has
been successfully applied in many fields of software
engineering. However, because of the semantic gap,
UML is hard to be checked, which can cause disas-
trous consequences for the system. CPN has a pre-
cise mathematical semantics and automatic verifica-
tion tools. Using CPN Tools, it is possible to in-
vestigate the behaviour of the modelled system us-
ing simulation, to verify properties by means of state
space methods and model checking, and to conduct
simulation-based performance analysis. Therefore,
CPN is an interesting modelling approach because it
is capable of describing the software detects errors
and obtaining greater confidence of the correctness of
the model.

A�Straightforward�Introduction�to�Formal�Methods�Using�Coloured�Petri�Nets

151



REFERENCES

Aalst, W. M., Stahl, C., and Westergaard, M. (2013). Strate-
gies for modeling complex processes using colored
petri nets.Transactions on Petri Nets and Other Mod-
els of Concurrency, 7:6–55.

Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit,A.,
Petrucci, L., and Schnoebelen, P. (2010).Systems and
Software Verification: Model-Checking Techniques
and Tools. Springer Publishing Company, Incorpo-
rated, 1st edition.

Boehm, B. W. (1984). Verifying and validating software
requirements and design specifications.IEEE Softw.,
1(1):75–88.

Booch, G., Rumbaugh, J., and Jacobson, I. (2005).Unified
Modeling Language User Guide, The (2nd Edition)
(Addison-Wesley Object Technology Series). Addison-
Wesley Professional.

Cavalcante, E., Almeida, A., Batista, T., Cacho, N., Lopes,
F., Delicato, F. C., Sena, T., and Pires, P. F. (2012). Ex-
ploiting software product lines to develop cloud com-
puting applications. InProceedings of the 16th Inter-
national Software Product Line Conference - Volume
2, SPLC ’12, pages 179–187, New York, NY, USA.
ACM.

Dai, L. (2009). Security variability design and analysis inan
aspect oriented software architecture. InProceedings
of the 2009 Third IEEE International Conference on
Secure Software Integration and Reliability Improve-
ment, SSIRI ’09, pages 275–280, Washington, DC,
USA. IEEE Computer Society.

d’Amorim, F. and Borba, P. (2010). Modularity analy-
sis of use case implementations. InProceedings of
the 2010 Fourth Brazilian Symposium on Software
Components, Architectures and Reuse, SBCARS ’10,
pages 11–20, Washington, DC, USA. IEEE Computer
Society.

Dyer, R., Rajan, H., and Cai, Y. (2012). An exploratory
study of the design impact of language features for
aspect-oriented interfaces. InProceedings of the 11th
annual international conference on Aspect-oriented
Software Development, AOSD ’12, pages 143–154,
New York, NY, USA. ACM.

Goknil, A., Kurtev, I., and van den Berg, K. (2010). Tool
support for generation and validation of traces be-
tween requirements and architecture. InProceedings
of the 6th ECMFA Traceability Workshop, ECMFA-
TW ’10, pages 39–46, New York, NY, USA. ACM.

Hall, A. (1990). Seven myths of formal methods.IEEE
Softw., 7(5):11–19.

Jensen, K. and Kristensen, L. (2009).Coloured Petri Nets.
Springer.

Kolr, D. and Kvetonov, S. (2012). People transfer in city
transport modeled via cpn. InProceedings of the 13th
international conference on Computer Aided Systems
Theory - Volume Part I, EUROCAST’11, pages 192–
199, Berlin, Heidelberg. Springer-Verlag.

Kristensen, L. M., Jrgensen, J. B., and Jensen, K. (2004).
Application of coloured petri nets in system develop-
ment. InIn Lecture on Concurrency and Petri Nets,

Jorg Desel, Wolfgang Reisig and Grezegorz Rozen-
berg (Eds.), Springer, LNCS 3089, pages 626–685.
Springer-Verlag.

Laxman, P. B. (2013).Validation of UML Models for In-
teractive Systems with CPN and SPIN. PhD thesis,
Department of Computer Science and Engineering -
National Institute of Technology Rourkela.

Michael, J. B., Drusinsky, D., Otani, T. W., and Shing, M.-
T. (2011). Verification and validation for trustworthy
software systems.IEEE Softw., 28(6):86–92.

Milner, R., Tofte, M., and Macqueen, D. (1997).The Def-
inition of Standard ML. MIT Press, Cambridge, MA,
USA.

Murata, T. (1989). Petri nets: Properties, analysis and ap-
plications.Proceedings of the IEEE, 77(4):541–580.

Noguera, M., Hurtado, M. V., Rodrı́guez, M. L., Chung, L.,
and Garrido, J. L. (2010). Ontology-driven analysis
of uml-based collaborative processes using owl-dl and
cpn. Sci. Comput. Program., 75(8):726–760.

OMG (2011). OMG Unified Modeling Language (OMG
UML), Superstructure, Version 2.4.1. Object Manage-
ment Group.

Preece, J. J. (2010). I persuade, they persuade, it persuades!
In Proceedings of the 5th international conference on
Persuasive Technology, PERSUASIVE’10, pages 2–
3, Berlin, Heidelberg. Springer-Verlag.

Queralt, A. and Teniente, E. (2012). Verification and valida-
tion of uml conceptual schemas with ocl constraints.
ACM Trans. Softw. Eng. Methodol., 21(2):13:1–13:41.

Ribeiro, s. R. and Fernandes, J. M. (2009). Validation of
scenario-based business requirements with coloured
petri nets. In Boness, K., Fernandes, J. M., Hall, J. G.,
Machado, R. J., and Oberhauser, R., editors,ICSEA,
pages 250–255. IEEE Computer Society.

Siy, H., Aryal, P., Winter, V., and Zand, M. (2007). As-
pectual support for specifying requirements in soft-
ware product lines. InProceedings of the Early
Aspects at ICSE: Workshops in Aspect-Oriented Re-
quirements Engineering and Architecture Design,
EARLYASPECTS ’07, pages 2–, Washington, DC,
USA. IEEE Computer Society.

Soares, S., Laureano, E., and Borba, P. (2002). Implement-
ing distribution and persistence aspects with aspectj.
SIGPLAN Not., 37(11):174–190.

Sommerville, I. (2010).Software Engineering. Addison-
Wesley, Harlow, England, 9 edition.

Thayer, R., Dorfman, M., and Hunter, R. (2002).Software
Engineering Member Package (4 Volume Set). Practi-
tioners. Wiley.

Weidlich, M., Mendling, J., and Gal, A. (2013). Net-based
analysis of event processing networks: the fast flower
delivery case. InProceedings of the 34th international
conference on Application and Theory of Petri Nets
and Concurrency, PETRI NETS’13, pages 270–290,
Berlin, Heidelberg. Springer-Verlag.

Wolfang Reisig (2013).Understanding Petri Nets: Mod-
eling Techniques, Analysis Methods, Case Studies.
Springer. 230 pages; ISBN 978-3-642-33277-7.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

152


