
Analysing the Lifecycle of Future Autonomous Cloud Applications

Geir Horn1, Keith Jeffery2, Jörg Domaschka3 and Lutz Schubert3
1University of Oslo, Olav Dahls hus, P.O. Box 1080, 0316 Oslo, Norway

2Keith G Jeffery Consultants, 10 Claypits Lane, Shrivenham, U.K.
3University of Ulm, 89069 Ulm, Germany

Keywords: Cloud Computing, Software Design, Autonomy, Adaptability.

Abstract: Though Cloud Computing has found considerable uptake and usage, the amount of expertise, methodologies
and tools for efficient development of in particular distributed Cloud applications is still comparatively
little. This is mostly due to the fact that all our methodologies and approaches focus on single users, even
single processors, let alone active sharing of information. Within this paper we elaborate which kind of
information is missing from the current methodologies and how such information could principally be
exploited to improve resource utilisation, quality of service and reduce development time and effort.

1 INTRODUCTION

Clouds are on the rise. A major problem is
heterogeneity of offered platforms and their
interfaces with consequent inability to port
applications. Traditional methodologies and
software engineering principles still dominate the
commercial software industry. These principles were
generated for single-user and typically single-
processor use, i.e. not for cloud concepts.

This paper argues the necessity to involve
additional skills beyond traditional software
development in order to master successfully the
Cloud deployment of an application. We describe
the application aspects that need to be provided as a
profile by the application owner; the characteristics
of Cloud platforms that are supplied by the platform
operator; the characteristics of the data used by the
application and the characteristics of the user input
must be provided by the user as a profile partly
modifiable for each individual execution of the
application. This information is metadata to be used
by the systems development process.

The main contribution of this paper is to identify
the data that must be considered for an effective
deployment, and show that the data requires
continuous monitoring to unlock the full benefits
offered by the elasticity and scalability of the Cloud.
This implies that the profiles may need continuous
monitoring and essentially that the application
owner needs to be aware of this application

lifecycle. Section 2 highlights the core aspects of
application deployment, and Section 3 identifies the
data needed for the deployment and the data profiles.

The results presented here base on the initial
work in the PaaSage project, and the architecture for
a system to support model driven autonomic
deployment and application adaptation is described
in Section 4. Although the PaaSage project is
working on implementing the necessary building
blocks, it is too early to report on the
implementation of the application lifecycle in this
paper.

2 ASPECTS OF APPLICATION
DEPLOYMENT

Current cloud applications are designed and
developed in much the same way as traditional
applications. The developer / provider only starts
thinking about the cloud specific characteristics once
he starts to deploy, respectively host the application.

In order to understand why traditional
engineering principles are insufficient and how they
need to change, it is necessary to analyse which kind
of factors play a role at executing the main Cloud
characteristics, including specifically:

1. sharing data (and computation)
2. replication and elasticity
3. (re)location and distribution
With traditional software engineering, the

569Horn G., Jeffery K., Domaschka J. and Schubert L..
Analysing the Lifecycle of Future Autonomous Cloud Applications.
DOI: 10.5220/0004864705690577
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 569-577
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

application would be designed to essentially host
one complete instance for a single user. Data sharing
has to be explicitly encoded and is not represented
on the level of actual execution state, let alone that it
automatically caters for consistency problems. To
make best use of resources (and thus to optimise cost
and quality of service), it is furthermore necessary to
assess the scaling behaviour of the individual
functionalities that compose the full application
logic.

Figure 1 depicts such varying scaling behaviour
of a simple online book store: following traditional
principles would result in a single workflow per
each user, including the services and data base.
However, information such as the database needs to
be available to all users, but the store front and the
publisher access are not necessary per user.
However, no current software engineering principle
allows for description of a behaviour as depicted.

The implication of this scaling behaviour,
however, has to be assessed on the overarching
level, as for example two individual services in the
application workflow may scale out beyond the total
cost agreements, simply because the behaviour of
the individual services did not cater for the total
impact.

We will elaborate the impacting characteristics in
more detail in the following sections:

2.1 Usage Aspects

There is a general tendency to treat a Cloud
application as a self-sustained application in a full-
blown virtual image, though an increasing number
of modern cloud applications are actually complex
business processes distributed over multiple
resources and multiple virtual images and potentially
integrating the capabilities of different Cloud
infrastructures at the same time, cf. (Schubert and
Jeffery, 2012). As has been shown, the intrinsic
characteristics of such applications determine the
scaling behaviour, and in particular its constraints,
and thus the optimal resource utilisation, see e.g.
(Becker, Koziolek and Reussner, 2009), (Rubio
Bonilla, Schubert and Wesner, 2012) (cf. Figure 1).

Not only the number of users (which may vary
significantly over time) impacts on application scale,
but also the usage behaviour of each individual user.
Already a comparatively simple application, such as
book selling exposes multiple functionalities:
searching for books, adding / removing from lists,
ordering from publisher etc. – all triggering different
processes and necessitating different data.

It may be safely assumed that the application
structure, namely its processes and their potential
relationship, is already known. This – structural –
information serves also one further purpose: the
relationship between processes (usually as services)
and their potential impact on execution criteria such
as performance, data consumption etc.:

Each service contributes differently to the overall

Figure 1: Potential distributed workflow with different overlapping processes and different scaling behaviour per service
instance.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

570

application workflow and hence exposes different
(a) resource requirements and (b) connections during
scaling. For example an individual instance of
service A may serve up to 9(!) instances of service B
provided that B only contributes 1/10 to the total
load. The multiple instance of B may be the
consequence of scaling out due to increased user
demand.

2.2 Performance Aspects

The application workflow information can indicate
problem areas, such as bottlenecks. In order to
assess these, standard relationship information needs
to be extended with data about the communication
frequency and width (average size and range size of
messages), as well as performance impact per delay.

It will be noted that the communication impact is
not only defined by the data exchange, but logically
by the data in use itself. As with any application,
data size and structure can have strong impact on
overall performance. Non- or semi-structured data
has particular characteristics when used for
searching, pattern detection etc. and streamed data
has even more difficult characteristics requiring
windowing of the stream and multiple complex
parameters being maintained to assure effective and
efficient management of the data. Restructuring for
efficiency improvement may prove difficult to
achieve in a Cloud environment especially if the
data is shared.

Even if performance plays a secondary role in
the context of cloud computing so far, quality of the
provided services is a major concern. In this context,
availability (uptime and response time) is crucial for
customer satisfaction: if a specific service is not
available at request time, it will stall the execution of
the total application workflow. Scaling out to reach
the desired quality of service would mean: (1) higher
resource usage and thus higher cost, as well as (2)
higher risk of bottlenecks and potential problems
that cannot be compensated by scale out.

Also the technical characteristics of the hosting
environment plays a major role in meeting the
quality of service: for example, the database system
may not be suited for the type of access
requirements by the application, or storage may be
insufficient etc.

2.3 Deployment Criteria Overview

We can thus isolate the following main “external”
criteria that (should) influence the behaviour of a
cloud application, but are not accessible to the

execution environment in any form, so that it must
be explicitly provided by the application owner (or
the Cloud provider):

(1) Number of service consumers (users):
increased number of users will increase traffic and
potential resource conflicts associated with access to
threads of code, data etc.

(2) Communication behaviour: the time and size
of data exchange is a critical performance factor and
may lead to conflicts if it coincides with a large
number of users or background processes

(3) Usage behaviour: process invocation
frequency and sequence may lead to different
resource usage and potentially conflicts

(4) Workflow: specifies the application’s
structure and thus potential bottlenecks, scaling
conditions etc.

(5) Data structure: classify the impact arising
from typical data types and structures related to the
execution of the application

(6) Quality constraints (provider, host,
consumer) specify the actual business constraints
and goals of the actors and must therefore be
respected throughout the whole application lifecycle.

(7) Technical characteristics: define the
performance of a given application with respect to
its explicit and implicit resource need. This is
especially true for specialised platforms.

Up until now, the developer and potentially the
application provider had to cater for these aspects
implicitly by generating the necessary configuration
information manually, respectively by incorporating
the according behaviour directly into the application
code or workflow. Not only do most developers lack
such expertise, but it also makes the code difficult to
adjust to new environments and usage conditions.

3 CONCRETE DEPLOYMENT
INFORMATION

The information identified in the previous section
must not only be captured in a form that is intuitive
and meaningful – more importantly, it must be
specified in a form that can be used for deployment
and execution control purposes. Therefore this
information must be provided in a common format
that allows combination, selection and reasoning
over it, so as to select the right rules that apply under
the given circumstances.

In general, this means that the specifications
must consider the following aspects:

Analysing�the�Lifecycle�of�Future�Autonomous�Cloud�Applications

571

 Conditions: under which circumstances does the
information apply. For example, given a generic
rule to scale out when the number of users
increase, when does this behaviour really apply?
When would it create a bottleneck? The main
problem with these conditions is that they are
generally not well-defined and cannot be
represented as simple scalar tests. Hence they
must be able to cater for probabilistic values.

 Actions to perform when the conditions are met,
e.g., to scale out by a certain number, to relocate
the service etc. The composed actions of all
services must thereby meet the overall quality
constraints. This means that actions may vary
between use cases.

 Events: conditions are only evaluated if certain
events occur. In most cases these events will be
triggered by environmental circumstances. Like
conditions, they will have to deal with
uncertainty in order to allow for delays and
predict likely occurrences.
Even though these three aspects are clearly

related to the Event-Condition-Action definition
commonly used in logic reasoning (Helmer,
Poulovassilis and Xhafa, 2011), there are some
substantial differences, as will be elaborated in
section 4.

3.1 User Profile

The user profile describes the way in which the end-
user (application end user, application developer or
administrator) interacts with the Cloud environment.
The expected parameters are required for access
control and security – however, other user
characteristics are also of interest for better
interaction, such as preferred interaction mode,
preferred language, screen set-up etc. It should be
noted that the user profile information can change
dynamically, e.g. access control as the application
accesses different (parts of) datasets or databases.

3.2 Application Profile

An application can be generalised to a set of
modules exchanging data. The modules can be
functions, objects, actors, processes, services etc.
The application profile captures the characteristics
of these modules and their relationships.

The application developer typically has limited
knowledge about the temporal aspects of the
application, e.g. how much data will be exchanged
among the modules at what time, CPU and memory
consumption of each module etc. These factors may

depend on the data processed (see data profile) and
the user behaviour (user profile). Such parameters
must therefore be deduced from past executions and
from the software structure and its deployment.
Due to the nature of these properties, they are mostly
stochastic. In order to evaluate conditions on such
parameters, one will have to resort to hypothesis
testing, or observation of summarising quantities.
For properties with high variability, such as CPU
load, a high sampling frequency will be necessary to
capture the variations and the large data volumes
resulting might not be possible to store. Hence, one
will have to resort to generalisations and fitting of
standard parameterised density functions to capture
the essential variability.

Finally, the application profile must encompass
the operational goals, policies, and preferences of
the application owner. These are not constraints by
themselves, though they may be linked to
constraints. Policies can, for example, put
restrictions on where data is stored, or which Cloud
providers can (not) be used for deployment – these
could also indicate preferences of one Cloud
provider over others.

The specification of constraints and goals is
difficult – there is a clear need for a rich language to
capture all aspects, that is tractable using knowledge
engineering techniques but which in addition is able
to capture the intent of the user.

3.3 Data Profile

The data profile characterises the data to be used by
the application – this includes size (number and size
of records), the kind of dataset (alphanumeric, file
etc.), degree of dynamicity, privacy and security
considerations. Even more important for Cloud
performance are the access characteristics: do
applications typically read the dataset sequentially or
randomly based on some key attribute value? Is the
data used concurrently? Does the data need to be
kept consistent? Finally backup mechanisms need to
be in place for system recovery.

3.4 Host Profile (Infrastructure
Characteristics)

The technical characteristics of the infrastructure
play a major role with two respects: (1) whether the
host is suitable for the technical requirements and
(2) what performance can be expected by using the
respective host. The relationship between
performance and executing platform is however
generally undefinable, see e.g. (Skinner and Kramer,

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

572

2005). Similar to the technical requirements (see
below), there are however indicators that help in
performing an “educated guess” about the right
matching, such as bandwidth between nodes, size of
storage, database type etc.

Some of these factors can be influenced by the
host, such as the number of virtual machines, other
factors depend completely on the application and the
data processed by it.

The developer should therefore be able to specify
all the characteristics that are of essence to executing
the application. Typically, this will be constrained to
low-level aspects, such as the type of operating
system, necessary libraries etc., as the average
developer will not be able to specify all performance
impacting factors. On the other hand, the developer
is the only person able to assess what kind of
communication density to expect etc.

Therefore the relevant information must be
conveyed in a way that is intuitive and yet
meaningful for deployment and configuration. This
means that the developer will have to provide (a) the
concrete technological deployment requirements
(deployment model) and (b) any performance related
information that compensate the application profile
– this means in particular information regarding
likelihood and category of occurrence. For example,
the developer indicates how likely specific data sets
occur, such as frequency of address changes versus
person queries in a personnel database.

3.5 Expertise

As noted earlier (see Section 2.3), the translation of
all the expectations towards the application is
currently achieved through manual labour, i.e. by the
expertise of the developers involved in the process.
However, the scope of information to be considered
may easily exceed any current developer’s expertise.

The problem is thereby not so much the
complexity of the individual knowledge “items”, but
the sheer scope of such expertise and the according
fine-grained application context. For example

Scale out with numbers of users

is fairly easy to grasp and apply in general.
However, correct application depends on a number
of factors, starting with the networking capacity of
the host, over its adaptation speed, up to the overall
quality expectations. But there are also commercial
aspects to be considered, such as maximum costs
and cost to quality ratio.

What is more, however, is that the combination
of rules for different services within an application
can lead to undesired side effects, if not properly

respected when applying these rules. As such, two
connected components that communicate with each
other may e.g. lead to mutual scale up beyond given
boundaries.

As already noted in the beginning of this section,
all rules must generally take an event-condition-
action (ECA) like structure in order to be applicable
under the right circumstances. As opposed to the
other information types, which generally are of the
form of conveying only parts of the ECA rules (such
as the conditions), the “expertise rules” directly
incorporate all information and should therefore be
formalised as ECAs. In principle, “expertise rules”
are the results of gathering all the historical
information, generating the rules and improving
them over time – with the difference, that such
knowledge is already available for exploitation,
though not properly formalised for automated usage
and application across domains and use cases.

4 AN ARCHITECTURE FOR
APPLICATION DEPLOYMENT

As noted, the rules and information to be applied to
the actual execution of an application take an event-
condition-action (ECA) like form – however:

(1) many of these rules have to be combined
under uncertain and partial unspecified conditions,
and

(2) the conditions will take the form of
mathematical equations with domains of applicable
values, rather than concrete Boolean formulas

4.1 Contextualising Rules

Normal ECA rules apply to strictly logical
expressions that evaluate to true or false, similar to

if (10 < #users < 100) then

However, in the case here, the actual conditions (and
also the events) are of a form that is closer to

if (p(invocationprocessA)>0.7) then

where p means the probability for invocation. In
other words, the rules apply when uncertain
boundary conditions are met. This can be for
example

Rule#1: scale out whenever the number of users
(per instance) is bigger than 10

Rule#2: only scale out, when the service is not a
bottleneck

Rule#3: service B has high communication needs
when process A is invoked (bottleneck)

Analysing�the�Lifecycle�of�Future�Autonomous�Cloud�Applications

573

Rule#4: probability for invoking process A is
0.25

In other words, rule#1 applies successfully for
service B in 75% of all cases.

To derive such rules and reason over them, the
information described (section 3) must be formalised
and provided to the executing environment.

4.1.1 Exploiting Specialisation

It will be noted that the rules in this form are per se
infrastructure agnostic – meaning in particular, that
they generalise over the potential cloud behaviour.
At this level, the rules can be executed on any
platform that supports the necessary actions.

Some providers may however not offer full
support for all of this information, e.g. not all
platform providers allow fully detailed monitoring
information and not all allow full control over
scaling behaviour. The implication of this is, that not
all of the rules are equally applicable to all
environments.

By exploiting the host profiles, however, it can
be easily identified which provider supports which
rules. Implicitly, the combination of selected rules
constraints the selection of providers.

Vice versa, and more interestingly, the same
principle holds true to exploit specialised
capabilities: these form nothing but action rules that

only apply to a dedicated platform or host. Thus,
these rules restrict the choice of providers, if the
constraints demand for the according rule set.
Hence, the probability of fulfilment may alter by
selecting an alternative host.

This principle allows full exploitation of
specialisation according to the abstract requirements
of the application (see above).

4.2 Conceptual Architecture

Self-adaptive software systems have been studied
extensively ever since the vision of autonomic
computing arose (Jeffrey O. Kephart and David M.
Chess 2003). This vision basically specified that the
management of any adaptive system would have to
carry out four essential processes: (1) the system
must be monitored, (2) the gathered information
must be analysed to decide what the current system
state is and to decide if an adaptation is necessary,
after which the adaptation is (3) planned before it is
(4) executed. This has become known as the MAPE-
K loop of autonomic systems, where the K stands
for the knowledge available and exploited executing
this loop. The MAPE-K loop must also be enacted
for autonomous cloud applications.

One could build the adaptation plan reactively
taking only the current application context into
consideration when defining the next model and then

Figure 2: The fundamental modules for adapting a model-based application at runtime. Platform specific scripts ensure a
safe transition from the current to the new application configuration. Taken from (Geir Horn 2013).

Running system

Adaptation trigger:
Complex event

processor

Goal based
reasoning engine

Application
model

New model
needed

Aspect model
weaver

Configuration
checker

Configuration
manager

Target
model

Running
Configuration

model

In
va

lid
 ta

rg
et

m
od

el
 d

et
ec

te
d

Casually
connected

V
al

id
 ta

rg
et

co
nf

ig
ur

at
io

n

Safe
reconfiguration

scripts

Current
context
model

M
on

ito
rin

g
in

fo
rm

at
io

n

Deduced parameters

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

574

plan the adaptation as transformation from the
running application model to the new one. This
approach, known as models@run.time (Gordon
Blair, Nelly Bencomo, and Robert B. France 2009)
was used in (Brice Morin et al. 2009), which
identified the following five modules necessary in
order to carry out the MAPE-K loop:

(1) A complex event processor to identify when
the running context of the application has changed to
the extent that an adaptation is necessary.

(2) A goal based reasoning engine to select the
model configuration that would be “best” for the
current context, i.e. the target model.

(3) An aspect model weaver to realise the target
model and its bindings.

(4) A configuration checker to verify that the
target model is consistent and deployable.

(5) A configuration manager to derive a safe
sequence of application reconfiguration commands.

The relations of these modules are depicted in
Figure 2, which also advocates the need for a
stochastic goal based reasoning engine.

4.2.1 Monitoring

Monitoring is done by the execution platform (inside
the virtual machine or on system level). The monitor
provides information about the current execution
status, insofar as supported by the host (cf. section
4.1.1). Therefore the monitor provides relevant
information whether the expected constraints are
met.

Each monitoring instance fulfils a two-fold role
(cf. next section): (1) checking the performance of
the individual service (instance), and (2)
contributing to the analysis of the overall behaviour.

A definition of a monitor incorporates (1) what
type of information needs to be gathered (2) at what
frequency and (3) potentially how it needs to be
generated (metric), as well as (4) where it needs to
be sent to (such as the event filter).

Obviously, the information is constrained by the
hosting platform’s capabilities - in other words, no
metrics can be applied to data that is not provided by
the host. This is hence a selection criteria for the
right host (see section 4.1.1).

4.2.2 Analysis

The analysis of the monitored information can be
done locally or centrally: for instance local
monitoring can decide to scale out a local service,
but application level adaptation must be analysed
centrally to weigh the effect of all individual actions.

The simplest form of analysis is to compare the

monitored data against a threshold. However, this
will be vulnerable to variations. For instance, the
response time of a database query depends on its
complexity - hence, a complex query may exceed
the response threshold. Adapting on a single event
may therefore lead to erratic behaviour.

Statistical hypothesis testing is one alternative.
However, one should bear in mind that most
methods are developed for the linear model
(Franklin A. Graybill, 1976) and therefore sensitive
to deviations from the normal distribution of large
samples. The alternative is to use non-parametric
tests (Conover, 1999) or, if one is just interested in
detecting out of bounds events, one could use the
sample version of the Chebyshev inequality (John G.
Saw, 1984).

Finally, there are numerous techniques from the
field of information flow processing that can be
applied to correlate and understand the true system
state based on monitored events (Gianpaolo Cugola
and Alessandro Margara, 2012).

4.2.3 Planning

Adaptation planning takes place at three levels:
(1) The developer plans adaptation steps that

make sense for the application logic – for example
related to the workload assignment in distributed
applications.

(2) Plans for each Cloud provider adaptation
using the elasticity mechanisms offered by that
infrastructure. Such plans are provided as part of the
deployment of the application, and they are therefore
a part of the currently deployed configuration.

(3) When the system requires adaptation that is
not catered for, a new configuration is needed. Such
a global adaptation must be planned in response to
the detected changes in the application’s running
context using models@run.time as outlined above,
trying to meet all operational constraints (Geir Horn
2013).

4.2.4 Execution

The adaptation plan should be executed
hierarchically with the central authority maintaining
overall application consistency, whereas platform
level mechanisms are used to the largest possible
extent to allow a smooth transition.

The configuration manager will need to identify
the difference between the running and the new
configuration, to generate reconfiguration scripts for
each Cloud platform. This is also highly use case
dependent, as some applications allow
checkpointing and state recovery, whereas other

Analysing�the�Lifecycle�of�Future�Autonomous�Cloud�Applications

575

applications must simply be stopped with the new
configuration started from scratch.

The main point thereby is that not the services
themselves are adapted (in the sense of re-
programmed or re-configured with new parameters),
but the execution context instead. Using above
building blocks, the profiles and service
descriptions, the tasks (i.e. services) can be treated
individually as black boxes that are scaled out,
relocated, reconfigured much the same way a virtual
image would. In other words, the services
contributing to the overarching application logic are
basically subject to common cloud strategies that
together meet the overarching goals and constraints.

To realise such behaviour, the configuration
manager is closely linked to local execution engines
that perform the actual adaptation on a service level,
ensuring that the individual steps in the adaptation
script are executed correctly.

5 CONCLUSIONS

Our proposed model aims at integration across
multiple Cloud platforms of any kind. It will also
allow the application to be deployed optimally
taking account of the specialised characteristics of
different platforms matched to the requirements of
the application and its usage constraints.

Not all additional information necessary can
always be provided, or properly matched: so far, no
proper programming and modelling mechanism
exists that allows easy and intuitive definition of the
right type of information. Furthermore, reactive
adaptation planning using models@run.time is an
active research topic (Svein Hallsteinsen et al.
2012), and using these concepts for Cloud
deployment is currently under investigation.

A major open challenge thereby remains in
maintaining the compositional correctness of the
decomposed rules and actions: during deployment
and adaptation, the overarching constraints have to
be broken down to low-level rules that can be
enacted individually. To this end, the information
does have to be provided in a fashion that
incorporates both high- and low-level descriptions.

This paper described the approach pursued in the
PaaSage project, which develops the necessary
language, modelling and reasoning tools to allow
provisioning and exploitation of the type of
information described here. The tools will allow the
individual stakeholders to provider their respective
view on the goals and constraints by building up
from proven patterns that can be decomposed

through according reasoning mechanisms. The goal
is to make it easier to create and host applications
that can run effectively and efficiently on various
Cloud, thereby addressing a major barrier to take-up
of Clouds.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under
grant agreement n° 317715. The views expressed in
this paper are those of the authors and do not
necessarily represent those of the consortium.

REFERENCES

Becker, S., Koziolek, H. & Reussner, R., 2009. The
Palladio component model for model-driven
performance prediction. Journal of Systems and
Software, 82:3-22.

Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck
Fleurey, and Arnor Solberg. 2009. ‘Models@run.time
to Support Dynamic Adaptation’. Computer 42 (10):
44–51. doi:10.1109/MC.2009.327.

Conover, W. J.., 1999. Practical Nonparametric Statistics.
3rd ed. Wiley Series in Probability and Statistics:
Applied Probability and Statistics Section. John Wiley
& Sons.

Franklin A. Graybill. 1976. Theory and Application of the
Linear Model. North Scituate, MA, USA: Duxbury
Press.

Geir Horn. 2013. ‘A Vision for a Stochastic Reasoner for
Autonomic Cloud Deployment’. In Proceedings of the
Second Nordic Symposium on Cloud Computing &
Internet Technologies, edited by Muhammad Ali
Babar, Marlon Dumas, and Arnor Solberg, 46–53.
NordiCloud ’13. New York, NY, USA: ACM.
doi:10.1145/2513534.2513543. http://doi.acm.org/
10.1145/2513534.2513543.

Gianpaolo Cugola, and Alessandro Margara. 2012.
‘Processing Flows of Information: From Data Stream
to Complex Event Processing’. ACM Comput. Surv.
44 (3) (June): 15:1–15:62. doi:10.1145/
2187671.2187677.

Gordon Blair, Nelly Bencomo, and Robert B. France.
2009. ‘Models@run.time’. Computer 42 (10): 22–27.
doi:10.1109/MC.2009.326.

Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F.,
Horn, G., Lorenzo, J., Mamelli, A., and Papadopoulos,
G. A., 2012. A Development Framework and
Methodology for Self-adapting Applications in
Ubiquitous Computing Environments. Journal of
Systems and Software 85 (12) (December): 2840–

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

576

2859. doi:10.1016/j.jss.2012.07.052.
Helmer, S., Poulovassilis, A. & Xhafa, F., 2011.

Reasoning in Event-Based Distributed Systems.
Studies in Computational Intelligence 347, Springer-
Verlag Berlin Heidelburg.

Jeffrey O. Kephart, and David M. Chess. 2003. ‘The
Vision of Autonomic Computing’. Computer 36 (1):
41–50. doi:10.1109/MC.2003.1160055.

John G. Saw, Mark C. K. Yang, and Tse Chin Mo. 1984.
‘Chebyshev Inequality with Estimated Mean and
Variance’. The American Statistician 38 (2) (May):
130. doi:10.2307/2683249.

Rubio Bonilla, D., Schubert, L. and Wesner, S., 2012, The
Need to Comprehend Clouds: Why We Still Can’t Use
Clouds Properly. CloudComp Conference
Proceedings.

Schubert, L., & Jeffery, K., 2012. Advances in Clouds -
Research in Future Cloud Computing. Cordis
(Online). Brussels, BE: European Commission.
Retrieved from http://cordis.europa.eu/fp7/ict/ssai/
docs/future-cc-2may-finalreport-experts.pdf.

Skinner, D. & Kramer, W., 2005. Understanding the
causes of performance variability in HPC workloads.
International Symposium on Workload
Characterization.

Analysing�the�Lifecycle�of�Future�Autonomous�Cloud�Applications

577

