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Abstract: Though Cloud Computing has found considerable uptake and usage, the amount of expertise, methodologies 
and tools for efficient development of in particular distributed Cloud applications is still comparatively 
little. This is mostly due to the fact that all our methodologies and approaches focus on single users, even 
single processors, let alone active sharing of information. Within this paper we elaborate which kind of 
information is missing from the current methodologies and how such information could principally be 
exploited to improve resource utilisation, quality of service and reduce development time and effort. 

1 INTRODUCTION 

Clouds are on the rise. A major problem is 
heterogeneity of offered platforms and their 
interfaces with consequent inability to port 
applications. Traditional methodologies and 
software engineering principles still dominate the 
commercial software industry. These principles were 
generated for single-user and typically single-
processor use, i.e. not for cloud concepts.  

This paper argues the necessity to involve 
additional skills beyond traditional software 
development in order to master successfully the 
Cloud deployment of an application. We describe 
the application aspects that need to be provided as a 
profile by the application owner; the characteristics 
of Cloud platforms that are supplied by the platform 
operator; the characteristics of the data used by the 
application and the characteristics of the user input 
must be provided by the user as a profile partly 
modifiable for each individual execution of the 
application.  This information is metadata to be used 
by the systems development process. 

The main contribution of this paper is to identify 
the data that must be considered for an effective 
deployment, and show that the data requires 
continuous monitoring to unlock the full benefits 
offered by the elasticity and scalability of the Cloud. 
This implies that the profiles may need continuous 
monitoring and essentially that the application 
owner needs to be aware of this application 

lifecycle. Section 2 highlights the core aspects of 
application deployment, and Section 3 identifies the 
data needed for the deployment and the data profiles. 

The results presented here base on the initial 
work in the PaaSage project, and the architecture for 
a system to support model driven autonomic 
deployment and application adaptation is described 
in Section 4. Although the PaaSage project is 
working on implementing the necessary building 
blocks, it is too early to report on the 
implementation of the application lifecycle in this 
paper. 

2 ASPECTS OF APPLICATION 
DEPLOYMENT 

Current cloud applications are designed and 
developed in much the same way as traditional 
applications. The developer / provider only starts 
thinking about the cloud specific characteristics once 
he starts to deploy, respectively host the application.   

In order to understand why traditional 
engineering principles are insufficient and how they 
need to change, it is necessary to analyse which kind 
of factors play a role at executing the main Cloud 
characteristics, including specifically: 

1. sharing data (and computation) 
2. replication and elasticity 
3. (re)location and distribution 
With traditional software engineering, the 
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application would be designed to essentially host 
one complete instance for a single user. Data sharing 
has to be explicitly encoded and is not represented 
on the level of actual execution state, let alone that it 
automatically caters for consistency problems. To 
make best use of resources (and thus to optimise cost 
and quality of service), it is furthermore necessary to 
assess the scaling behaviour of the individual 
functionalities that compose the full application 
logic.  

Figure 1 depicts such varying scaling behaviour 
of a simple online book store: following traditional 
principles would result in a single workflow per 
each user, including the services and data base. 
However, information such as the database needs to 
be available to all users, but the store front and the 
publisher access are not necessary per user. 
However, no current software engineering principle 
allows for description of a behaviour as depicted. 

The implication of this scaling behaviour, 
however, has to be assessed on the overarching 
level, as for example two individual services in the 
application workflow may scale out beyond the total 
cost agreements, simply because the behaviour of 
the individual services did not cater for the total 
impact. 

We will elaborate the impacting characteristics in 
more detail in the following sections: 

2.1 Usage Aspects 

There is a general tendency to treat a Cloud 
application as a self-sustained application in a full-
blown virtual image, though an increasing number 
of modern cloud applications are actually complex 
business processes distributed over multiple 
resources and multiple virtual images and potentially 
integrating the capabilities of different Cloud 
infrastructures at the same time, cf. (Schubert and 
Jeffery, 2012). As has been shown, the intrinsic 
characteristics of such applications determine the 
scaling behaviour, and in particular its constraints, 
and thus the optimal resource utilisation, see e.g. 
(Becker, Koziolek and Reussner, 2009), (Rubio 
Bonilla, Schubert and Wesner, 2012) (cf. Figure 1). 

Not only the number of users (which may vary 
significantly over time) impacts on application scale, 
but also the usage behaviour of each individual user. 
Already a comparatively simple application, such as 
book selling exposes multiple functionalities: 
searching for books, adding / removing from lists, 
ordering from publisher etc. – all triggering different 
processes and necessitating different data. 

It may be safely assumed that the application 
structure, namely its processes and their potential 
relationship, is already known. This – structural – 
information serves also one further purpose: the 
relationship between processes (usually as services) 
and their potential impact on execution criteria such 
as performance, data consumption etc.: 

Each service contributes differently to the overall 

 

Figure 1: Potential distributed workflow with different overlapping processes and different scaling behaviour per service 
instance. 
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application workflow and hence exposes different 
(a) resource requirements and (b) connections during 
scaling. For example an individual instance of 
service A may serve up to 9(!) instances of service B 
provided that B only contributes 1/10 to the total 
load. The multiple instance of B may be the 
consequence of scaling out due to increased user 
demand. 

2.2 Performance Aspects 

The application workflow information can indicate 
problem areas, such as bottlenecks. In order to 
assess these, standard relationship information needs 
to be extended with data about the communication 
frequency and width (average size and range size of 
messages), as well as performance impact per delay. 

It will be noted that the communication impact is 
not only defined by the data exchange, but logically 
by the data in use itself. As with any application, 
data size and structure can have strong impact on 
overall performance. Non- or semi-structured data 
has particular characteristics when used for 
searching, pattern detection etc. and streamed data 
has even more difficult characteristics requiring 
windowing of the stream and multiple complex 
parameters being maintained to assure effective and 
efficient management of the data. Restructuring for 
efficiency improvement may prove difficult to 
achieve in a Cloud environment especially if the 
data is shared. 

Even if performance plays a secondary role in 
the context of cloud computing so far, quality of the 
provided services is a major concern. In this context, 
availability (uptime and response time) is crucial for 
customer satisfaction: if a specific service is not 
available at request time, it will stall the execution of 
the total application workflow. Scaling out to reach 
the desired quality of service would mean: (1) higher 
resource usage and thus higher cost, as well as (2) 
higher risk of bottlenecks and potential problems 
that cannot be compensated by scale out. 

Also the technical characteristics of the hosting 
environment plays a major role in meeting the 
quality of service: for example, the database system 
may not be suited for the type of access 
requirements by the application, or storage may be 
insufficient etc. 

2.3 Deployment Criteria Overview 

We can thus isolate the following main “external” 
criteria that (should) influence the behaviour of a 
cloud application, but are not accessible to the 

execution environment in any form, so that it must 
be explicitly provided by the application owner (or 
the Cloud provider): 

(1) Number of service consumers (users): 
increased number of users will increase traffic and 
potential resource conflicts associated with access to 
threads of code, data etc. 

(2) Communication behaviour: the time and size 
of data exchange is a critical performance factor and 
may lead to conflicts if it coincides with a large 
number of users or background processes  

(3) Usage behaviour: process invocation 
frequency and sequence may lead to different 
resource usage and potentially conflicts  

(4) Workflow: specifies the application’s 
structure and thus potential bottlenecks, scaling 
conditions etc. 

(5) Data structure: classify the impact arising 
from typical data types and structures related to the 
execution of the application 

(6) Quality constraints (provider, host, 
consumer) specify the actual business constraints 
and goals of the actors and must therefore be 
respected throughout the whole application lifecycle.  

(7) Technical characteristics: define the 
performance of a given application with respect to 
its explicit and implicit resource need. This is 
especially true for specialised platforms. 

Up until now, the developer and potentially the 
application provider had to cater for these aspects 
implicitly by generating the necessary configuration 
information manually, respectively by incorporating 
the according behaviour directly into the application 
code or workflow. Not only do most developers lack 
such expertise, but it also makes the code difficult to 
adjust to new environments and usage conditions. 

3 CONCRETE DEPLOYMENT 
INFORMATION 

The information identified in the previous section 
must not only be captured in a form that is intuitive 
and meaningful – more importantly, it must be 
specified in a form that can be used for deployment 
and execution control purposes. Therefore this 
information must be provided in a common format 
that allows combination, selection and reasoning 
over it, so as to select the right rules that apply under 
the given circumstances. 

In general, this means that the specifications 
must consider the following aspects: 
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 Conditions: under which circumstances does the 
information apply. For example, given a generic 
rule to scale out when the number of users 
increase, when does this behaviour really apply? 
When would it create a bottleneck? The main 
problem with these conditions is that they are 
generally not well-defined and cannot be 
represented as simple scalar tests. Hence they 
must be able to cater for probabilistic values.  

 Actions to perform when the conditions are met, 
e.g., to scale out by a certain number, to relocate 
the service etc. The composed actions of all 
services must thereby meet the overall quality 
constraints. This means that actions may vary 
between use cases. 

 Events: conditions are only evaluated if certain 
events occur. In most cases these events will be 
triggered by environmental circumstances. Like 
conditions, they will have to deal with 
uncertainty in order to allow for delays and 
predict likely occurrences. 
Even though these three aspects are clearly 

related to the Event-Condition-Action definition 
commonly used in logic reasoning (Helmer, 
Poulovassilis and Xhafa, 2011), there are some 
substantial differences, as will be elaborated in 
section 4. 

3.1 User Profile  

The user profile describes the way in which the end-
user (application end user, application developer or 
administrator) interacts with the Cloud environment.  
The expected parameters are required for access 
control and security – however, other user 
characteristics are also of interest for better 
interaction, such as preferred interaction mode, 
preferred language, screen set-up etc.  It should be 
noted that the user profile information can change 
dynamically, e.g. access control as the application 
accesses different (parts of) datasets or databases. 

3.2 Application Profile  

An application can be generalised to a set of 
modules exchanging data. The modules can be 
functions, objects, actors, processes, services etc. 
The application profile captures the characteristics 
of these modules and their relationships. 

The application developer typically has limited 
knowledge about the temporal aspects of the 
application, e.g. how much data will be exchanged 
among the modules at what time, CPU and memory 
consumption of each module etc. These factors may 

depend on the data processed (see data profile) and 
the user behaviour (user profile). Such parameters 
must therefore be deduced from past executions and 
from the software structure and its deployment. 
Due to the nature of these properties, they are mostly 
stochastic. In order to evaluate conditions on such 
parameters, one will have to resort to hypothesis 
testing, or observation of summarising quantities. 
For properties with high variability, such as CPU 
load, a high sampling frequency will be necessary to 
capture the variations and the large data volumes 
resulting might not be possible to store. Hence, one 
will have to resort to generalisations and fitting of 
standard parameterised density functions to capture 
the essential variability.  

Finally, the application profile must encompass 
the operational goals, policies, and preferences of 
the application owner. These are not constraints by 
themselves, though they may be linked to 
constraints. Policies can, for example, put 
restrictions on where data is stored, or which Cloud 
providers can (not) be used for deployment – these 
could also indicate preferences of one Cloud 
provider over others. 

The specification of constraints and goals is 
difficult – there is a clear need for a rich language to 
capture all aspects, that is tractable using knowledge 
engineering techniques but which in addition is able 
to capture the intent of the user. 

3.3 Data Profile  

The data profile characterises the data to be used by 
the application – this includes size (number and size 
of records), the kind of dataset (alphanumeric, file 
etc.), degree of dynamicity, privacy and security 
considerations. Even more important for Cloud 
performance are the access characteristics: do 
applications typically read the dataset sequentially or 
randomly based on some key attribute value?  Is the 
data used concurrently? Does the data need to be 
kept consistent? Finally backup mechanisms need to 
be in place for system recovery. 

3.4 Host Profile (Infrastructure 
Characteristics)  

The technical characteristics of the infrastructure 
play a major role with two respects: (1) whether the 
host is suitable for the technical requirements and 
(2) what performance can be expected by using the 
respective host. The relationship between 
performance and executing platform is however 
generally undefinable, see e.g. (Skinner and Kramer, 
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2005). Similar to the technical requirements (see 
below), there are however indicators that help in 
performing an “educated guess” about the right 
matching, such as bandwidth between nodes, size of 
storage, database type etc.  

Some of these factors can be influenced by the 
host, such as the number of virtual machines, other 
factors depend completely on the application and the 
data processed by it. 

The developer should therefore be able to specify 
all the characteristics that are of essence to executing 
the application. Typically, this will be constrained to 
low-level aspects, such as the type of operating 
system, necessary libraries etc., as the average 
developer will not be able to specify all performance 
impacting factors. On the other hand, the developer 
is the only person able to assess what kind of 
communication density to expect etc.  

Therefore the relevant information must be 
conveyed in a way that is intuitive and yet 
meaningful for deployment and configuration. This 
means that the developer will have to provide (a) the 
concrete technological deployment requirements 
(deployment model) and (b) any performance related 
information that compensate the application profile 
– this means in particular information regarding 
likelihood and category of occurrence. For example, 
the developer indicates how likely specific data sets 
occur, such as frequency of address changes versus 
person queries in a personnel database. 

3.5 Expertise  

As noted earlier (see Section 2.3), the translation of 
all the expectations towards the application is 
currently achieved through manual labour, i.e. by the 
expertise of the developers involved in the process. 
However, the scope of information to be considered 
may easily exceed any current developer’s expertise.  

The problem is thereby not so much the 
complexity of the individual knowledge “items”, but 
the sheer scope of such expertise and the according 
fine-grained application context. For example 

Scale out with numbers of users 

is fairly easy to grasp and apply in general. 
However, correct application depends on a number 
of factors, starting with the networking capacity of 
the host, over its adaptation speed, up to the overall 
quality expectations. But there are also commercial 
aspects to be considered, such as maximum costs 
and cost to quality ratio. 

What is more, however, is that the combination 
of rules for different services within an application 
can lead to undesired side effects, if not properly 

respected when applying these rules. As such, two 
connected components that communicate with each 
other may e.g. lead to mutual scale up beyond given 
boundaries. 

As already noted in the beginning of this section, 
all rules must generally take an event-condition-
action (ECA) like structure in order to be applicable 
under the right circumstances. As opposed to the 
other information types, which generally are of the 
form of conveying only parts of the ECA rules (such 
as the conditions), the “expertise rules” directly 
incorporate all information and should therefore be 
formalised as ECAs. In principle, “expertise rules” 
are the results of gathering all the historical 
information, generating the rules and improving 
them over time – with the difference, that such 
knowledge is already available for exploitation, 
though not properly formalised for automated usage 
and application across domains and use cases. 

4 AN ARCHITECTURE FOR 
APPLICATION DEPLOYMENT  

As noted, the rules and information to be applied to 
the actual execution of an application take an event-
condition-action (ECA) like form – however: 

(1) many of these rules have to be combined 
under uncertain and partial unspecified conditions, 
and  

(2) the conditions will take the form of 
mathematical equations with domains of applicable 
values, rather than concrete Boolean formulas 

4.1 Contextualising Rules 

Normal ECA rules apply to strictly logical 
expressions that evaluate to true or false, similar to  

if (10 < #users < 100) then 

However, in the case here, the actual conditions (and 
also the events) are of a form that is closer to 

if (p(invocationprocessA)>0.7) then 

where p means the probability for invocation. In 
other words, the rules apply when uncertain 
boundary conditions are met. This can be for 
example  

Rule#1: scale out whenever the number of users 
(per instance) is bigger than 10 

Rule#2: only scale out, when the service is not a 
bottleneck 

Rule#3: service B has high communication needs 
when process A is invoked (bottleneck) 
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Rule#4: probability for invoking process A is 
0.25 

In other words, rule#1 applies successfully for 
service B in 75% of all cases.  

To derive such rules and reason over them, the 
information described (section 3) must be formalised 
and provided to the executing environment.  

4.1.1 Exploiting Specialisation 

It will be noted that the rules in this form are per se 
infrastructure agnostic – meaning in particular, that 
they generalise over the potential cloud behaviour. 
At this level, the rules can be executed on any 
platform that supports the necessary actions.  

Some providers may however not offer full 
support for all of this information, e.g. not all 
platform providers allow fully detailed monitoring 
information and not all allow full control over 
scaling behaviour. The implication of this is, that not 
all of the rules are equally applicable to all 
environments.  

By exploiting the host profiles, however, it can 
be easily identified which provider supports which 
rules. Implicitly, the combination of selected rules 
constraints the selection of providers. 

Vice versa, and more interestingly, the same 
principle holds true to exploit specialised 
capabilities: these form nothing but action rules that 

only apply to a dedicated platform or host. Thus, 
these rules restrict the choice of providers, if the 
constraints demand for the according rule set. 
Hence, the probability of fulfilment may alter by 
selecting an alternative host. 

This principle allows full exploitation of 
specialisation according to the abstract requirements 
of the application (see above). 

4.2 Conceptual Architecture 

Self-adaptive software systems have been studied 
extensively ever since the vision of autonomic 
computing arose (Jeffrey O. Kephart and David M. 
Chess 2003). This vision basically specified that the 
management of any adaptive system would have to 
carry out four essential processes: (1) the system 
must be monitored, (2) the gathered information 
must be analysed to decide what the current system 
state is and to decide if an adaptation is necessary, 
after which the adaptation is (3) planned before it is 
(4) executed. This has become known as the MAPE-
K loop of autonomic systems, where the K stands 
for the knowledge available and exploited executing 
this loop. The MAPE-K loop must also be enacted 
for autonomous cloud applications. 

One could build the adaptation plan reactively  
taking only the current application context into 
consideration when defining the next model and then 

 

Figure 2: The fundamental modules for adapting a model-based application at runtime. Platform specific scripts ensure a 
safe transition from the current to the new application configuration. Taken from (Geir Horn 2013). 
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plan the adaptation as transformation from the 
running application model to the new one. This 
approach, known as models@run.time (Gordon 
Blair, Nelly Bencomo, and Robert B. France 2009) 
was used in (Brice Morin et al. 2009), which 
identified the following five modules necessary in 
order to carry out the MAPE-K loop:  

(1) A complex event processor to identify when 
the running context of the application has changed to 
the extent that an adaptation is necessary. 

(2) A goal based reasoning engine to select the 
model configuration that would be “best” for the 
current context, i.e. the target model. 

(3) An aspect model weaver to realise the target 
model and its bindings. 

(4) A configuration checker to verify that the 
target model is consistent and deployable. 

(5) A configuration manager to derive a safe 
sequence of application reconfiguration commands. 

The relations of these modules are depicted in 
Figure 2, which also advocates the need for a 
stochastic goal based reasoning engine. 

4.2.1 Monitoring  

Monitoring is done by the execution platform (inside 
the virtual machine or on system level). The monitor 
provides information about the current execution 
status, insofar as supported by the host (cf. section 
4.1.1). Therefore the monitor provides relevant 
information whether the expected constraints are 
met. 

Each monitoring instance fulfils a two-fold role 
(cf. next section): (1) checking the performance of 
the individual service (instance), and (2) 
contributing to the analysis of the overall behaviour. 

A definition of a monitor incorporates (1) what 
type of information needs to be gathered (2) at what 
frequency and (3) potentially how it needs to be 
generated (metric), as well as (4) where it needs to 
be sent to (such as the event filter).  

Obviously, the information is constrained by the 
hosting platform’s capabilities - in other words, no 
metrics can be applied to data that is not provided by 
the host. This is hence a selection criteria for the 
right host (see section 4.1.1).  

4.2.2 Analysis 

The analysis of the monitored information can be 
done locally or centrally: for instance local 
monitoring can decide to scale out a local service, 
but application level adaptation must be analysed 
centrally to weigh the effect of all individual actions. 

The simplest form of analysis is to compare the 

monitored data against a threshold. However, this 
will be vulnerable to variations. For instance, the 
response time of a database query depends on its 
complexity - hence, a complex query may exceed 
the response threshold. Adapting on a single event 
may therefore lead to erratic behaviour. 

Statistical hypothesis testing is one alternative. 
However, one should bear in mind that most 
methods are developed for the linear model 
(Franklin A. Graybill, 1976) and therefore sensitive 
to deviations from the normal distribution of large 
samples. The alternative is to use non-parametric 
tests (Conover, 1999) or, if one is just interested in 
detecting out of bounds events, one could use the 
sample version of the Chebyshev inequality (John G. 
Saw, 1984). 

Finally, there are numerous techniques from the 
field of information flow processing that can be 
applied to correlate and understand the true system 
state based on monitored events (Gianpaolo Cugola 
and Alessandro Margara, 2012).  

4.2.3 Planning 

Adaptation planning takes place at three levels: 
(1) The developer plans adaptation steps that 

make sense for the application logic – for example 
related to the workload assignment in distributed 
applications. 

(2) Plans for each Cloud provider adaptation 
using the elasticity mechanisms offered by that 
infrastructure. Such plans are provided as part of the 
deployment of the application, and they are therefore 
a part of the currently deployed configuration.  

(3) When the system requires adaptation that is 
not catered for, a new configuration is needed. Such 
a global adaptation must be planned in response to 
the detected changes in the application’s running 
context using models@run.time as outlined above, 
trying to meet all operational constraints (Geir Horn 
2013). 

4.2.4 Execution 

The adaptation plan should be executed 
hierarchically with the central authority maintaining 
overall application consistency, whereas platform 
level mechanisms are used to the largest possible 
extent to allow a smooth transition. 

The configuration manager will need to identify 
the difference between the running and the new 
configuration, to generate reconfiguration scripts for 
each Cloud platform. This is also highly use case 
dependent, as some applications allow 
checkpointing and state recovery, whereas other 
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applications must simply be stopped with the new 
configuration started from scratch. 

The main point thereby is that not the services 
themselves are adapted (in the sense of re-
programmed or re-configured with new parameters), 
but the execution context instead. Using above 
building blocks, the profiles and service 
descriptions, the tasks (i.e. services) can be treated 
individually as black boxes that are scaled out, 
relocated, reconfigured much the same way a virtual 
image would. In other words, the services 
contributing to the overarching application logic are 
basically subject to common cloud strategies that 
together meet the overarching goals and constraints.  

To realise such behaviour, the configuration 
manager is closely linked to local execution engines 
that perform the actual adaptation on a service level, 
ensuring that the individual steps in the adaptation 
script are executed correctly. 

5 CONCLUSIONS 

Our proposed model aims at integration across 
multiple Cloud platforms of any kind.  It will also 
allow the application to be deployed optimally 
taking account of the specialised characteristics of 
different platforms matched to the requirements of 
the application and its usage constraints. 

Not all additional information necessary can 
always be provided, or properly matched: so far, no 
proper programming and modelling mechanism 
exists that allows easy and intuitive definition of the 
right type of information. Furthermore, reactive 
adaptation planning using models@run.time is an 
active research topic (Svein Hallsteinsen et al. 
2012), and using these concepts for Cloud 
deployment is currently under investigation.  

A major open challenge thereby remains in 
maintaining the compositional correctness of the 
decomposed rules and actions: during deployment 
and adaptation, the overarching constraints have to 
be broken down to low-level rules that can be 
enacted individually. To this end, the information 
does have to be provided in a fashion that 
incorporates both high- and low-level descriptions. 

This paper described the approach pursued in the 
PaaSage project, which develops the necessary 
language, modelling and reasoning tools to allow 
provisioning and exploitation of the type of 
information described here. The tools will allow the 
individual stakeholders to provider their respective 
view on the goals and constraints by building up 
from proven patterns that can be decomposed 

through according reasoning mechanisms. The goal 
is to make it easier to create and host applications 
that can run effectively and efficiently on various 
Cloud, thereby addressing a major barrier to take-up 
of Clouds.  
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