
Specifying Complex Correspondences Between Relational Schemas in a
Data Integration Environment

Valéria Pequeno1 and Helena Galhardas2

1INESC-ID, Taguspark, Lisbon, Portugal
2DEI, Instituto Superior Técnico and INESC-ID, Taguspark, Lisbon, Portugal

Keywords: Schema Matching, Correspondence Assertions, Data Integration, Relational Model.

Abstract: When dealing with the data integration problem, the designer usually encounters incompatible data models
characterized by differences in structure and semantics, even in the context of the same organization. In
this work, we propose a declarative and formal approach to specify 1-to-1, 1-m, and m-to-n correspondences
between relational schema components. Differently from usual correspondences, our Correspondence Asser-
tions (CAs) have semantics and can deal with joins, outer-joins, and data-metadata relationships. Finally, we
demonstrate how we can generate mapping expressions in the form of SQL queries from CAs.

1 INTRODUCTION

A Data Integration (DI) system aims at integrating a
variety of data obtained from different data sources,
usually autonomous and heterogeneous, and provid-
ing a unified view of these data, often using a global
schema (also named mediation schema). The global
schema makes a bridge between the data sources and
the applications that access the DI system. Data in a
DI system can be physically reconciled in a repository
(materialized data integration approach), or can re-
main at data sources and is only consolidated when a
query is posed to the DI system (virtual data integra-
tion approach). A data warehouse system (Kimball
et al., 2008) is a typical example of the first approach.
As examples of the second approach, we can cite fed-
erated information systems (Popfinger, 2006) and me-
diator systems (Langegger et al., 2008). In the present
work, both scenarios can be used, but in this paper we
will focus on the materialized integration approach.

One of the hardest problems to solve in DI is to de-
fine mappings between the global schema (the target)
and each data source schema, known asthe schema
mapping problem. It consists of two main tasks:i)
schema matchingto define/generate correspondences
(a.k.a. matches) between schema elements (e.g., at-
tributes, relation, XML tags, etc.); andii) schema
mappingto find data transformations that, given data
instances of a source schema, obtain data instances of
the target schema.

The result of schema matching is a set of corre-

spondences that relate elements of a source schema
to elements of the target schema, where an element
can be a relation name or attribute in the relational
model. Each correspondence specifies the elements
that refer to the same real world entity (Doan et al.,
2012). These correspondences can be described us-
ing a Local-as-view (LAV), a Global-as-view (GAV),
or a Global and Local-as-view (GLAV) language. In
summary, in a LAV approach, each data source is de-
scribed as a view over the global schema. In a GAV
approach, the global schema is expressed as a view
over the data sources. Finally, the GLAV combines
the expressive power of both GAV and LAV. Once the
schema matching is performed, the correspondences
are used to generate the schema mappings. For ex-
ample, a schema mapping can be codified through an
SQL query that transforms data from the source into
data that can be stored in the target.

Extensive research on schema matching has been
carried out in recent years (Cruz et al., 2009; Selig-
man et al., 2010; Bellahsene et al., 2011). The ma-
jority of the works on this subject identifies 1-1 cor-
respondences between elements of two schemas. For
example, a 1-1 correspondence can specify that ele-
menttitle in one schema matches elementfilm in an-
other schema, or that relationGENREmatches relation
CATEGORY1. This kind of schema matching is known
in the literature asbasic matching. Goods surveys can

1We usebold to represent attribute names andUPPER-
CASE to represent relation names.

18 Pequeno V. and Galhardas H..
Specifying Complex Correspondences Between Relational Schemas in a Data Integration Environment.
DOI: 10.5220/0004870200180029
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 18-29
ISBN: 978-989-758-027-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

be found in (Rahm and Bernstein, 2001; Shvaiko and
Euzenat, 2005).

While basic matching is common, it leaves out nu-
merous correspondences of practical interest, in par-
ticular when we consider DI systems. Thus, more
complex matches are necessary. A complex matching
specifies 1:n, m:n, or n:1 correspondences between
elements of two schemas. For example, it may spec-
ify that totalPrice corresponds tounitPrice * quan-
tity ; or that name matchesconcatenate(firstName,
lastName), whereconcatenateis a function that ap-
plies to two strings and returns a concatenated string;
or even that the average departmental salaryavg-
Wage corresponds to grouping the salaries (salary)
of all employees (emp) by department (dept). (Doan,
2002; Massmann et al., 2011; Mork et al., 2008) are
examples of approaches that propose formalisms to
specify complex matches.

Some researchers go beyond dealing with com-
plex matches and add semantics to the correspon-
dences, in order to improve the overall matching qual-
ity. In the Section 2, we explain more about complex
matches and present a motivation example for the cur-
rent work. The remainder of the paper is structured as
follows. In Section 3, we present the necessary back-
ground in Correspondence Assertions (CAs), the for-
malism used in this work to specify correspondences
between elements of schemas. In Section 4, we pro-
pose new CAs to deal with join operators and meta-
data. Section 5 shows how to generate mapping ex-
pressions from CAs. Section?? describes the related
work. Finally, Section 7 concludes and describes fu-
ture work.

2 MOTIVATING EXAMPLE

Consider a motivating example with the source
schemasS1 andS2 in Figure 1, which contain infor-
mation about movies.S1 keeps a catalog of movies
with information about different types of media (dvd,
blue rays, etc.) in which the movies are available. The
names of the relations and attributes are mostly self-
explanatory. The attributes inS1 have the following
meaning:id is the movie identifier,year is the year
of a movie,film is the title of a movie,number is
the tape identifier,format is the type of the tape (dvd,
blu-ray, etc.),name can be a producer or a director
name, androle is the role of a professional of the
show business: producer or director. FK1 and FK2
are foreign keys. We use, as in (Vidal et al., 2013),
the notation FK(R:L, S:K) to denote a foreign key,
named FK, where R and S are relation names and
L andK are list of attributes from R and S, respec-

* SchemaS1
MOVIE(id, film , year, summary)
TAPE(number, format , id)

FK1(TAPE, 〈id〉, MOVIE, 〈id〉)
MOVIEMAKERS(id, name, role)

FK2(MOVIEMAKERS, 〈id〉, MOVIE, 〈id〉)

* SchemaS2
FILM (id,title , year, rate)
SHOWTIME(id, location, time, city)

FK3(SHOWTIME, 〈id〉, FILM , 〈id〉)

* SchemaM
MOVIE(title , genre, year, description)
FILM MAKERS(movie, producer, director)

FK4(FILM MAKERS, 〈movie〉, MOVIE, 〈title〉)
SCHEDULE(movie, cinema, startTime)

FK5(SCHEDULE, 〈movie〉, MOVIE, 〈title〉)
REMAKES(title , nvYear, ovYear)

FK6(REMAKES, 〈title〉, MOVIE, 〈title〉)
RATING(rate, quantity)

Figure 1: Example of source schemas and a global schema.

tively, with the same length. FK1 is the foreign key of
TAPE that refers toMOVIE and FK2 is the foreign key
of MOVIEMAKERS that refers toMOVIE. S2 stores
general information about movies and the places (in
different cities) where movies are being shown. We
assume thatS1 can store older movies thanS2. The
attributes inS2 have the following meaning:id is
the movie identifier,year is the year of a movie,ti-
tle is the title of a movie,rate is the classification of
the movie with regard the audience,location andcity
are, respectively, the cinema and the name of the city
where the movie is shown, andtime is the date when
the movie is shown.

The global schemaM, also shown in Figure 1,
provides a unified user view of movies currently
shown in cinemas of Lisbon. It is populated by in-
formation from schemasS1 and S2. The relation
M.MOVIE stores movies shown currently at a cin-
ema2. The relationM.FILM MAKERS keeps informa-
tion about professionals of show businesses. The re-
lation M.SCHEDULE contains information about the
schedule of movies shown in Lisbon. The relation
M.REMAKES keeps the years of movies for which
there is at least one remake. The relationM.RATING

stores the classification of movies with regard to
suitability audience. Some non-self-explanatory at-

2We use a path representation: an attributeA of a given
relation R in a given database schemaD is referred to as
D.R.A. For simplicity, we omit the database schema when
the context is clear.

Specifying�Complex�Correspondences�Between�Relational�Schemas�in�a�Data�Integration�Environment

19

tributes inM have the following meaning:descrip-
tion is the summary of a movie,genre is the cate-
gory of a movie,nvYear is the year of the most recent
version of a movie,ovYear is the year of the older
versions of a movie,rate is the classification of the
movie with regard to the audience (M/4, M/6, etc. in
the Portuguese classification), andquantity is the to-
tal of movies with the same rating.

Given the schemasS1, S2, and M, we can
consider the correspondences between the source
schemasS1 and S2, and the target schemaM. In a
first example, we can state thatM.SCHEDULE cor-
responds toS2.SHOWTIME, because both relations
store information regarding the same real world con-
cept. However, in this correspondence, it is not
clear thatM.SCHEDULE only keeps schedules about
movies shown in Lisbon. The additional information:
M.SCHEDULE corresponds toS2.SHOWTIME when
S2.SHOWTIME.city = “Lisbon”, specifies better the
matching.

As a second example, consider the attributes
S2.SHOWTIME.id and M.SCHEDULE.movie, which
uniquely identify a movie in the corresponding re-
lations. The domain of the former is an integer
(the identifier of the movieid), while the domain of
the latter is a string (the title of the moviemovie).
SinceM.SCHEDULE corresponds toS2.SHOWTIME,
we need to relateM.SCHEDULE.movie to an element
of S2.SHOWTIME that identifies a movie. However,
S2.SHOWTIME does not store the title of movies.
Moreover,S2.SHOWTIME.id, which is used to iden-
tify a movie in S2.SHOWTIME, has a type and
a domain different from the type and domain of
M.SCHEDULE.movie. Thus, S2.SHOWTIME.id and
M.SCHEDULE.movie cannot be matched. Knowing
that S2.SHOWTIME.id is a foreign key that refers
to S2.FILM and that S2.FILM .title stores the title
of a movie, the correct matching would then be:
M.SCHEDULE.movie corresponds toS2.FILM .title ,
whenS2.SHOWTIME.id = S2.FILM .id.

The works reported in (Pequeno and Pires, 2009;
Bohannon et al., 2006; Pequeno, 2011; Vidal and
Lóscio, 1999) and (Bellahsene et al., 2011)(chap. 3)
propose schema matching approaches that can spec-
ify correspondences to deal with situations as required
in the first example, while (Pequeno and Pires, 2009;
Pequeno, 2011; Vidal and Lóscio, 1999) propose cor-
respondences to deal with the matching required in
the second example. The reader can see other propos-
als to add semantics to schema matching in (Mass-
mann et al., 2011; Dhamankar et al., 2004; Magnani
et al., 2005). However, the following situations have
not been fully covered yet:

1. Correspondences Between Relations Involving a

Join with Inequality Conditions:Consider the
relation M.REMAKES that keeps a list of re-
makes with the years of the oldest versions.
Knowing thatS2.FILM keeps current movies and
S1.MOVIE may contain older versions of the same
movie, we want to indicate which of the current
movies are remakes and store this information
in M.REMAKES. The correspondence between
these relations can be specified as:M.REMAKES

corresponds toS2.FILM join S1.MOVIE where
S2.FILM .title = S1.MOVIE.film andS2.FILM .year
> S1.MOVIE.year. Usual schema matching ap-
proaches cannot specify this correspondence, be-
cause join conditions are not explicitly defined
in schema matching. Moreover, join paths are
normally automatically discovered in the schema
mapping phase (Yan et al., 2001), and the algo-
rithms used can only find equi-join conditions, so
they cannot automatically discover the condition
S2.FILM .year> S1.MOVIE.year. Hence, we need
a schema matching approach that makes it possi-
ble to specify the join between relations and al-
lows general join conditions containing operators
different from equality.

2. Correspondences Between Relations Involving
Outer-joins (Full, Left, or Right): We want to in-
dicate howM.MOVIE is related to source schemas
S1 and S2.M.MOVIE and S2.FILM represent the
same concept of the real world (i.e., both rela-
tions store current movies shown at some cin-
ema). However, it is not enough to specify that
M.MOVIE matchesS2.FILM , because there are at-
tributes inS1.MOVIE (namely,categoryandsum-
mary) that contain information required in the
schema ofM.MOVIE. Hence, we should spec-
ify that M.MOVIE is related to bothS1.MOVIE

and S2.FILM . However, it is not correct we
simply match M.MOVIE to S1.MOVIE because
S1.MOVIE can store movies that are not be-
ing shown in a cinema anymore andM.MOVIE

can store recent movies that are not available
in dvds yet. In summary, we should specify
that: M.MOVIE corresponds toS2.FILM left outer-
join S1.MOVIE on S2.FILM .title = S1.MOVIE.film
and S2.FILM .year = S1.MOVIE.year. Note that
the conditionS2.FILM .title = S1.MOVIE.film and
S2.FILM .year = S1.MOVIE.year guarantees that
we refer to a same movie stored in bothS1.MOVIE

and S2.FILM . Again, we cannot specify this
type of correspondence since joins (and their vari-
ants) are not explicitly defined in current schema
matching approaches.

3. Correspondences Between Data and Meta-
data: Consider the relationsS1.MOVIEMAKERS

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

20

and M.FILM MAKERS. Both keep informa-
tion about the relationship between a movie,
a producer, and a director. We want to in-
dicate that M.FILM MAKERS corresponds to
S1.MOVIEMAKERS since they represent the
same concept in the real world. In addition,
we want to specify the correspondences be-
tween the attributes of these relations. Knowing
that S1.MOVIEMAKERS.name can be a pro-
ducer name or a director name, we would
like to specify thatM.FILM MAKERS.producer
corresponds to S1.MOVIEMAKERS.name
when S1.MOVIEMAKERS.role = “producer”
and that M.FILM MAKERS.director corre-
sponds to S1.MOVIEMAKERS.name when
S1.MOVIEMAKERS.role = “director”. However,
we cannot specify these correspondences using
traditional schema matching approaches, because
these correspondences involve semantics not cov-
ered yet by these approaches. Actually, we can
only specify that M.FILM MAKERS.producer
matches to S1.MOVIEMAKERS.name
and M.FILM MAKERS.director matches to
S1.MOVIEMAKERS.name.

In order to deal with these situations, we propose
to use a formalism based on CAs (Pequeno and Pires,
2009; Pequeno and Aparı́cio, 2005; Pequeno, 2011).
Using CAs, we can declaratively specify basic and
complex matchings with semantics. We propose to
adapt CAs to be able to express schema matching be-
tween relational schemas, as well as to extend this
formalism with new types of CAs to deal with joins,
outer-joins, and data-metadata relationships. Finally,
we demonstrate how mapping expressions in the form
of SQL queries can be generated from CAs.

3 BACKGROUND

In this section, we present the basic terminology used
in this paper. We also review the different classes of
CAs, and adapt them to the Relational Data Model
(RDM)3.

3.1 Basic Concept and Notation

We assume that the reader is familiar with the re-
lational concepts. We denote a relation schema as
R(A1, A2, . . . , An), and a foreign key as FK(R:L, S:K)
(see Section 2). We say that FK relates R and S.

3In this work, the information sources and global
schemas are defined using the RDM as proposed by Codd
in (Codd, 1970) that only allows first normal form relations.

A relational schema is a pairS= (R , Ω), whereR
is a set of relation schemas andΩ is a set of relational
constraints such that: (i)Ω has a unique primary key
for each relation schema inR ; (ii) if Ω has a foreign
key of the form FK(R:L, S:K), thenΩ also has a con-
straint indicating thatK is the primary key of S. Given
a relation schema R(A1, A2, . . . , An) and a tuple vari-
ablet over R, we uset[Ai] to denote the projection of
t overAi .

Let S= (R , Ω) be a relational schema and R and
T be relation names of relation schemas inR . We
denoteρ = FK1• FK2 • · · ·• FKn−1 a path from R to
T iff there is a list R1, . . . , Rn of relation schemas in
S such that R1 = R, Rn = T, and FKi relates Ri and
Ri+1. We say that tuples of R reference tuples of T
throughρ.

3.2 Correspondence Assertions

We use Correspondence Assertions (CAs) in order to
express schema matchings between schema elements.
CAs are formal expressions of the general formψ:
T ← S , whereψ is the name of the CA,T is an ex-
pression formed by elements of the target schema, and
S is an expression formed by elements of a source
schema. The symbol “←” means “is matched from”.

In accordance to (Pequeno and Pires, 2009; Pe-
queno, 2011), there are four types of CAs: Relation
Correspondence Assertion (RCA), Attribute Corre-
spondence Assertion (ACA), Summation Correspon-
dence Assertion (SCA), and Grouping Correspon-
dence Assertion (GCA). RCAs and SCAs specify
the relationship between relations of distinct schemas,
while ACAs and GCAs specify the relationship be-
tween attributes of relations of distinct schemas. We
now shortly describe each type of CA, adapting them
to the RDM. In the remainder of this Section, con-
sider:Si= (R i , Ωi) be relational schemas for 1≤ i ≤
n, with Ri being relation names of relation schemas in
R i .

Definition 1. Letσ be a selection overR2. A Relation
Correspondence Assertion (RCA) is an expression of
one of the following forms:

1. ψ: S1[R1]← S2[R2].

2. ψ: S1[R1]← S2[R2σ].
3. ψ: S1[R1]← S2[R2]−S3[R3].

4. ψ: S1[R1]← S2[R2]∪S3[R3]∪·· ·∪Sn[Rn].

5. ψ: S1[R1]← S2[R2]∩S3[R3]∩·· ·∩Sn[Rn].

We say thatψ matchesR1 andR j , 2≤ j ≤ n. �

RCAs express the different kinds of semantic
equivalent relationships. Two relations R1 and R2 are
semantically equivalent if they represent the same real

Specifying�Complex�Correspondences�Between�Relational�Schemas�in�a�Data�Integration�Environment

21

concept and there is a one-to-one correspondence be-
tween their instances. For instance,ψ1, shown in Fig-
ure 2, is an example of a RCA.

ψ1: M[SCHEDULE]←S2[SHOWTIME(city = “Lisbon”)]
ψ2: M[SCHEDULE]•movie←S2[SHOWTIME]• FK3/title

Figure 2: Examples of 1:1 correspondence assertions.

ψ1 specifies thatM.SCHEDULE is semantically
equivalent to S2.SHOWTIME when the condition
S2.SHOWTIME.city = “Lisbon” is satisfied. This
means that only a subset of tuples ofS2.SHOWTIME,
those that satisfy the conditionS2.SHOWTIME.city =
“Lisbon”, are involved in the match.

Before we define an Attribute Correspondence
Assertion (ACA), we need introduce the concept of
attribute expression, as follows:

Definition 2. Let R2 andT be relation names inR 2,
with A being an attribute ofR2 and B an attribute
of T. Let alsoρ be a path fromR2 to T. An attribute
expressionE overR2 is an expression with one of the
following forms:

1. S2[R2]•A ;
2. S2[R2]•ρ/B . �

Definition 3. Let A i be attributes ofR1 (for 1≤ i ≤
n). Let alsoE j , for 1≤ j ≤ m, be attribute expres-
sions overR2. An Attribute Correspondence Asser-
tion (ACA) is an expression of one of the following
forms:

1. ψ: S1[R1]•A1← E1.
2. ψ: S1[R1]•A1← ϕ(E1,E2, . . . ,Em).
3. ψ: S1[R1]•A1← (E1,p1); . . . ;(Em;pm); v.
4. ψ: S1[R1](A1, . . . ,An)← (E1, . . . ,En).

Whereϕ is a function over attributes ofR2, p j (for
1≤ j ≤m) are boolean conditions over attributes of
R2, andv is a value. We say thatψ matchesR1 and
R2. �

ACAs specify the relationship between the at-
tributes of relations that are matched by a RCA.
They allow to define 1:1, 1:n, n:1, or m:n rela-
tionships between attributes of relations of different
schemas. For example see the ACAψ2 presented
in Figure 2. It specifies the correspondence between
M.SCHEDULE.movieandS2.FILM .title through a path
from SHOWTIME to FILM .

Definition 4. Let σ be a selection overR2. Let also
A ’ i attributes ofR2 (for 1≤ i ≤ m). A Summation
Correspondence Assertion (SCA) is an expression of
one of the following forms:

1. ψ: S1[R1]⇐ groupby(S2[R2](A
′
1,A

′
2, . . . ,A

′
m)).

2. ψ: S1[R1]⇐ groupby(S2[R2σ](A ′1,A
′
2, . . . ,A

′
m)).

We say thatψ matchesR1 andR2. �

SCAs specify 1:n, n:1, m:n relationships between
relations with distinct schemas. Here we use the sym-
bol “⇐” instead of “←” in order to emphasize that
the correspondence is not 1:1 as is usual in the most
part of schema matching approaches. SCAs are used
to describe the summary of a relation whose tuples
are related to the tuples of another relation by gather-
ing them into logical groups. This means that a SCA
has only the necessary information to indicate which
grouping field is involved in the relationship and the
process used to grouping the tuples.ψ3 shown in Fig-
ure 3 is a simple example of a SCA.

ψ3: M[RATING]⇐ groupby(S2[FILM] (rate))
ψ4: M[RATING]•quantity ⇐ count(S2[FILM]• rate)

Figure 3: Examples of m:n correspondence assertions.

GCAs specify the relationship 1:1, 1:n, n:1, or m:n
between attributes of relations that are matched by a
SCA.

Definition 5. Let A be an attribute ofR1. Let also
E i , for 1≤ i ≤ m, be attribute expressions overR2.
A Grouping Correspondence Assertion (GCA) is an
expression of one of the following forms:

1. ψ: S1[R1]•A⇐ E1.

2. ψ: S1[R1]•A⇐ ϕ(E1,E2, . . . ,Em).

3. ψ: S1[R1]•A⇐ (E1,p1); . . . ;(Em;pm); v.

4. ψ: S1[R1]•A⇐ γ(E1).

5. ψ: S1[R1]•A⇐ γ(ϕ(E1,E2, . . . ,Em)).

6. ψ: S1[R1]•A⇐ γ(E1,p).

7. ψ: S1[R1]•A⇐ γ(ϕ(E1,E2, . . . ,Em),p).

Whereϕ is a function over attributes ofR2, p j (for
1≤ j ≤m) are boolean conditions over attributes of
R2, v is a value, andγ is one of the aggregate func-
tions: sum (summation), max (maximum), min (mini-
mum), avg (average), or count. We say thatψ matches
R1 andR2. �

Consider the relationsS2.FILM and M.RATING.
ψ4, represented in Figure 3, specifies that
M.RATING.quantity corresponds to the counting
of all distinct values ofS2.FILM .rate.

Definition 6. Let S1, S2, . . . , Sn andT be relational
schemas;R1 be a relation schema ofT, andR2 a re-
lation schema of someSi , 1≤ i ≤ n. Let alsoE j (for
1≤ j ≤ m) be expressions with one of the following
forms: i) Si [R2] •A2; or ii) Si [R2] • ρ/Ak, with A2
being an attribute ofR2, ρ a path fromR2 to Rk, and
Ak an attribute ofRk. A schema matching between
schemasS1, S2, . . . , Sn and the schemaT is a setM
of CAs such that:

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

22

1. if M has an ACAψ such thatψ matchesR1 and
R2, thenM has a RCAψ′ that matchesR1 and
R2.

2. if M has a GCAψ such thatψ matchesR1 and
R2, thenM has a SCAψ′ that matchesR1 and
R2.

3. if M has a RCAψ such thatψ matchesR1 andR2,
then M has an ACAψ′: S1[R1](A1, . . . ,An)←
(E1, . . . ,En) that matchesR1 andR2. �

4 SPECIFYING NEW CAs

In Section 1, we identified the following types of re-
lationships between schemas elements that are not
properly handled in current schema matching ap-
proaches: 1) matches involving explicit join con-
ditions; 2) matches involving outer-joins; and 3)
matches involving data-metadata. Join (and outer-
join) relationships can express one-to-one or many-
to-many correspondences between the relations in-
volved. Matches involving data-metadata can express
many-to-many correspondences between the relations
involved. So, we extend our previous definitions of
RCA and SCA in order to better specify these types of
matchings. In the following text considerSi relational
schemas, Ri relation schemes ofSi (for 1≤ i ≤ 3), θ
a join condition between R2 and R3, andA j attributes
of R2 (for 1≤ j ≤ n)

Definition 7. A Relation Correspondence Assertion
(RCA) is an expression of one of the following forms:

1. Expressions as those presented in Definition 1.
2. ψ: S1[R1]← S2[R2] ⊲⊳ S3[R3]θ.
3. ψ: S1[R1]← S2[R2]⊐⊲⊳ S3[R3]θ.
4. ψ: S1[R1]← S2[R2] ⊲⊳⊏ S3[R3]θ.
5. ψ: S1[R1]← S2[R2]⊐⊲⊳⊏ S3[R3]θ.

�

Definition 8. A Summation Correspondence Asser-
tion (SCA) is an expression of one of the following
forms:

1. Expressions as those presented in Definition 4.
2. ψ: S1[R1]⇐ S2[R2] ⊲⊳ S3[R3]θ.
3. ψ: S1[R1]⇐ S2[R2]⊐⊲⊳ S3[R3]θ.
4. ψ: S1[R1]⇐ S2[R2] ⊲⊳⊏ S3[R3]θ.
5. ψ: S1[R1]⇐ S2[R2]⊐⊲⊳⊏ S3[R3]θ.
6. ψ: S1[R1]⇐metadata(S2[R2](A1,A2, . . . ,An)).

�

Consider the three examples about join, outer-
join, and data-metadata correspondences described in
Section 1. The correspondence betweenM.REMAKES

and bothS1.MOVIES and S2.FILM can be specified
by the SCA ψ5 shown in Figure 4. ψ5 speci-
fies thatM.REMAKES corresponds to a join between
S1.MOVIES and S2.FILM where the join condition:
S2.FILM .title= S1.MOVIE.film and S2.FILM .year >
S1.MOVIE.year is satisfied.

ψ5:M[REMAKES]⇐S2[FILM]⊲⊳S1[MOVIE](S2[FILM].title=
=S1[MOVIE].film andS2[FILM].year> S1[MOVIE].year)
ψ6:M[MOVIE]←S2[FILM]⊐⊲⊳S1[MOVIE](S2[FILM].title=
= S1[MOVIE].film andS2[FILM].year = S1[MOVIE].year)
ψ7:M[FILM MAKERS]⇐
⇐ metadata(S1[MOVIEMAKERS] (id))

Figure 4: Examples of CAs involving joins, outer-joins and
data-metadata.

The correspondence betweenM.MOVIE and both
S2.FILM andS1.MOVIE can be specified by the RCA
ψ6, shown in Figure 4.ψ6 specifies thatM.MOVIE

corresponds to a left outer-join betweenS2.FILM and
S1.MOVIE.

The correspondence betweenM.FILM MAKERS

and S1.MOVIEMAKERS can be specified by the
SCA ψ7, shown in Figure 4. ψ7 speci-
fies thatM.FILM MAKERS corresponds to grouping
S1.MOVIEMAKERS by the attributeid, being that a
data-metadata translation should be performed (i.e.,
some data should be converted into metadata).

Once the schema matching is finished, the CAs
generated can be used, for example, to generate map-
ping expressions that convert data sources into data
target. We propose that the mapping expressions are
automatically generated in the form of SQL queries,
which are used to load the relations (the materialized
views) of the global schema.

5 FROM CAs TO MAPPING
EXPRESSIONS

In our proposal, the process to create queries to trans-
form data from a schema to another one consists of
three steps:

1. Indicate the source schemas and the global
schema using a high-level data model. In our case,
we use the RDM.

2. Define the CAs that formally specify the relation-
ships between the global schema and the source
schemas.

3. Generate a set of queries based on the CAs gener-
ated in step 2, in order to populate the relations of
the global schema.

Specifying�Complex�Correspondences�Between�Relational�Schemas�in�a�Data�Integration�Environment

23

In order to illustrate our approach, consider the
global schemaM and the sources schemasS1 andS2
shown in Figure 1.

Now, we should define CAs betweenM and S1,
and CAs betweenM andS2. In our work, the CAs are
specified using a GAV approach rather than a LAV
one. Our choice was due to two facts: 1) the GAV ap-
proach forces an exact association between the global
schema and the data sources (i.e., for each relation
and attribute of the global schema it should exists a
corresponding matching involving at least a relation
and an attribute of the source schemas); and 2) the
GAV approach makes the query answering easier than
LAV one, both in materialized and in virtual integra-
tion approaches.

The process to generate the CAs consists of the
following steps:

1. To each relation RT of the targetT do:

(a) Identify the correspondences at a relation level
(i.e., if there is a RCA or a SCA matching a
target relation RT and some source relation RS).

(b) Identify the correspondences at an attribute
level: 1) identify the ACAs between the at-
tributes of RT and RS(if there is a RCA between
RT and RS); 2) identify the GCAs between the
attributes of RT and RS (if there is a SCA be-
tween RT and RS).

(c) Determine which RCAs and SCAs can be com-
bined to form a single CA.

In the current work, CAs were manually specified.
However, we can use traditional schema matching
tools, such as COMA (Massmann et al., 2011) or OII
Harmony (Seligman et al., 2010; Mork et al., 2008),
as a starting point to find basic matchings. Then these
basic matchings can be enriched through our formal-
ism (using the CAs).

Some examples of RCAs, ACAs, SCAs, and
GCAs between elements ofM and the source schemas
S1 andS2 can be found in Figures 4 and 5. The final

ψ8:M[MOVIE]•title ← S2[FILM]• title
ψ9:M[MOVIE]•year← S2[FILM]• year
ψ10:M[MOVIE]•genre← S1[MOVIE]• category
ψ11:M[MOVIE]•description←S1[MOVIE]• summary
ψ12:M[FILM MAKERS]•producer⇐(S1[MOVIEMAKERS]•
•nameS1[MOVIEMAKERS]• role = “producer”)
ψ13:M[FILM MAKERS]•director⇐(S1[MOVIEMAKERS]•
•name,S1[MOVIEMAKERS]• role = “director”)
ψ14:M[FILM MAKERS]•movie⇐ S1 [MOVIEMAKERS]•
•FK4/film

Figure 5: Examples of ACAs and GCAs.

step in the process of creating queries to transform
data from a schema to another is the generation of the

queries. In our proposal, they are defined based on
the definition of the schemas and the CAs. Here we
use SQL syntax of MySQL, since MySQL is an open
source database that allows to combine the informa-
tion from many databases in a single query. However,
our CAs can be used to generate queries in any SQL
syntax or even other federating queries languages as
SchemaSQL (Lakshmanan et al., 1996).

Let M be a set of CAs that defines a matching
between the source schemasS1, S2 and the global
schemaG, that is,M satisfies the conditions stated
in Definition 6. Algorithm 1 shows the procedure to
automatically generate the statements of SQL queries
from the CAs inM .

Algorithm 1 : Generate the SQL query to load the relation
schemas of a global schemaG.

for all relation schema RT in G do
N = RT ; S =[]; J =[]; LA =[]; O =[]; RJ =[]; JAux =[]; Aux =[];

Let ψR be a RCA or SCA of RT

if ψR is a RCAthen G SQL ACA(RT)

else
G SQL GCA(RT)

end if
switch ψR do

caseψR: G[RT]← S[R]

add [S.R as R] toS
if J = [] then

Use template T1 with parameters (N, Att(RT),LA , S)

else
Use template T3 with parameters (N, Att(RT), LA , S, J)

end if

caseψR: G[RT]← S1[R1]⊐⊲⊳ S2[R2]θ
add [S1.R1 as R1] to S
add [S2.R2 as R2] to RJ
if J = [] then

Use template T5 with pars. (N, Att(RT),LA , S, RJ, θ)

else
Use template T6 with pars. (N, Att(RT), LA , S, RJ, θ, J)

end if

case ψR: G[RT]⇐metadata(S[R](A))

add [S.R as R] toS
add [R.A as ID] toAL
if J = [] then

Use template T13 with parameters:

(N, Att(RT),LA , S, JAux, Aux)

else
Use template T4 with parameters:

(N, Att(RT), LA , S, JAux, Aux,J)

end if

end switch
end for

In Algorithm 1, we assume thatN is a variable to
keep a relation name;S, J, LA , O, andRJ are lists
to keep, respectively, the relation schemas that will
be included in the FROM clause, thejoin conditions
that will be included in the WHERE clause, the at-

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

24

tributes that will be included in the SELECT clause,
the join attributes that will be included in the ON
clause, and the relation schema that will be included
in (inner, outer, left, or right) JOIN clause.JAux, and
Aux are lists used only when it is necessary to cre-
ate temporary tables in SQL. This occurs when the
SQL query is created from a SCA of metadata.JAux
stores thejoins that will be included in the WHERE
clause of the temporary table, whileAux keeps the re-
lation schema that will be the alias of the temporary
table. Att() is a function that returns the list of at-
tribute names of a relation schema. We use the short
wordouter jointo emulate a UNION of a LEFT JOIN
and a RIGHT JOIN, since MySQL does not support
directly full outer-joins.

The algorithm 1 generates a set of SQL queries,
one for each relation schema RT in the global schema.
First it spans all ACAs and GCAs that relates at-
tributes of RT , and puts the correct value in lists
LA , S, J, in accordance to the type of the CA.
This is performed by proceduresG SQLACA() and
G SQLGCA() shown, respectively, in Algorithms 2
and 3 . After, the algorithm spans the RCAs, or SCAs,
of RT , in order to create the SQL query to load RT ,
using templates in Table 1. Due to space limitations,
Algorithms 1, 2, and 3, as well as the Table 1, do not
cover the whole set of CAs as defined in Definitions 3,
5, 7, and 8.

Algorithm 2 : G SQL ACA().

Input: RT

for all attributeAT in RT do
Let ψA be an ACA ofAT

if ψA: G[RT]•AT ← S[R]•A1 then
add [R.A1 asAT] to LA

end if

if ψA: G[RT]•AT ← (S[R]•A1,p1); . . . ;(S[R]•Am;pm);v then
add [case whenp1 then R.A1 whenp2 then. . . elsev end ‘AT ’]

to LA
end if

end for

In Algorithms 2 and 3, we assumed thatϕ() is
a pre-defined SQL function or a user-defined func-
tion on SQL. The symbolv indicates a value (integer,
string, float, etc.), andp1, . . . , pm are boolean condi-
tions.

The SQL queries generated by our algorithms can
be used to compute the data target once, and to recom-
pute them at pre-stablished times in order to maintain
the target data up-to-date (this approach is namedre-
materialization). Generally, a more efficient approach
is to periodically modify only part of the target data to
reflect updates in data sources (this approach is named
incremental maintenance). Rematerialization is ade-

Algorithm 3 : G SQL GCA().

Input: RT

for all attributeAT in RT do
Let ψA be an GCA ofAT andψR be a SCA ofAT

if ψA: G[RT]•AT ← S[R]•A1 then
add [R.A1 asAT] to LA

end if
if ψA: G[RT]•AT ← S[R]•ρ/Bk then

for all FK in ρ do
Let R1 and R2 be relation schemas related by FK

Let [a1, . . . ,an] be the list of key attributes of R1
Let [b1, . . . ,bn] be the list of key attributes of R2
add [S.R1 as R1, S.R2 as R2] to S
add [R1.a1 = R2.b1, . . . , R1.an = R2.bn] to J
add [R2.B asAT] to LA

end for
end if
if ψA:G[RT]•AT ← (S[R]•A1,p1) andψR is of metadatathen

add [R.A1 asAT] to LA
add [T R] to Aux
add [p1] to JAux

end if
end for

quate, for example, when the global schema is firstly
populated, or in situations involving complex opera-
tions.

Figure 6 presents the SQL query to transform data
from S1.MOVIE and S2.FILM to M.MOVIE from the
RCA ψ6 and ACAsψ8,ψ9,ψ10, andψ11. The “se-
lect” clause (in line 2) is derived based on ACAsψ8,
ψ9 , ψ10 andψ11. The “from” clause (in line 3) imple-
ments a join operation as specified by RCAψ6. The
“on” clause (in line 4) is based on the join condition
indicated in the end ofψ6.

Q MOVIE :

01. insert intoM.MOVIE(title ,year,genre,description)

02. selectFILM .title astitle , FILM .year asyear, MOVIE.category asgenre,
MOVIE.summary asdescription

03. from S2.FILM asFILM left join S1.MOVIE asMOVIE

04. on FILM .title = MOVIE.film andFILM .year = MOVIE.year;

Figure 6: Query definition to populateM.MOVIE from
S2.FILM andS1.MOVIE.

Figure 7 presents the definition of the query
to transform data from S1.MOVIEMAKERS to
M.FILM MAKERS. For this query, we have to define
a nested select statement to each case-base GCA that
relates attributes ofS1.MOVIEMAKERS to attributes
of M.FILM MAKERS. Each nested select statement
must be joined through an outer-join in order to guar-
antee both: i) that duplicate tuples will be merged
properly, and 2) not duplicate tuples will be stored
in M.FILM MAKERS. Thus, the clauses “from” (line
3), “outer join” (line 7), and “on” (line 12) correctly
implement the data-metadata relationship specified by
the SCAψ7. The “on” clause (line 12) is based on the

Specifying�Complex�Correspondences�Between�Relational�Schemas�in�a�Data�Integration�Environment

25

Table 1: Templates to generate SQL Statements induced by RCAs and ACAs.

T1 insert intoN (ATT [1], ATT [2], . . . , ATT [n])
ψ: S1[R1]← S2[R2]selectLA [1], LA [2], . . . , LA [n] from S[1]

T3 insert intoN (ATT [1], ATT [2], . . . , ATT [n])

ψ: S1[R1]← S2[R2]
selectLA [1], LA [2], . . . , LA [n]
from S[1], S[2], . . . , S[m]
whereJ[1] andJ[2] and . . . andJ[t]

T5 insert intoN (ATT [1], ATT [2], . . . , ATT [n])

ψ: S1[R1]← S2[R2]⊐⊲⊳ S3[R3]θ
selectLA [1], LA [2], . . . , LA [n]
from S[1], S[2], . . . , S[m]
left join RJ[1] on θ

T6 insert intoN (ATT [1], ATT [2], . . . , ATT [n])
ψ: S1[R1]← S2[R2]⊐⊲⊳ S3[R3]θselectLA [1], LA [2], . . . , LA [n]
ψ: S1[R1]← S2[R2]−S3[R3]from S[1], S[2], . . . , S[m]

left join RJ[1] on θ
whereJ[1] andJ[2] and . . . andJ[t]

T13 insert intoN (ATT [1], ATT [2], . . . , ATT [n])

ψ: S1[R1]⇐metadata(S2[R2](A1)

selectATT [1], ATT [2], . . . , A TT [n]
from (selectLA [1], LA [2], . . . , LA [w]

from S[1]
whereJAux[1]) asAux[1])

outer join(selectLA [1], LA [2], . . . , LA [w]
from S[1]
whereJAux[2]) asAux[2])

on (Aux[1].ID = Aux[2].ID)
T14 insert intoN (ATT [1], ATT [2], . . . , ATT [n])

ψ: S1[R1]⇐metadata(S2[R2](A1)

selectATT [1], ATT [2], . . . , A TT [n]
from
(selectLA [1], LA [2], . . . , LA [w]

from S[1], S[2], . . . , S[m]
whereJ[1] and . . . andJ[t] andJAux[1]) asAux[1])

outer join
(selectLA [1], LA [2], . . . , LA [w]

from S[1], S[2], . . . , S[m]
whereJ[1] and . . . andJ[t] andJAux[2]) asAux[2])

on (Aux[1].ID = Aux[2].ID)

Q FILM MAKERS:

01. insert intoM.FILMMAKERS(movie, producer, director)

02. selectmovie, producer, director
03. from

04. (selectMOVIE.film as movie,MOVIEMAKERS.name asproducer,

MOVIEMAKERS.id asID

05. from S1.MOVIEMAKERS asMOVIEMAKERS, S1.MOVIE asMOVIE

06. whereMOVIEMAKERS.id=MOVIE.id
andMOVIEMAKERS.role = ‘producer’)asT1 MOVIEMAKERS

07. outer join

08. (selectMOVIE.film as movie,MOVIEMAKERS.name asdirector,

MOVIEMAKERS.id asID

09. from S1.MOVIEMAKERS asMOVIEMAKERS, S1.MOVIE asMOVIE

10. whereMOVIEMAKERS.id=MOVIE.id
11. andMOVIEMAKERS.role = ‘director’) asT2 MOVIEMAKERS

12. on (T1 MOVIEMAKERS.ID = T2 MOVIEMAKERS.ID);

Figure 7: Query definition to populateM.FILM MAKERS
from S1.MOVIEMAKERS.

attribute indicated inψ7. The first nested select state-
ment (lines 4 to 6) is defined based on the GCAsψ12
andψ14. The second nested select statement (lines 8
to 11) is similar to the first one, but now it is based on
ψ13 andψ14. The “select” clause in line 2 is based on

the left-hand side of GCAsψ12, ψ13 andψ14.

6 RELATED WORK

Schema matching is an important step of the data in-
tegration process (Filho et al., 2010). Typically, 1:1
correspondences between two different schemas are
manually defined using a GUI or are (semi-) auto-
matically discovered using matchers (usually through
heuristics). Each correspondence, in general, only
specifies which elements refer to a same attribute or
relation in the real world (Doan et al., 2012). Cu-
pid (Madhavan et al., 2001), AgreementMaker (Cruz
et al., 2009), and OII Harmony (Seligman et al., 2010;
Mork et al., 2008) are some examples of tools for
schema matching. Cupid (Madhavan et al., 2001) is
a generic schema matching that only consider schema
information to generate the correspondences. Agree-
mentMaker (Cruz et al., 2009) can match schemas
and ontologies using schema information as well as

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

26

instance-level data to generate the correspondences.
OII Harmony (Seligman et al., 2010; Mork et al.,
2008) supports XML schemas, Entity-Relationship
schemas, and relational schemas. It combines mul-
tiple matchers algorithms, each of which identifies
correspondences using a different strategy, in order to
generate correspondences with high quality matching
between attributes of the compared schemas. (Bellah-
sene et al., 2011)(chap. 1) provides a brief compari-
son of some matching tools, while (Bellahsene et al.,
2011)(chap. 9) presents, in a systematic way, some
metrics to evaluate matching and mapping tools.

Correspondences such as those defined/generated
in (Cruz et al., 2009; Seligman et al., 2010; Mork
et al., 2008; Madhavan et al., 2001) do not pro-
vide the necessary information for discovering ex-
pressions to transform data sources in data target
(i.e., the mapping expressions), the next phase in the
schema mapping process. Richer models for specify-
ing correspondences between schemas were proposed
by (Doan, 2002; Massmann et al., 2011; Bohannon
et al., 2006; Vidal and Lóscio, 1999; Dhamankar
et al., 2004; Magnani et al., 2005; Giunchiglia et al.,
2005) and (Bellahsene et al., 2011)(chap. 3). These
approaches allow to define one-to-one or many-to-one
attribute correspondences (i.e., association between
attributes of two schemas). (Doan, 2002; Dhamankar
et al., 2004) allow to semi-automatically match one
attribute to various attributes (e.g.,totalPrice matches
to unitPrice*quantity), incorporating machine learn-
ing, statistics, and heuristics to evaluate candidate
matches. COMA and COMA++ (Massmann et al.,
2011) are generic prototypes for schema and on-
tology matching, schema-based and instance-based,
and support a semi-automatic or manual enrichment
of simple 1:1 correspondences into more complex
mapping expressions including functions to support
data transformations. (Dhamankar et al., 2004) de-
scribes the IMAP system, which semi-automatically
discovers basic and complex matches. Each match
in (Dhamankar et al., 2004) discovers specific types
of complex matches, using different kinds of informa-
tion such as domain knowledge, and domain integrity
constraints to improve matching accuracy. (Bellah-
sene et al., 2011)(chap. 3) and (Bohannon et al.,
2006) allow to express conditional correspondences
(i.e., the value of an attributeA is the same of an at-
tributeB if a given condition is satisfied).

(Giunchiglia et al., 2005) and (Magnani et al.,
2005) set correspondences with semantic relation-
ships, such as equivalence, containment, subsump-
tion, disjointness, and unknown (a special relation-
ship returned by the matching algorithm when none
of the others relationships hold). More closely to

our approach is the work in (Vidal and Lóscio, 1999)
and (Vidal et al., 2013). In (Vidal and Lóscio, 1999),
the authors allow to manually specify one-to-one cor-
respondence assertions between elements of Entity
Relationship models. Although they cannot specify
many-to-many matches, their correspondences have
some semantic and allow to specify relationships such
as: equivalence, union, intersection, and filtering
(there named selection). In (Vidal et al., 2013), the
authors allow to specify correspondences between re-
lational schemas and RDF schemas, but they are ba-
sically 1-to-1 correspondences referring to project-
selection-equijoin queries. The unique 1:m corre-
spondence that they deal with relates one attribute to
various attributes through concatenation.

(Pequeno and Pires, 2009; Pequeno, 2011) spec-
ify one-to-one and many-to-many basic, complex,
and semantic matches between elements of object-
relational schemas. They can specify most part of
the correspondences specified in (Vidal and Lóscio,
1999) and other more complex. For example, they
can deal with aggregate functions, denormalisations,
and grouping (i.e.,group byin SQL). Joins and outer-
joins are implicitly defined based on the integrity con-
straints or match functions4. A distinguished fea-
ture of the approach proposed in (Pequeno and Pires,
2009; Pequeno, 2011) is that it allows to match, in the
same correspondence, relations and attributes of two
or more schemas. Yet, the information they provide is
not sufficient, since they do not explicitly enable the
specification of join paths and its variants, nor to deal
with data-metadata relationships.

Data-metadata translations between elements of
different relational schemas have been studied ex-
tensively. SchemaSQL (Lakshmanan et al., 1996)
and FIRA/FISQL (Wyss and Robertson, 2005)
are the most notable works on this subject.
SchemaSQL (Lakshmanan et al., 1996) is a SQL-
like metadata query language that uses view state-
ments to restructure one column of values of a rela-
tion into metadata in another one. FISQL (Wyss and
Robertson, 2005) is a sucessor of SchemaSQL. It is
a query language that expresses data-metadata trans-
formations using metavariables that range over rela-
tion names and column names. In addition, FISQL is
equivalent to the query algebra FIRA. FIRA, in addi-
tion to the usual relational operators, defines simple
operators for data-metadata querying such as: “↑” to
promote metadata, “↓” to demote metadata, and “→”
to dereference data. Furthermore, FIRA/FISQL are
capable of producing fully dynamic output schemas,

4Match functions are functions that determine if two
different instances represent the same concept in the real
world.

Specifying�Complex�Correspondences�Between�Relational�Schemas�in�a�Data�Integration�Environment

27

where the exact name of the relation schema or the
attribute name is only known at run-time. Both
SchemaSQL and FIRA/FISQL were proposed to pro-
vide interoperability in relational multi-database sys-
tems. Our new SCA of metadata was based on the
promote metadataoperator of FIRA.

In other proposals, such as those in (Haas et al.,
2005; Bonifati et al., 2008), correspondences are
basic matching (although sometimes they allow to
specify selection conditions and combination of at-
tributes) and the aim is automatically generate map-
ping expressions from the correspondences. Both
Clio in (Haas et al., 2005) and Spicy in (Bonifati et al.,
2008) define mapping expressions as logical formu-
las (tuple-generated dependences - tgds, and equality-
generated dependences - egds). A drawback of ap-
proaches that create tgds automatically, as in (Haas
et al., 2005) and (Bonifati et al., 2008), is that tgds
do not deal with, for example, groupings, aggrega-
tions, many-to-many attribute correspondences, and
data-metadata transformations. In addition, the qual-
ity of the mapping generated depends on the quality
of the correspondences.
Clip (Raffio et al., 2008) (an extension of Clio) and
++Spicy (Marnette et al., 2011) (an extension of
spicy) proposed extensions to tgds, named nested
tgds, in order to be used in hierarchical data (i.e.,
XML instances). Their proposal enables to generate
mappings between relational and XML schemas and
allow to express grouping, aggregation and many-to-
many attribute correspondences. Yet, they do not deal
with data-metadata relationships, nor specify the con-
dition that can be used for combining relations as well
as join variants (e.g., right outer join and left outer
join). Mad mapping (Papotti and Torlone, 2009) is an
extension of Clio that deals with data-metadata rela-
tionships. Its approach is similar to the SchemaSQL
approach (Lakshmanan et al., 1996), and, in some as-
pects to the FISQL. Since the correspondences used
as input do not provide the necessary information
for deriving the mappings that encode the semantic
desired by the user, the solution proposed in (Raf-
fio et al., 2008), (Marnette et al., 2011) and (Papotti
and Torlone, 2009) can generate mapping expressions
which populate a target relation with duplicate infor-
mation. In our proposal, we specify correspondences
that provide information that is sufficient for deter-
mining and deriving the desired schema mappings. In
addition, differently from most approaches of schema
matching and schema mapping, CAs allow to specify,
in a same correspondence, the relationships between
several source schemas and one target schema. This
contributes to reduce the number of duplicate infor-
mation in the target schema.

7 CONCLUSION

This paper focused on present Correspondence As-
sertions (CAs) that deal with 1:1 and m:n matchings
between schemas components, including correspon-
dences involving aggregations, joins, and metadata.
We emphasize that, in our approach, the CAs can
specify basic and complex correspondences with se-
mantics. Using CAs, we shown how SQL queries
can be automatically generated to populate relations
(views) of a global schema.

Our CAs were described using a GAV approach,
rather than a LAV one. GAV approach has the advan-
tage of making the query answering easier, since there
is an exact association between the global schema and
the data sources. However, GAV-based systems do
not facilitate the addition of a new data source to the
system. When a new data source is added or changed,
the designer must modify the corresponding match-
ings/mappings. The semantically rich and formal rep-
resentation of our Correspondence Assertions (CAs)
enable to generate mapping expressions that are easy
to reuse and maintain when some change occurs in a
schema definition.

We are currently working on the development of a
mechanism to discover new CAs from previous ones
using inferences and heuristics. This mechanism in-
tends to help the designer in the definition of new
CAs, given insights and suggestions in an interactive
way.

ACKNOWLEDGEMENTS

This work was partially supported by national funds
through FCT - Fundação para a Ciência e a Tecnolo-
gia, under the project PEst-OE/EEI/LA0021/2013
and the grant SFRH/BPD/76024/2011. We are espe-
cially grateful to Vania Vidal (UFC, Brazil) and João
Moura Pires (UNL, Portugal) for valuable discussion
and comments.

REFERENCES

Bellahsene, Z., Bonifati, A., and Rahm, E., editors (2011).
Schema Matching and Mapping. Data-Centric Sys-
tems and Applications. Springer.

Bohannon, P., Elnahrawy, E., Fan, W., and Flaster, M.
(2006). Putting context into schema matching. In
VLDB, pages 307–318.

Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., and
Summa, G. (2008). Schema mapping verification: the
spicy way. InEDBT’08, 11th Intl. Conf. on Extending

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

28

Database Technology: Advances in Database Tech-
nology, pages 85–96. ACM.

Codd, E. F. (1970). A relational model of data for large
shared data banks.Communications of the ACM,
13(6):377–387.

Cruz, I. F., Antonelli, F. P., and Stroe, C. (2009). Agree-
mentmaker: Efficient matching for large real-world
schemas and ontologies. Proc. VLDB Endow.,
2(2):1586–1589.

Dhamankar, R., Lee, Y., Doan, A., Halevy, A. Y., and
Domingos, P. (2004). IMAP: Discovering complex
mappings between database schemas. InACM SIG-
MOD, pages 383–394.

Doan, A. (2002).Learning to Map between Structured Rep-
resentations of Data. PhD thesis, University of Wash-
ington.

Doan, A., Halevy, A., and Ives, Z. (2012).Principles of
Data Integration. Morgan Kaufmann.

Filho, F., Lóscio, B., and Macêdo, J. A. (2010). Geração
incremental de correspondências e mapeamentos en-
tre ontologias. InX Workshop de Teses e Dissertações
em Banco de Dados.

Giunchiglia, F., Shvaiko, P., Yatskevich, M., Giunchiglia,
F., Shvaiko, P., and Yatskevich, M. (2005). Seman-
tic schema matching. InOn the Move to Meaningful
Internet Systems: CoopIS, DOA, and ODBASE, pages
347–365.

Haas, L. M., Hernández, M. A., Ho, H., Popa, L., and Roth,
M. (2005). Clio grows up: from research prototype to
industrial tool. InACM SIGMOD, pages 805–810.

Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., and
Becker, B. (2008). The Data Warehouse Lifecycle
Tookit. Wiley Publishing, 2nd edition.

Lakshmanan, L. V. S., Sadri, F., and Subramanian, I. N.
(1996). SchemaSQL - a language for interoperability
in relational multi-database systems. InVLDB, pages
239–250. Morgan Kaufmann Publishers Inc.

Langegger, A., Wöß, W., and Blöchl, M. (2008).A Se-
mantic Web Middleware for Virtual Data Integration
on the Web, volume The Semantic Web: Research and
Applications 5021 ofLecture Notes in Computer Sci-
ence, pages 493–507. Springer.

Madhavan, J., Bernstein, P. A., and Rahm, E. (2001).
Generic schema matching with cupid. InVLDB, pages
49–58. Morgan Kaufmann Publishers Inc.

Magnani, M., Rizopoulos, N., Mc.Brien, P., and Montesi,
D. (2005). Schema integration based on uncertain se-
mantic mappings. InER 2005, Conceptual Modeling,
volume 3716 ofLecture Notes in Computer Science,
pages 31–46. Springer Berlin / Heidelberg.

Marnette, B., Mecca, G., Papotti, P., Raunich, S., and
Santoro, D. (2011). ++spicy: an opensource tool
for second-generation schema mapping and data ex-
change.Proc. VLDB Endow., 4(12):1438–1441.

Massmann, S., Raunich, S., Aumueller, D., Arnold, P., and
Rahm, E. (2011). Evolution of the COMA match sys-
tem. InThe 6th Intl. Workshop on Ontology Matching.

Mork, P., Seligman, L., Rosenthal, A., Korb, J., and Wolf,
C. (2008). The Harmony integration workbench.J.
Data Semantics, 11:65–93.

Papotti, P. and Torlone, R. (2009). Schema exchange:
Generic mappings for transforming data and meta-
data.Data Knowl. Eng., 68(7):665–682.

Pequeno, V. M. (2011).Using Perspective Schema and a
Reference Model to Design the ETL Process. PhD the-
sis, Universidade Nova de Lisboa.

Pequeno, V. M. and Aparı́cio, J. N. (2005). Using corre-
spondence assertions to specify the semantics of views
in an object-relational data warehouse. InICEIS’05,
7th Enterprise Information Systems, pages 219–225.

Pequeno, V. M. and Pires, J. C. M. (2009). Using per-
spective schemata to model the ETL process. In
ICMIS’09, Intl. Conf. on Management Information
Systems, pages 332–339. World Academy of Science,
Engineering and Technology.

Popfinger, C. (2006).Enhanced Active Databases for Fed-
erated Information Systems. PhD thesis, Heinrich
Heine University Düsseldorf.

Raffio, A., Braga, D., Ceri, S., Papotti, P., and Hernandez,
M. (2008). Clip: a visual language for explicit schema
mappings. InICDE’08, Intl. Conf. on Data Engineer-
ing, pages 30–39. IEEE.

Rahm, E. and Bernstein, P. A. (2001). A survey of ap-
proaches to automatic schema matching.The VLDB
Journal, 10(4):334–350.

Seligman, L., Mork, P., Halevy, A., Smith, K., Carey, M. J.,
Chen, K., Wolf, C., Madhavan, J., Kannan, A., and
Burdick, D. (2010). OpenII: an open source infor-
mation integration toolkit. InACM SIGMOD, pages
1057–1060.

Shvaiko, P. and Euzenat, J. (2005). A survey of schema-
based matching approaches.Journal on Data Seman-
tics IV, 3730:146–171.

Vidal, V. M. P., Casanova, M. A., and Cardoso, D. S. (2013).
Incremental maintenance of RDF views of relational
data. InODBASE’13, 12th Intl. Conf. on Ontologies,
DataBases, and Applications of Semantics.

Vidal, V. M. P. and Lóscio, B. F. (1999). Updating multiple
databases through mediators. InICEIS’99, Intl. Conf.
on Enterprise Information Systems, pages 163–170.

Wyss, C. M. and Robertson, E. L. (2005). Relational
languages for metadata integration.ACM Trans.
Database Syst., 30:624–660.

Yan, L. L., Miller, R. J., Haas, L. M., and Fagin, R. (2001).
Data-driven understanding and refinement of schema
mappings. InACM SIGMOD, pages 485–496. ACM.

Specifying�Complex�Correspondences�Between�Relational�Schemas�in�a�Data�Integration�Environment

29

