
Tool Independent Code Generation for the UML
Closing the Gap Between Proprietary Models and the Standardized UML Model

Arne Noyer1, Padma Iyenghar2, Elke Pulvermueller3, Florian Pramme1, Joachim Engelhardt1,
Benjamin Samson2 and Gert Bikker1

1Institute for Distributed Systems, Ostfalia University, Salzdahlumer Strasse 46/48, Wolfenbuettel, Germany
2Institute of Computer Engineering, University of Applied Sciences Osnabrueck, Osnabrueck, Germany

3Institute for Software Engineering, University of Osnabrueck, Osnabrueck, Germany

Keywords: Model-driven Software Engineering, Code Generators, Model Transformation, Meta-models, Unified Model-
ing Language (UML), Eclipse Modeling Framework (EMF), Model Facade.

Abstract: Embedded software development is moving towards the model-based paradigm to support the complexity of
today’s embedded systems, as they become more and more important and omnipresent in our daily lives.
In this context, the Unified Modeling Language (UML) is a widely used standard. Code generators can be
executed to generate source code from UML models. Usually the code generators are proprietary for one
UML tool. If code generators for different targets or programming languages have to be supported by various
modeling tools, the wheel must be reinvented. Code generators could use the standardized Extensible Markup
Language Metadata Interchange (XMI) format of the UML as a basis. However, tools export their data to
XMI differently. Therefore, the paper shows how the proprietary models of UML tools can be mapped to a
standardized UML model. This is realized by using techniques for model to model transformations. These
techniques need a meta-model for the source and the target model. Hence, an approach is introduced for
creating meta-models for Application Programming Interfaces (APIs) of UML-tools, which act as a facade.
Then the code generators can work with the standardized UML model to generate the source code. This results
in an improved scalability of the code generators.

1 INTRODUCTION

Nowadays embedded systems are omnipresent and in-
creasingly used in a wide variety of application sce-
narios. The number of functionalities they have to
provide and the number of systems they interact with
continue to grow. For instance, automobiles have
more and more comfort features that are executed on
different Electronic Control Units (ECUs). For ex-
ample, in luxury vehicles there are already up to 100
control devices in use (Hergenhan and Heiser, 2008).

In embedded software engineering, classically, the
software is implemented in a 3rd generation language
(3GL), such as ANSI C/C++. As the embedded sys-
tems are developed with additional features, the com-
plexity of the underlying software increases, necessi-
tating new and automated ways of software develop-
ment, such as model-based approaches. In the Auto-
motive Safety Norm ISO 26262 the usage of model
based approaches is highly recommended.

The Unified Modeling Language (UML) (Object
Management Group, 2013d) is one among the widely
used industry standards for Model Driven Develop-
ment (MDD) (France et al., 2006). Apart from the
general UML elements and diagrams, UML profiles
can be used to address certain application areas such
as the real-time embedded systems (Krichen et al.,
2013).

MDD is considered as a key solution for struc-
tured embedded software engineering and automa-
tion. Thereby it is inevitable for future projects.

The hardware in the embedded system has often
only limited resources (e.g. memory) (Sestoft et al.,
2002) which is imperative for its efficient operation
and cost optimization. This results in stringent and
special requirements during embedded software de-
velopment. Therefore, code generators, which create
code from UML models, have to be highly efficient.
The development of a code generator comes with a
lot of effort and the generated code may be specific

117Noyer A., Iyenghar P., Pulvermueller E., Pramme F., Engelhardt J., Samson B. and Bikker G..
Tool Independent Code Generation for the UML - Closing the Gap Between Proprietary Models and the Standardized UML Model.
DOI: 10.5220/0004870701170125
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 117-125
ISBN: 978-989-758-030-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



for a certain target platform. For supporting different
platforms, many code generators have to be realized
or adaptions have to be made.

Unfortunately, the code generators are in general
proprietary and specific for a given modeling tool.
This paper addresses the aforementioned gaps and
outlines an approach to create tool independent code
generators for the UML.

In this context, an approach for creating model fa-
cades for Application Programing Interfaces (APIs)
is introduced. The remaining of this paper is orga-
nized as follows. Section 2 presents state of the art
techniques for code generation and coupling of differ-
ent modeling domains. It also outlines related work.
Section 3 presents an approach for tool independent,
UML-based code generation. A prototype implemen-
tation of the proposed approach is presented in section
4. Section 5 concludes the paper.

2 STATE OF THE ART AND
RELATED WORK

This section discusses the state of the art and re-
lated work pertaining to model based development,
code generation in MDD from UML tools, meta-
models for UML, model to model transformation,
meta-model generation for APIs and model to text
transformation. Since code generators are basically
model to text transformations, different techniques for
model to text transformations are discussed. The in-
put for tool independent code generators has to be a
uniform model. Therefore, standardized UML meta-
models are analyzed. In order to transform the pro-
prietary model of modeling tools into a standardized
UML model, a model to model transformation mech-
anism is needed. However, for using many of these
mechanisms, a meta-model is needed not only for the
target model, but also for the source model. Since the
data of modeling tools can often be accessed by using
an Application Programing Interface (API), possibil-
ities for creating a meta-model for an API are pre-
sented. This section concludes with a short summary,
which also includes the related work pertaining to the
state of the art techniques presented so far in this sec-
tion. Last but not the least, the gaps in the existing
methodologies pertaining to the main goals of this pa-
per are enlisted.

2.1 Code Generation from UML Tools

The huge advantage of the UML can be fully realized
if the source code is generated directly from the mod-
els (Burke and Sweany, 2007). Therefore, many mod-

eling tools such as Rational Rhapsody (IBM, 2012)
and Enterprise Architect (Sparx Systems, 2012) have
code generators that generate the source code auto-
matically from the models.

However, many producers of modeling tools only
focus on code generators for a selection of applica-
tions and target platforms. For example, there are
code generators for large systems, such as Windows
CE, Linux and VxWorks, in Rhapsody (IBM, 2012).
For many potential users with special application ar-
eas, e.g. VHDL for embedded systems (Moreira et al.,
2010), this is not sufficient. Also for specialized sys-
tems with limited resources, the code generators that
are included in the modeling tools often can not be
used. Therefore, companies like (Willert Software
Tools GmbH, 2013) are offering frameworks for dif-
ferent target platforms, and developed their own code
generators for modeling tools that use these frame-
works. Such development of new code generators for
certain fields of application, e.g. MISRA compliant
C (Motor Industry Software Reliability Association
(MISRA), 2012) for a Cortex M3 (ARM, 2013), and
their integration in a specific modeling tool results in
significant effort. Furthermore, the code generators
are typically proprietary to a modeling tool since they
access the model from the tool by using its interfaces.
Nevertheless, code generators are working very simi-
lar if they have the same field of application, e.g. the
same target language. They differ primarily in how
they read the model.

MDD Tool 1 MDD Tool 2 MDD Tool 3

C C++ Java C C++ Java C C++ Java

generates generates

Figure 1: Similar code generators for different modeling
tools.

For supporting a specific kind of code generation
in different modeling tools, (at least) one proprietary
code generator must be developed for each modeling
tool (Fig. 1). These are very similar, as code shall be
generated in the same way. They differ mostly only
in reading the data (models) from the tools. So, a
significant effort and time are needed for developing
different code generators that also have many redun-
dancies. For example, if three code generators for the
languages C, C++ and Java should be developed and
these should be compatible with three different mod-
eling tools, a total of nine code generators would be
needed (Fig. 1). This also results in the risk of er-
rors such that something is not correctly implemented
in a new code generator, which already worked in

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

118



another code generator (redundancy issues). Also,
changes in the application field of similar code gener-
ators would cause the need for adapting those changes
to all of these similar code generators (e.g. for con-
sidering MISRA-rules). The same is of course also
applicable if different code generators for embedded
systems are required that support various target plat-
forms. In contrast, the approach in this paper al-
lows to use one specific code generator with different
modeling tools. Therefore, a uniform meta-model is
needed with which such a code generator can work.

2.2 Meta-models for UML

The Meta Object Facility (MOF) (Object Manage-
ment Group, 2011) is a standard by the OMG (Ob-
ject Management Group, 2013b) for defining meta-
models. It is also used for defining the UML. Fur-
thermore, the OMG provides an XMI format for ex-
porting/importing UML models (Object Management
Group, 2013d). In theory, this format can be used
to exchange UML models between different UML
tools. Unfortunately, different UML tools export the
same model to XMI differently. For example, Rhap-
sody exports the reference from an UML attribute to
a datatype as a XMI attribute, while Enterprise Ar-
chitect creates a XMI child element, which contains
the reference. For the realization of tool independent
UML code generators, this also makes it very hard to
just export the model as XMI file from UML tools and
then using the XMI file as input for a code generator.
The need for a transformation from models of UML
tools into a generic model still exists.

There is an implementation of the UML2 meta-
model for Eclipse (Eclipse Foundation, 2013e), which
is based on the Eclipse Modeling Framework (EMF)
(Eclipse Foundation, 2013b). The EMF is basi-
cally an implementation of the reduced Meta Object
Facility (MOF), the essential Meta Object Facility
(eMOF). It is widely used for creating meta-models
and there are many frameworks with a variety of func-
tions, which can be used in combination with EMF-
based meta-models. Benefits of the EMF itself are for
example the easy creation of meta-models, the Java
code generation from the meta-models as implemen-
tation and the possibility to generate a graphical tree
editor for working with instances of the meta-model.
They are discussed in detail in (Bzivin et al., 2005).
In summary, there already are implementations of the
standardized UML meta-model, which could be used
as input for code generation. The question emerges,
how a transformation from different UML tools to a
standardized model can be realized. There are already
many mechanisms for model to model transforma-

tions. Concepts for model to model transformations
are analyzed below.

2.3 Model to Model Transformation

In the literature, there are different techniques avail-
able for model to model transformations. Significant
concepts are Triple Graph Grammars (TGG) (Kindler
and Wagner, 2007), Query View Transformation
(QVT) (Object Management Group, 2013c) and the
Atlas Transformation Language (ATL) (Jouault et al.,
2006). It is noticeable that many implementations
of these techniques are based on Eclipse and use the
EMF. In order to execute a model to model transfor-
mation with such an implementation, for both sides an
EMF-based meta-model is needed just as there is one
for the UML2 meta-model. Different Triple Graph
Grammars (TGG) are compared with each other in
(Hildebrandt et al., 2013). These techniques allow
a model to model transformation to the EMF-based
UML2 model, if there is an EMF-based meta-model
for the source model. Unfortunately, most UML tools
do not provide a (EMF-based) meta-model for their
internal model. Many tools, such as IBM Ratio-
nal Rhapsody (IBM, 2012) and Enterprise Architect
(Sparx Systems, 2012), allow to access their internal
data model by providing an API, but in most cases
there is also no meta-model for their API.

One of the major aims of this paper is to address
this gap and propose an approach towards automatic
generation of an EMF-based meta model. This acts
as a facade for accessing an API of a modeling tool.
This means that model elements are like a view on the
objects of the API. If operations of model elements
are called, the call is forwarded to the representing
operations of API objects (see section 4.1).

2.4 Meta-model Generation for APIs

An approach for generating a meta-model for an ex-
isting API is API2MoL (Izquierdo et al., 2012). For
generating a meta-model the existing source code of
an API and its structure must be analyzed. For each
class inside the API a corresponding element in the
meta-model is created. Moreover, the approach aims
at creating bridges between model driven engineering
and APIs automatically. Therefore, two operations
are needed, after the meta-model is generated. One
operation is to obtain model elements from the ob-
jects of the API. The other operation is to create API
objects from model elements. API2MoL provides op-
erations for both sides, which can be executed when
such a conversion is needed. There is an EMF-based
implementation of API2MoL, which is available at

Tool�Independent�Code�Generation�for�the�UML�-�Closing�the�Gap�Between�Proprietary�Models�and�the�Standardized�UML
Model

119



(Atlanmod and Modelum research groups, 2013).
API2MoL could be used for converting the inter-

nal data of an API into a model. Then a model to
model transformation could be executed for convert-
ing the API model into a standardized UML2 model.
The transformation from UML2 model elements to
API model elements can be useful for realizing re-
verse engineering functionalities. If API objects and
their model representations with their attributes are
stored on both sides, synchronization problems may
occur. This can happen if API objects and their model
representations are both changed before the changes
are applied to the other side.

In order to avoid synchronization problems, an-
other approach for creating a meta-model facade for
an API is presented in chapter 4 of this paper. Fur-
thermore, that approach allows the seamless integra-
tion with other technologies, which need an EMF
based model. These include technologies for model
to model transformations (see section 2.3). As soon
as models of modeling tools can be accessed as a stan-
dardized UML2 model, it should be enabled to gen-
erate source code from it. Therefore, the next section
briefly discusses approaches for model to text trans-
formations.

2.5 Model to Text Transformation

Code generators are basically model to text trans-
formations. They can be implemented by program-
matically concatenating strings or by using one of
many template based approaches. The clarity of the
source code of huge code generators can suffer, if
they are implemented in an ordinary programming
language. Template based approaches make the pro-
gramming easier and improve the maintainability. In
(Rose et al., 2012) different concepts for model to
text transformations are discussed in detail. There are
also many frameworks for model to text transforma-
tions for Eclipse, such as Acceleo (Eclipse Founda-
tion, 2013a), Xpand (Eclipse Foundation, 2013f) and
Xtend (Eclipse Foundation, 2013g). Acceleo is an
implementation of the standardized MOFM2T (Ob-
ject Management Group, 2013a). Furthermore, there
also exist code generators for Eclipse, which generate
code from EMF-based UML2 models, such as (Obeo,
2013), which is based on Acceleo. There are many
frameworks for developing code generators and there
are already existing code generators, which can be
used for an EMF-based UML2 model.

2.6 Summary

Most modeling tools provide their own code gener-
ators, which can only generate code from their own
models. Besides the tool manufacturers there are also
other companies (like (Willert Software Tools GmbH,
2013)) that develop code generators. In most cases,
the code generators in general are developed in a sim-
ilar way to those of the manufacturers by using tool
specific mechanisms. If one type of code generation
is realized for different modeling tools, they develop
a proprietary code generator for each of them. This
results in a lot of effort for developing several similar
code generators. In order to improve this, an approach
for the development of tool independent code gener-
ators for UML is introduced and discussed in this pa-
per.

There is already a standardized XMI format for
UML, in which most UML tools can export their
models. Unfortunately, there are differences in how
they export their data, which makes it difficult to just
use it as input for code generators. There is a gap be-
tween the proprietary models of different UML tools
and the standardized UML model.

A technique for model to model transformation
could be used for converting the proprietary mod-
els of UML tools into a standardized UML model.
However, most techniques need a meta-model for the
source and a meta-model for the target in order to al-
low a mapping between two models. Most modeling
tools do not provide such a meta-model.

Many UML tools allow to access their models by
using an API. In order to allow the usage of model to
model transformation techniques on an API, a novel
approach of creating a model facade for accessing an
API is introduced in this paper. After converting a
model of a tool into a standardized UML tool by us-
ing a model to model transformation, one of many
techniques for code generation can be used.

3 PROPOSED APPROACH

This section presents the approach for tool indepen-
dent code generation for UML. In the first subsec-
tion, the general approach is discussed. Afterwards,
its scalability is analyzed. Subsection 3.3 discusses
different approaches for accessing the models of mod-
eling tools and converting them into a standardized
model. In this context, a new approach is introduced
for creating a model facade for APIs of modeling
tools. The next subsection introduces a prototype im-
plementation.

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

120



3.1 Tool Independent Code Generation
for the UML

A tool independent code generation can be realized
by first converting the UML-tool-specific model into
a standardized UML model. Therefore, a model to
model transformation can be used. Afterwards code
generators can generate code from a standardized
model (cf. Fig. 2).

When a code generator is developed that works
with the standardized UML2 model, it is automat-
ically compatible with all tools for which a model
transformation to the generator model has been cre-
ated. In other words, of course, also all code gener-
ators are compatible with a tool for which a model
transformation is defined. This approach is illustrated
in Fig. 2. Each of the three modeling tools has a
model transformation in order to transform its data
into the standardized model. Then the real code gen-
erators are used to generate the source code from
this model. In case another type of code generation
is needed (for example for generating code in C#)
only one code generator needs to be implemented that
works with the standardized UML2 model. It is auto-
matically compatible with each of the three modeling
tools.

Figure 2: Code generation with a standardized UML model.

3.2 Improved Scalability

Let us assume that a transformation of a model from a
modeling tool into a standardized model is also some
kind of code generation, since there is also an input
and an output. In this case the difference is that the
transformation results in a model instead of code. In
the example shown in Fig. 2, six code generators are
developed in total. In contrast, in Fig. 1 nine code
generators have to be developed for allowing the same
types of code generation for the same amount of mod-
eling tools.

Let C be the sum of all code generators (and model
transformations), which have to be developed, T the
number of tools that should be supported and G the

number of types of code generations (e.g. Java, C,
C++) that should be realized. Then, when tool spe-
cific code generators are developed, the calculation is
Cold = T �G.

When working with a standardized UML model
in the middle, let GM and GT further be the number
of model to model transformations and the number of
model to text transformations, which are needed. In
this approach, Cnew = GM +GT . Since for each mod-
eling tool a model to model transformation GM must
be realized, it can also be expressed as Cnew = T +GT .
This is because, each model to text transformation GT
realizes a different type of code generation, Cnew =
T +G.

If code generators are developed which should be
compatible with only one UML tool (T = 1) it is al-
ways Cold < Cnew. This means that less transforma-
tions have to be realized if the code generator is just
proprietary for a certain tool. If at least two code gen-
erators are developed for at least two different tools,
it starts to get complex. In case T = 2 and G = 2, the
number of transformations that have to be realized is
in both cases four. If T and/or G are greater than 2,
Cold >Cnew is always true. Since for calculating Cnew
the sum of T and G is used and for Cold their product
is used, the amount of required transformations rises
much faster for Cold . As an example Fig. 3 shows the
scalability for T = 3.

Figure 3: Scalability for T=3

Of course, the amount of effort for realizing model
to model transformations for different tools and for
realizing different types of code generators by using
model to text transformation techniques varies. It
strongly depends on which kind of technique is used
and aspects such as how similar the model of a tool
and the standardized UML model are. In the exam-
ples discussed above, it is assumed that the effort for
developing a model to model transformation for a spe-
cific tool is the same as the effort to develop a code
generator. This can assumed to be the worst case,
since a model to model transformation could also be
realized as model to text transformation, if a model

Tool�Independent�Code�Generation�for�the�UML�-�Closing�the�Gap�Between�Proprietary�Models�and�the�Standardized�UML
Model

121



can be serialized into some kind of text. In real-
ity, mapping a model, which is similar to the UML
model, to a standardized UML model by using a suit-
able mapping technique results in many cases in less
effort. The question arises, how the data (the mod-
els) of modeling tools can be accessed and converted
to the standardized model in a suitable way. This is
discussed in the next section.

3.3 Converting Proprietary Models into
a Standardized Model

As stated in section 2.2, it is not an efficient to just
use the XMI export of available UML tools to get a
standardized input for code generators. Of course, the
XMI files could be analyzed and further transformed
into a standardized model. Then there would be a fur-
ther step before the actual code generation could take
place, in which data has to be written on a hard drive.
This would result in more time for running code gen-
erators. Because of this, it is desirable to access the
data of modeling tools directly.

Many UML tools allow to access their internal
models by providing an API (see section 2.3). Un-
fortunately, in most cases they do not provide a meta-
model for their API, which would allow the usage
of many model to model transformation techniques.
However, a meta-model can be extracted from exist-
ing source code and/or compiled units by analyzing
their structure. Therefore, for each class a meta-class
has to be created in the meta-model with its attributes
and operations. Afterwards, operations could be im-
plement for creating model elements (of this meta-
model) for objects of the API and vice-versa. In order
to avoid synchronization problems, another approach
is introduced in the following.

The model elements have to refer to the API ob-
jects, which they represent. This is realized by storing
a associated API object in an attribute for the model
element. For example, Model APIObject could be
the model representation of an API object APIOb-
ject. Then an attribute is needed for Model APIObject
to store a reference to the corresponding API object.
This attribute could be named originalAPI Object.

Now, every call of an operation of the model ele-
ment can just be delegated to the equivalent operation
of the contained API object. In this context, only pub-
lic operations have to be considered and created in the
meta-model, since other operations of an API cannot
be accessed. There is also nothing else to do for pri-
vate attributes and for attributes for which getter and
setter operations exist. If there is a public attribute in-
side an object of the API for which no getter and set-
ter operations exist getter and setter operations should

nevertheless be created for the representing model el-
ements. They should, again, delegate the access to the
attribute. So, it is not needed to store attribute values
inside model elements. The access of all attributes is
also just delegated to the original API objects. Sec-
tion 4 elaborates on this methodology and discusses
a prototype implementation. When this model facade
is realized for an API, many existing model to model
transformations can be used for converting the inter-
nal model of a tool into a standardized UML model.

In some cases, the internal models of tools, such
as Merapi-Modeling (Ostfalia University, 2013) and
the open source tool Papyrus (Eclipse Foundation,
2013d) can be accessed directly and there is also a
meta-model available for it. Here, model to model
transformations can be used directly.

If a modeling tool does not provide a mechanism
(e.g. an API) to access their model elements from the
outside, one has to achieve this goal in a laborious
way. In any case, modeling tools somehow store their
models. This can be inside a database or inside files.
In order to understand the structure of the stored data,
a large amount of reverse engineering has to be per-
formed. Then, a meta-model can be created manually,
in which the operations of model elements access the
content of the database or the files. This was never
necessary for the implementation of a prototype, in
which four modeling tools were considered.

4 PROTOTYPE
IMPLEMENTATION

A code generation framework for the proposed ap-
proach is implemented as a prototype using Eclipse
technologies. As mentioned in section 2.2, there al-
ready is an implementation of the standardized UML2
model in Eclipse based on the Eclipse Modeling
Framework (EMF). This is used as model in the mid-
dle and input for code generators. Furthermore, EMF
allows to create other meta-models. Based on EMF
there are well established frameworks for model to
model and model to text transformations. For the pro-
totype, the UML tools IBM Rational Rhapsody (IBM,
2012), Enterprise Architect (Sparx Systems, 2012),
Merapi-Modeling (Ostfalia University, 2013) and Pa-
pyrus (Eclipse Foundation, 2013d) are considered.

4.1 Standardized UML2 Model for
UML-tools

Rhapsody and Enterprise Architect both provide an
Java API for external programs to access their inter-

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

122



nal model elements. For creating a EMF-based meta-
model of the APIs it can be analyzed by using the Java
Reflection API (cf. Fig. 4). For each class, a class
in the meta-model (called EClass in EMF) is created
with an attribute referring to the original API object.
Furthermore, representations of its public operations
are created for the class in the meta-model. The im-
plementation of these operations is done in a way that
they always delegate the call to the operation of the re-
ferred, original API object. This is realized by creat-
ing an EMF-based annotation for the operation inside
the meta-model that contains code for delegating the
calls. Afterwards, an EMF mechanism is used for cre-
ating Java code for the meta-model. This code is ex-
ecuted, whenever model elements of this meta-model
are used. A prototype is implemented for automati-
cally creating model facades in this way. The facade
generation can also be used for any other Java API.

There is a difference between this approach and
API2MoL (Izquierdo et al., 2012). API2MoL pro-
vides operations, which can be manually executed, to
convert the API objects into model elements and vice
versa. In the proposed approach, the model acts as a
facade for an API, i.e. a corresponding model is just
used as a layer for accessing the API. This also allows
a seamless integration for APIs with other EMF-based
frameworks, such as the Graphical Modeling Frame-
work (Eclipse Foundation, 2013c). There is no need
for executing operations for the conversion. There-
fore, no synchronization problems can occur. Model
representations of API object are created automati-
cally on demand.

Figure 4: EMF facade generation.

The access of operations, which return API ob-
jects, have to return model representations of these
when working on the model level. Every time such an
operation is called on the model level, a model repre-
sentation of the API object is created and its attribute
for containing the original API object is set. In order
to avoid that several model representations of a sin-
gle API object are created, the API object is stored

together with its model representation inside a Map
data structure.

Figure 5: EMF facade for IBM Rational Rhapsody.

As an example Fig. 5 shows a small part of an
EMF facade for the Rhapsody API. There are two
EMF classes, which act as a facade for packages and
classes from Rhapsody. Their name has the prefix
A2E, which stands for API to Ecore. Both of them
have an attribute originalAPI Object for storing a ref-
erence to the object, which they represent. Further-
more, the EMF classes have an operation for each
method of the originalAPI Object. If such an oper-
ation is called, it just forwards the call to the repre-
sented operation of the originalAPI Object. The same
applies for accessing and setting attributes via getter
and setter methods, i.e. the attribute name.

An aggregation was created from the EMF class
A2E RPPackage to A2E RPClass, because the Rhap-
sody API class IRPPackage has an operation for
accessing contained API objects of type IRPClass.
When the code is executed for accessing the contained
classes of the EMF facade class A2E RPPackage, at
first, the contained classes of the originalAPI Object
are resolved. Then it is checked, if already objects of
type A2E RPClass were created, which represent the-
ses classes. If necessary, new facade objects will be
created and their originalAPI object will be set. Fi-
nally, the facade objects of type A2E RPClass will be
returned.

Now a model to model transformation can be
used for converting API models into the EMF-based
UML2 model. Any technique from section 2.3 can
be used for this purpose. However, to have the possi-
bility of implementing reverse engineering function-
alities later, the technique should allow to make bidi-
rectional mappings and transformations. QVT would
be adequate, but there is a lack of a suitable imple-
mentation which supports QVT-Relations for bidi-
rectional transformations completely (Macedo and
Cunha, 2013). An interesting upcoming implementa-
tion is presented in (Macedo and Cunha, 2013). How-
ever, it is only recommended for medium size mod-
els for now, because of its execution performance.
TGGs are also very well suited for our purpose. It was

Tool�Independent�Code�Generation�for�the�UML�-�Closing�the�Gap�Between�Proprietary�Models�and�the�Standardized�UML
Model

123



shown in (Rose et al., 2012) that the TGG implemen-
tation eMoflon has the most advanced functionalities
for bidirectional transformations. Therefore, eMoflon
is used in our prototype for model to model transfor-
mations.

«T GGObjec. ..
pa ckageRp :

A2 E_RPPack age

«T GGObj...
pa ckageUML :

Pa ckage

«Corresp onde nce»
rpPkgToUmlPkg :

Pa ckageToPacka ge

«T GGObjec. ..
cla ssRp :

A2 E_RPClas s

«T GGOb...
cla ssUM L :

Cla ss

«Corresp onde nce»
rpClassToUmlClass :

Cla ssToClas s

{eq (classRp.n ame,classUML.name )}

EMF Facade 
for Rhapsody

UML Meta-
Model

Mapping between 
Meta-Models

na mena me

+p ackag edEl emen t+classes

+ta rget+so urce

+ta rget+so urce

Figure 6: TGG for mapping the Rhapsody facade to UML.

Fig. 6 shows a part of a TGG for mapping Rhap-
sody classes to UML classes, which are contained in
Rhapsody packages or UML packages. A constraint
is used for mapping the attribute name.

Merapi-Modeling uses its own, UML-like meta-
model. Since it is already based on the EMF, eMoflon
can directly be used for realizing a model to model
transformation to the EMF-based UML2 model.

Papyrus even uses the EMF-based UML2 model
for storing its models. There is no need for imple-
menting a model to model transformation.

Now, any existing code generator for the EMF
UML2 model can be used for creating source code.
Further, code generators can be realized by using
mechanisms for model to text transformations (cf.
section 2.5).

5 CONCLUSION

Code generators, which are used to directly generate
source code from UML models, are in general propri-
etary for a specific tool. This results in a significant
effort, if a certain type of code generation has to be
realized for different tools. This implies that there is
a need for an approach towards development of tool
independent code generators.

On the other hand, in order to make code genera-
tors compatible with different tools, they need a uni-
form input model. There is already a standardized
XMI format for the UML. Many tools can export their
model in this format. Unfortunately, they export their
models differently.

Techniques for model to model transformations
could be used for transforming the models of differ-
ent tools into a standardized UML model. The models
of most tools can be accessed by using an API. How-
ever, in order to use such techniques, a meta-model is
needed for the source and the target model. However,
there is a gap between the models of different UML
tools and the standardized UML model.

In order to address this gap, an approach for gen-
erating a meta-model for APIs is introduced in this
paper. Unlike in existing approaches, the model el-
ements of this meta-model are acting as a facade for
the original API objects. This allows the direct usage
of many techniques for model driven development.
Then the model can be transformed into a standard-
ized UML model. The proposed approach is evalu-
ated using a prototype implementation. In the em-
pirical evaluation, four different modeling tools are
transformed into an EMF-based UML model. Fur-
thermore, the experimental results indicate that the
proposed approach increases the scalability of code
generators significantly, if more than one type of code
generation has to be realized for more than one UML
tool.

MDD for embedded systems benefits from the im-
proved scalability. In order to support different target
platforms, many code generators have to be realized
or adaptions have to be made. It is more efficient to
implement a code generator, which can be used for
several modeling tools, instead of implementing pro-
prietary code generators for each tool. Developers of
code generators can optimize and improve one code
generator rather than spending time on implementing
the same code generator again and again for different
tools.

There are still possibilities for further optimizing
the proposed approach. One aspect is to create UML
facades, which interact with the APIs of modeling
tools directly. This means to have a seamless UML
view on the proprietary models of different modeling
tools. Then additional transformations between the
meta-model of APIs and the standardized UML mod-
els could be avoided. In this context, the need arises
for a (new) mechanism to make a mapping between an
existing model and code (of an API) and an affiliated
facade code generation mechanism. Another aspect is
to analyze how the effort of recreating or adapting ex-
isting transformations can be reduced, when the meta-
model resp. the API of a modeling tool changes.

Tool independent code generation is only the be-
ginning of the potential uses of the presented ap-
proach. Future work is about the certification of tool
independent code generators and the check of MISRA
modeling guidelines. Developers can select the UML

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

124



tool of their choice and benefit from all those features.
Furthermore, the model facade generation can be used
to seamlessly integrate any API into MDE.

ACKNOWLEDGMENT

This work is supported by a grant from BMWi (Fed-
eral Ministry of Economics and Technology, Ger-
many). This project work is carried out in close coop-
eration with Willert Software Tools GmbH, Ostfalia
University of Applied Sciences and University of Os-
nabrueck.

REFERENCES

ARM (2013). Cortex M3 processor product web-
site. http://www.arm.com/products/processors/cortex-
m/cortex-m3.php.

Atlanmod and Modelum research groups
(2013). API2MoL Project Website.
https://code.google.com/a/eclipselabs.org/p/api2mol/.

Burke, P. W. and Sweany, P. (2007). Automatic Code Gen-
eration Through Model-Driven Design. In Software
Technology Conference (STC).

Bzivin, J., Hillairet, G., Jouault, F., Kurtev, I., and Piers, W.
(2005). Bridging the MS/DSL Tools and the Eclipse
Modeling Framework. In In Proceedings of the con-
ference for Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’05).

Eclipse Foundation (2013a). Acceleo Project website.
http://www.eclipse.org/acceleo/.

Eclipse Foundation (2013b). Eclipse Modeling Framework
Project. http://www.eclipse.org/modeling/emf/.

Eclipse Foundation (2013c). Graphical
Modeling Framework Project website.
http://www.eclipse.org/modeling/gmp/.

Eclipse Foundation (2013d). Papyrus UML Product web-
site. http://www.eclipse.org/papyrus/.

Eclipse Foundation (2013e). UML2 Project website.
http://www.eclipse.org/modeling/mdt/?project=uml2.

Eclipse Foundation (2013f). Xpand Project website.
http://www.eclipse.org/modeling/m2t/?project=xpand.

Eclipse Foundation (2013g). Xtend Project website.
http://www.eclipse.org/xtend/.

France, R. B., Ghosh, S., Dinh-Trong, T., and Solberg, A.
(2006). Model-driven development using UML 2.0:
promises and pitfalls. Computer, 39:59 – 66.

Hergenhan, A. and Heiser, G. (2008). Operating Systems
Technology for Converged ECUs. Software Systems
Research Group.

Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer,
J., Schfer, W., Lauder, M., Anjorin, A., and Schrr, A.
(2013). A Survey of Triple Graph Grammar Tools. In
In Proceedings of the Second International Workshop
on Bidirectional Transformations (BX 2013).

IBM (2012). Rational Rhapsody Product Web-
site. http://www-01.ibm.com/software/ awd-
tools/rhapsody/.

Izquierdo, J. L. C., Jouault, F., Cabot, J., and Molina,
J. G. (2012). API2MoL: Automating the building of
bridges between APIs and Model-Driven Engineering.
In Information and Software Technology, 54:257–273.

Jouault, F., Allilaire, F., Bzivin, J., Kurtev, I., and Valduriez,
P. (2006). ATL: A QVT-like transformation language.
In Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages,
and applications (OOPSLA ’06). ACM, New York, NY,
USA, 719-720.

Kindler, E. and Wagner, R. (2007). Triple Graph Grammars:
Concepts, Extensions, Implementations, and Applica-
tion Scenarios. Technical Report, University of Pader-
born.

Krichen, F., Hamid, B., Zalila, B., Jmaiel, M., and
Coulette, B. (2013). Development of reconfigurable
distributed embedded systems with a model-driven
approach. Concurrency Computat: Pract. Exper. doi:
10.1002/cpe.3095.

Macedo, N. and Cunha, A. (2013). Implementing QVT-R
Bidirectional Model Transformations using Alloy. In
FASE 2013.

Moreira, T. G., Wehrmeister, M. A., Pereira, C. E., Petin,
J., and Levrat, E. (2010). Automatic code generation
for embedded systems: From UML Specifications to
VHDL code. In Industrial Informatics (INDIN) 8th
IEEE International Conference, pages 1085 – 1090.

Motor Industry Software Reliability Association (MISRA)
(2012). MISRA C website. www.misra-
c.com/Activities/MISRAC/tabid/160/Default.aspx.

Obeo (2013). UML to Java Generator Project.
http://marketplace.obeonetwork.com/module/uml2java-
generator.

Object Management Group (2011). Meta Object Facility
Specification 2.4.1. http://www.omg.org/spec/MOF/.

Object Management Group (2013a). MOFM2T 1.0 Speci-
fication. http://www.omg.org/spec/MOFM2T/1.0/.

Object Management Group (2013b). OMG Website.
http://www.omg.org/.

Object Management Group (2013c). QVT Specification
1.0. http://www.omg.org/spec/QVT/1.0/.

Object Management Group (2013d). Unified Modeling
Language Specification. http://www.uml.org/.

Ostfalia University (2013). Merapi-Modeling Product web-
site. http://www.merapi-modeling.de.

Rose, L. M., Matragkas, N., and Kolovos, D. S. (2012).
A feature model for model-to-text transformation lan-
guages. In In Proceedings of Modeling in Software
Engineering (MISE).

Sestoft, P., Hulgaard, H., and Wasowski, A. (2002).
Code Generation for Embedded Systems.
http://www.itu.dk/ wasowski/papers/poster.pdf.

Sparx Systems (2012). Enter-
prise Architect product website.
http://www.sparxsystems.com/products/ea/index.html.

Willert Software Tools GmbH (2013). Company website.
http://www.willert.de.

Tool�Independent�Code�Generation�for�the�UML�-�Closing�the�Gap�Between�Proprietary�Models�and�the�Standardized�UML
Model

125


