
Integrating Model-based Formal Timing Analysis in the Industrial
Development Process of Satellite On-Board Software

Rafik Henia1, Laurent Rioux1, Nicolas Sordon1, Gérald-Emmanuel Garcia2 and Marco Panunzio2
1Thales Research & Technology, 1 Avenue Augustin Fresenl, 91767, Palaiseau Cedex, France

2 Thales Alenia Space, 5 Allée des Gabians BP 99, 06156 Cannes la Bocca Cedex, France

Keywords: Real-time Embedded Systems, Satellite On-Board Software Architecture, Model-based Formal Timing
Analysis, Industrial Development Process, Component-based Design, Model-based Engineering.

Abstract: As a consequence of the increasing complexity of modern real-time applications, the need for an efficient,
reliable and automated performance estimation method throughout the whole development cycle becomes
essential. Model-based formal timing analysis appears at first sight to be the adequate candidate for this
purpose. However, its use in the industry is conditioned by a smooth and seamless integration in the
development process. This is not an easy task due to the semantic mismatches between the design and
timing analysis models but also due to the missing links to the testing phase after code implementation. In
this paper, we present a model-based timing analysis framework we developed in the industrial context of
satellite on-board software. The framework enables overcoming the above mentioned problems, thus
allowing a fully integration and automation of model-based timing verification activities in the development
process, as a mean to shorten the design time and reduce risks of timing failures.

1 INTRODUCTION

The growing complexity of software applications
combined with constant quality and shorter time-to-
market constraints creates new challenges for the
timing performance engineering practices in the
development process of real-time embedded
systems: it is expected that delivered products
implement more and more complex features, while
respecting stringent real-time requirements. When
developing real-time systems according to a
traditional application of the “V”-cycle, the timing
verification activities start only when development
and integration are completed. As a consequence,
timing issues are not detected until the verification
stage starts. At this time, they are more difficult and
expensive to fix. Thus, a reliable timing performance
prediction at early design stages is essential to
guarantee that the designed system meets its timing
requirements before time and resources are invested
for the system implementation.

Formal timing analysis techniques are in theory
well adapted for this purpose, since their
applicability starts with the conceptual design phase
and continues throughout all following development

process phases. Furthermore, as recent development
trends are based on a joint application of
component-based software engineering (CBSE) and
model-driven engineering (MDE), formal timing
analysis can be applied directly on the design
models: we would then refer to it as model-based
timing analysis. Such analysis provides proofs for
the timing behavior based on a mathematical model
of the system timing behavior. These proofs allow
calculating safe lower and upper bounds for
performance values over a range of scenarios, thus
guaranteeing corner-case coverage.

If model-based timing analysis seems to be so
attractive in theory, what hinders its use in the
industry?

A major reason is the lack of engineering
methods allowing the integration of the model-
based timing analysis in the different phases of the
development process of real-time systems. Formal
timing analysis is often not directly applicable to
conceptual design models due to the semantic gap
between the latter and the analysis timing model. In
addition, after code implementation, the applicability
of model-based timing analysis is hindered by the
missing link to the testing phase of the implemented

619Henia R., Rioux L., Sordon N., Garcia G. and Panunzio M..
Integrating Model-based Formal Timing Analysis in the Industrial Development Process of Satellite On-Board Software.
DOI: 10.5220/0004874306190625
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MBAT-2014), pages 619-625
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

software. Solving the above mentioned issues is
therefore essential to break the walls separating the
model-based timing analysis from the development
process of real-time systems, in order to enable its
use in the industry.

In this work, we present our model-based timing
analysis framework allowing the application, the
automation and the consolidation of formal timing
analysis in the development process of real-time
embedded systems starting from the early
conceptual design phase until the integration phase,
as a mean to reduce the design time and avoid costly
timing failures detected after system
implementation. The framework was developed in
the context of the industrial component-based design
and development of the Sentinel-3 satellite on-board
software.

A description of the Sentinel-3 satellite on-board
software use-case and the currently employed
component-based design approach are given in the
next section. Section 3 describes in detail the overall
model-based timing analysis framework structure
including the extension of the component-based
design model with a timing performance model, the
model transformation from design to timing analysis
via a pivot analysis model, the worst-case timing
analysis, the results translation process and the link
to the system execution. In Section 4 we present the
approach evaluation. Finally we draw the
conclusions.

2 INDUSTRIAL CONTEXT

It has always been a challenge to introduce formal
timing analysis into the industrial development
process as the inputs required for the analysis, in
particular the worst-case execution time (WCET)
and the system behaviour description, are moving
target all across the different development process
phases. Starting from very high level system
architecture and rough timing allocations, the formal
timing analysis has to be refined at each step of the
project (architectural design, detailed design, coding,
unit test and software validation phases) down to
concrete timing measurements on the final system.

Maintaining a representative timing analysis
taking into account all the architectural, design (both
static and dynamic) and timing changes across a
complete development process is time consuming
and error prone. The timing analysis shall be rather
integrated into the development process. Its
application shall be also automated in order to have

the capability to continuously perform timing
analysis during the process.

Thanks to the recent introduction of model based
methods (in particular multi-view points) in the
development process, this goal seems to be
reachable.

The Sentinel-3 satellite on-board software use-
case based on which we have developed our model-
based timing analysis framework is an on-going
project at Thales Alenia Space. The use-case as well
as the employed component-based design approach
are briefly described in the next two sections.

2.1 GMES Sentinel-3 Satellite
On-Board Software

Sentinel-3 is an Earth Observation mission primarily
devoted to support services related to the marine
environment. It is one of the satellites of Copernicus
(formerly known as GMES), an ambitious Earth
Observation program to provide timely and accurate
information for environment management, improve
knowledge on climate change and help in civil
security. The first Sentinel-3 satellite is expected to
be launched between 2014 and 2015, followed by a
second one so that they work together to provide
maximum coverage. The mission’s main objective is
to determine parameters such as sea-surface
topography, sea- and land-surface temperature as
well as ocean- and land-surface color with high-end
accuracy and reliability. Near-real time data
processing and delivery will allow a broad range of
Copernicus services for both the marine and land
environment to continuously take advantage of the
mission results. These services include, for example,
maritime safety services that need ocean-surface
wave information, surface temperature and data to
improve ocean current forecasting systems; sea-
water quality and pollution monitoring requiring
advanced ocean color products in both open ocean
and coastal oceanographic application areas; sea-ice
charting services requiring sea-ice extent and
iceberg detection; services to monitor land-use
change, forest cover, photosynthetic activity, soil
quality and fire detection.

Thales Alenia Space is the prime contractor of
the Sentinel-3 mission and in particular it is the
prime contractor of both the avionics and the
platform on-board software of the satellite. The
platform on-board software (OBSW) implements all
major functions of the satellite: the Attitude and
Orbit Control System (AOCS), the Thermal Control
System (TCS), Mode Management, management of
the ground/board interface, etc. A subset of those

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

620

OBSW functions is characterized by stringent real-
time requirements (for example the commanding of
the thrusters to perform an attitude modification or
an orbital maneuver). The development process shall
then be capable of statically ascertain that those real-
time requirements are always fulfilled, by supporting
a suitable and reliable form of timing estimation
technique.

2.2 Component-based Design
Approach

Thales created a software framework family, named
MyCCM (Make your Component Container Model)
(E. Borde, 2009), to support the implementation of
real-time embedded software. MyCCM is a
tailorable component-based design approach that
takes inspiration from the Lightweight Component
Container Model standard (LwCCM) defined by the
OMG. MyCCM applications range from critical
systems (e.g. on-board satellite software) to near
real-time systems (e.g. image processing).

MyCCM implements the concept of functional
components that encapsulate algorithms. MyCCM
components correspond to passive code controlled
by an underlying runtime, and are connected through
communication ports to create a complete
application. This allows the construction of
applications by assembling independent functional
components. It also enforces the separation of
concerns between the functional aspects described
by the component ports and the non-functional
elements that stay outside the components (message
chaining across the whole component architecture,
FIFO sizes, task priorities, communications
mechanisms, execution times etc.). MyCCM
components can be seen as black boxes that contain
the intelligence of the applications and are controlled
by a runtime that is domain specific.

The MyCCM design process involves several
aspects: data modeling, specification of the
functional contracts of the components, specification
of component implementations (i.e. the
implementation of the algorithms), the connections
between component ports, and possibly the
allocation of execution resources (threads and
mutexes) if the underlying runtime can be
configured accordingly. MyCCM architectures can
be described in Thales internal modeling tools or in
UML modelers with plain UML. From such
architecture models, it is possible to perform
documentation and code generation.

3 MODEL-BASED TIMING
ANALYSIS FRAMEWORK

The model-based timing analysis framework
structure is illustrated in Figure 1. It is composed of
five major steps. The first step consists in extending
the design model with a performance model
describing the timing characteristics, the behavior
abstraction of the application and the execution
properties of the platform. In the second step, the
extended design model is transformed into a
scheduling analysis model based on formal
transformation rules preserving both the design
model semantic and temporal behavior. The
transformation is performed via an intermediate
pivot analysis model. In the next step, formal timing
verification is performed using a timing analysis
tool. The fourth step consists in translating the
timing analysis results to be compliant with the
original design model and injecting them in the
modeling tool. Finally, after code implementation,
the formal timing analysis is refined based on
concrete timing measurements extracted from test
executions. All the mentioned steps in the model-
based timing analysis framework are explained in
detail in the following sections.

Figure 1: Model-based timing analysis framework
structure.

3.1 Extending the Design Model with
a Performance Model

MyCCM design models were not designed to take
into account timing concerns. Since model-based
timing analysis, calculates performance estimates
based on the timing characteristics of the software
application, the MyCCM design model has to be
extended with a performance model. The
performance model has to provide information
describing the timing characteristics of the software
application such as the activation frequency for the

Integrating�Model-based�Formal�Timing�Analysis�in�the�Industrial�Development�Process�of�Satellite�On-Board�Software

621

tasks and the core execution times for the operations.
Since execution times of operations are not yet
available at early design stages, i.e. before code
generation and implementation, the designer has to
provide timing estimates instead (based on his
experience of previous projects) and budgets (to be
intended as an upper-bound requirement on the
execution time).

As model-based analysis calculates performance
estimates related to a specific execution platform,
the performance model has also to provide
information about scheduling and execution such as
the processor speed, the scheduling policy (e.g.
priority preemptive scheduling, EDF), the
scheduling parameters (e.g. priorities), the tasks set
and the mapping from the operations to task
executors, etc.

And last but not least, MyCCM design models
are static. Since model-based analysis calculates
performance estimates related to the dynamic
behavior of the application, the performance model
has also to provide behavioral information such as
the data dependencies between tasks and the
communication protocols.

We selected specific concepts from the MARTE
standard (MARTE, 2011) to build a performance
model capable of expressing the needs described
above. The MARTE standard is key technology for
this purpose. It allows extending UML design
models (UML, 2011) with concepts modeling the
real-time constraints and the target platform, e.g. the
SwSchedulableResource concept of the SRM
(Software Resources Modeling) and the
HwProcessor and HwBus concepts of the HRM
(Hardware Resource Modeling).

In order to describe the dynamic behavior of the
application and to annotate the MARTE-based
performance model with the above mentioned
timing and execution characteristics, we have used a
so-called “Abstract Action Language” (AAL). AAL
was defined at Thales and was originally intended to
describe model-based functional test scenarios. We
extended AAL with timing and execution elements
to be able to annotate the performance model. Using
AAL for both model-based timing analysis and
functional testing allows increasing the design
efficiency and robustness by avoiding the
duplication of work and excluding the risks of
consistency failures.

3.2 Filling the Semantic Gap between
Design and Timing Analysis Models

Model-based timing analysis techniques are well

adapted for the performance estimation at early
design stages, since they rely on an abstraction of
the timing relevant characteristics and behaviors
such as execution scenarios and tasks activation and
communication. From these characteristics and
behaviors, the model-based timing analysis
systematically derives worst-case scheduling
scenarios and timing equations that provide safe
bounds on the worst-case response times for each
task.

However, we faced the problem that model-
based timing analysis is not directly applicable to the
extended MyCCM models due to the semantic
mismatch between the latter and the variety of
timing analysis models known from the classical real
time systems research (MAST) (MPA)
(CHEDDAR) and from the commercial timing
analysis tools (SymTA/S).

For instance, in the common timing analysis
models, a standard assumption is that a task writes
its output data at the end of its execution. This is not
the case in MyCCM. Operation calls in MyCCM are
namely either synchronous (blocking) or
asynchronous (non-blocking). As a consequence, the
task, to which the caller operation is mapped, may
write data into the input of a connected task, to
which the called operation is mapped, at any instant
during its execution and not necessarily at the end.

For the Sentinel-3 satellite on-board software
use-case, the semantic mismatches between the
design model and the different timing analysis
models were basically related to the operation calls,
accesses to semaphores and tasks activation
behavior (data dependent activation).

Figure 2: Synchronous call between operations in the
MyCCM design model.

In order to overcome the semantic mismatch
between design and timing analysis, we have
defined a set of rules transforming extended
MyCCM models into equivalent timing analysis
models. This step is essential for the applicability of
the model-based timing analysis to design models.
In the following, we present an example of such
transformation rules.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

622

An example of a synchronous call between two
operations in the extended MyCCM design model is
illustrated in Figure 2. Let us assume that the
operation m1 is mapped to a task called T1, while the
operation m2 is mapped to a task called T2. Let us
assume static priority preemptive scheduling for the
tasks (Lehoczky, 1990). Regardless of the priority
assignment for the tasks, the execution order of the
operations will always be the following: after its
activation, task T1 will first execute the operation
fragment m1,a. Then, it calls task T2. Since the call is
blocking, task T1 is suspended until task T2 finishes
executing the operation m2 and sends data back.
Then, task T1 executes the operation fragment m1,b.

Figure 3: Transformed synchronous call between
operations in the timing analysis model.

In order to keep the synchronous call behavior of the
operations and tasks while respecting the timing
analysis model semantic, we have to split the
operation m1 in two distinct operations
corresponding to the operation fragments m1,a and
m1,b. This can be observed in Figure 3. We also have
to split task T1 in two tasks T1,a and T1,b that inherit
its priority. Then, we have to map the operations m1,a
and m1,b respectively to the tasks T1,a and T1,b.
Obviously, this transformation preserves the same
execution order and thus, the synchronous call
behavior of the original operations and tasks in the
extended MyCCM model. On the other side, it is
compliant with the above mentioned timing analysis
standard assumption, since task T1,a calls task T2 at
the end of its execution and not before as task T1
does.

3.3 Pivot Timing Analysis Model

Based on the set of transformation rules mentioned
in the previous section, we can in theory directly
translate an extended MyCCM design model into the
selected timing analysis tool specific model. In
practice, as illustrated in the framework structure in
Figure 1, we have decided to introduce a pivot
timing analysis model in-between, in order to ensure

a minimum of independence from modeling and
analysis tools.

The pivot timing analysis model is a sort of
“standard” timing analysis model free from any
specificity of the selected timing analysis tool. This
makes the replacement of the analysis tool, if
required, easier. In this case, the transformation from
the extended MyCCM design model to the pivot
timing analysis model remains unchanged, while
only the interface between the pivot timing analysis
model and the new selected timing analysis tool has
to be implemented. The use of a pivot timing
analysis model allows as well hiding the timing
analysis tool complexity to the designer, since the
latter does not need to pay attention to the tool
specificities.

Generally speaking, the use of a pivot timing
analysis model avoids the combinatorial explosion
of transformations across every combination of
modeling tool and timing analysis tool. Direct
connections from N modeling tools to M timing
analysis tools require N*M transformations.
Connections from N modeling tools to M timing
analysis tools via a pivot timing analysis model
require only N+M transformations.

Note that in our developed model-based timing
analysis framework, if required by the user, the pivot
timing analysis model could be run in background
thus being completely transparent to the designer.

3.4 Model-based Formal Timing
Analysis

The next step in the model-based timing analysis
framework is performing the timing analysis. The
scheduling policy for tasks execution in the Sentinel-
3 satellite on-board software use case is the fixed
priority preemptive scheduling. The analysis was
performed using the SymTA/S timing analysis tool
 (SymTA/S). The analysis algorithm is derived from
the one presented by Tindell in (K.W. Tindell, 1994).
Basically, based on mathematical proofs, the timing
analysis algorithm calculates safe lower and upper
bounds for the tasks response time values for each
task, thus guaranteeing corner-case coverage. In
addition to the response times, we use SymTA/S for
the processor load, tasks output jitter and the buffer
size calculation.

3.5 Timing Analysis Results
Adaptation to Design Model
Semantic

The worst-case responses times calculated by the

Integrating�Model-based�Formal�Timing�Analysis�in�the�Industrial�Development�Process�of�Satellite�On-Board�Software

623

analysis tool SymTA/S are specific to the timing
analysis model obtained after transformation of the
MyCCM design model. Therefore, some calculated
response times may be related to tasks and
operations resulting from the splitting process
explained in Section 3.2. Such tasks and operations
are only notional and do not have a correspondence
in the MyCCM design model. Thus, injecting the
analysis results as calculated by SymTA/S in the
MyCCM modeling tool may be confusing for the
designer. A translation process for the calculated
response times is therefore required.

Figure 4: Gantt charts in the timing analysis tool
SymTA/S.

Figure 4 shows a Gantt chart example produced by
SymTA/S after worst-case timing analysis. It
illustrates the worst-case execution scenario for a
lower priority task T3. As can be noticed, the worst-
case scenario involves executions of the higher
priority tasks T1,a, T1,b, T1,c and T2. As their names
suggest, the first three tasks were obtained after
splitting a task called T1 from the MyCCM design
model. In order to provide the designer a
comprehensive worst-case execution scenario, we
have developed a translation process allowing
merging executions of split tasks and operations and
their illustration in dedicated Gantt charts. We
implemented these dedicated Gantt charts using the
TimingAnalyzer tool (TimingAnalyzer). The
transformed Gantt charts are directly displayed in
the modeling tool. Figure 5 illustrates the
transformed Gantt chart obtained from the SymTA/S
Gantt chart represented in Figure 4.

Figure 5: Translated Gantt charts injected in the design
model.

3.6 Model-based Timing Analysis
Consolidation through Functional
Testing

The model-based timing analysis process presented
above is based on timing budgets and estimates for
the operations and tasks execution times. After code
implementation, the defined timing budgets need to
be consolidated. As illustrated in the model-based
timing analysis framework in Figure 1, this is done
with the help of model-based functional testing.
Functional tests are namely generated from the
design model and executed on the hardware
platform. From the functional tests execution traces,
lower and upper bounds for the core execution times
of the operations and tasks are extracted. The
obtained execution time intervals are then compared
with the predefined timing budgets. If the execution
time intervals fit within the timing budgets, there is
no need to rerun the model-based timing analysis.
Otherwise, the timing budget bounds are adjusted
and the model-based timing analysis described in the
previous sections is rerun using the new obtained
core execution time values.

4 APPROACH EVALUATION

The model-based timing analysis framework was
deployed on a demonstration platform where a
representative part of an operational project
(Sentinel 3) has been analyzed. To demonstrate the
capability to use operational models, real MyCCM
components of Sentinel 3 were used as starting point
for the timing analysis framework. Then, a
performance model was developed in order to
describe the real-time architecture and the different
temporal characteristics (WCET, deadlines, etc.).
Then, model transformation is executed and the
resulting pivot model is sent to the analysis tool
without manual intervention from the user. This is a
very important point for the acceptance of the
solution as the pivot model does not need to be
manipulated by the user, the user staying at the level
of the MyCCM architectural model which is the
right level of abstraction for him. After Analysis, the
calculated results are translated then sent back to the
design tool to offer a view at the right level.

The integration of the timing analysis results into
the MyCCM design tool is a key enabler for a
seamless integration of the model-based timing
analysis into the development process. This
integration moves the timing analysis from a parallel

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

624

loosely correlated to the main stream of the
development process to a completely integrated
process.

The main advantage of the approach is the
elimination of the redundancies in the development
process (avoiding describing the design for the
timing analysis tool and thus avoiding eventual
errors and non-synchronization). As the dynamic
aspects are modeled in the same design tool than the
architecture, they are always synchronized enabling
an execution of the analysis very often during the
development process (even eventually thought
continuous integration process). Finally as the
dynamic architecture is fully described in the design
tool, generative techniques ensure that the model
will always represent the final system (indeed all the
code related to real-time entities declarations can be
fully generated).

5 CONCLUSIONS

In this work, we present a model-based timing
analysis framework developed in the industrial
context of satellite on-board software, allowing the
full automation of timing verification activities, their
application at early design stages and their
transparent integration in the development process
of real-time embedded systems.

The model-based timing analysis framework
allows bridging the existing semantic gap between
the design models and the common timing analysis
models through the application of dedicated model
transformation rules, thus permitting the integration
of the variety of existing timing analysis tools in the
design process.

Through the use of a pivot timing analysis
model, the developed framework ensures an
independence from the selected timing analysis tool
specificities and facilitates its replacement.

Other benefits of the model-based timing
analysis framework are related to the increase of the
design efficiency and robustness by respectively
avoiding the duplication of work and excluding the
risks of consistency failures through its applicability
to the functional design model.

We believe that the model-based timing analysis
framework we have developed represents an
important step toward the full acceptance of the
model-based formal timing analysis techniques in
the industry.

ACKNOWLEDGEMENTS

The work described in this paper is partially funded
by the ARTEMIS project MBAT
(https://www.mbat-artemis.eu/).

REFERENCES

E. Borde, F.Gilliers, G. Haik, T. Vergnaud, J. Hugues, L.
Pautet, 2009. MyCCM-HI, a component-based
Framework Implementing a Model Driven
Engineering Approach. Neptune 2009.

MARTE 1.1, June 2011. OMG publication, 2011-06-02.
UML superstructure 2.4.1, August 2011, OMG

publication, formal/2011-08-06.
Lehoczky, 1990. Fixed Priority Scheduling of Periodic

Task Sets with Arbitrary Deadline. IEEE Real-Time
System Symposium (RTSS 1990).

SymTA/S https://www.symtavision.com/symtas.html
K.W. Tindell, 1994. An extendible approach for analysing

fixed priority hard real-time systems. Journal of Real-
Time Systems, 6(2):133–152, Mar 1994.

TimingAnalyzer http://www.timing-diagrams.com/
MAST http://mast.unican.es/
MPA http://www.mpa.ethz.ch/Rtctoolbox/Overview
CHEDDAR http://beru.univ-brest.fr/~singhoff/cheddar/

Integrating�Model-based�Formal�Timing�Analysis�in�the�Industrial�Development�Process�of�Satellite�On-Board�Software

625

