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Abstract: We present a first implementation of a framework for the exploration of stylistic variations in intangible her-
itage, recorded through motion capture techniques. Our approach is based on a statistical modelling of the
phenomenon, which is then presented to the user through a reactive stylistic synthesis, visualised in real-time
on a virtual character. This approach enables an interactive exploration of the stylistic space. In this paper, a
first implementation of the framework is presented with a proof-of-concept application enabling the intuitive
and interactive stylistic exploration of an expressive gait space.

1 INTRODUCTION

Preservation of patrimony, and more especially of in-
tangible cultural heritage (ICH), could gain a com-
pletely new dimension thanks to ICT which have ap-
peared and matured in the last decades. Human ex-
pert gesture is the essence of most expressions of
ICH: dance performances, craftsmanship, music per-
formances, etc. The development of motion capture
(mocap) technologies, becoming more precise, less
invasive and more affordable, has hence logically set
it as an unavoidable approach to intangible patrimony
preservation. Mocap enables the transformation of
tridimensional human movements into a digital form.
This transformation is made through the approxima-
tion of the complex human skeleton and body by a
simplified kinematic chain of body segments or a re-
duced set of body joints. Different technologies coex-
ist, each one with its advantages and drawbacks, but
solutions can be found for most problems, and it be-
comes a common tool for performance capture.

However patrimony preservation should aim at
preserving a global know-how, not one random oc-
currence or expression of the performance, nor a re-
stricted subset of the overall patrimony. Several rep-
resentative performances should hence be recorded,
ideally from different performers, or expressing dif-
ferent styles if applicable. Unfortunately this global
know-how, which can also be seen as a the intangible
heritage which should be preserved, is hard to capture
and to present in a meaningful way. Three main lim-
itations arise with the use of mocap technologies for
capturing expert gestures in performances.

The first one appears when aiming at preserv-
ing the overall know-how through several record-
ings, from several performers, with different styles, as
the amount of mocap data can rapidly become quite
huge. Inter and intra subject variabilities, stylistic
factors and external factors influence each recording,
and the dimensionality of mocap data itself is high.
The amount and high variability of the recorded data
makes it hard to analyse and to use.

A second limitation comes from the lack of in-
teractivity when playing back prerecorded motions.
Mocap data is a recording of a performance. There is
hence no interactivity when viewing it again. If a high
number of performances have been recorded, brows-
ing the motion database can be quite difficult and not
intuitive, as the user gets lost in the contents.

The third major issue with mocap is the repre-
sentativity of the data itself. Cartesian coordinates
of body joints or angles between body segments are
concepts which are difficult to apprehend and do not
match our human experience and expertise of body
motions. The difficulty to interpret the evolution of
tridimensional angles or coordinates over time make
it necessary to visualise mocap data through their pro-
jection on 3D virtual characters.

The approach presented in this paper aims at coun-
terbalancing these drawbacks by proposing an alter-
native tool for visualising and understanding high-
dimension mocap databases that exhibit deliberate
stylistic variations. Our stylistic exploration tool is
based on statistical models which can be considered
as a summary of the mocap data, and are used for
realtime synthesis of motions with reactive stylistic
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control. The visualisation of the data is presented
through projection of the synthesised motion curves
onto a virtual character. This paper presents a proof-
of-concept of this motion style exploration tool ap-
plied to the case study of walk. In Section 2, we give
an overview of the statistical modelling that we used
in this research. Section 3 focuses on the realtime
and reactive parameter generation strategy, while Sec-
tion 4 presents the overall application design. Then
some discussion about the results is given in Section 5
and Section 6 concludes.

2 STATISTICAL MODELLING OF
MOTION CAPTURE DATA

2.1 Motion Database

The case study presented in this paper explores a
stylistic space of human gait. The models were
trained thanks to the Mockey stylistic walk database
(Tilmanne and Ravet, 2010), which aims at studying
the expressivity of walk motions. In this database,
a single actor was recorded walking back and forth
while adopting eleven different “styles”. These styles
corresponded to different emotions, morphology per-
sonifications, or situations, and were arbitrarily cho-
sen because of their recognizable influence on walk,
as illustrated in Figure 1. The acted styles were the
following: proud, decided, sad, cat-walk, drunk, cool,
afraid, tiptoeing, heavy, in a hurry, manly.

Figure 1: Four example postures from the Mockey database.
From left to right: sad, afraid, drunk and decided walks.

The motion was captured thanks to an inertial mo-
cap suit, the IGS-190 from Animazoo (Animazoo,
2008), containing eighteen inertial sensors. The mo-
tion data is described by the evolution over time of
the 3D Cartesian coordinates of the root of the skele-
ton, along with the eighteen 3D angles corresponding
to the orientation of the skeleton root and of the sev-
enteen joints of the simplified skeleton used to rep-
resent the human body (Figure 1). The global po-
sition of the skeleton was discarded in our applica-
tion, since it is extrapolated in the Animazoo system
based on the angle values, and can be recalculated
in the same way after synthesis. Each body pose is
hence described by 18 � 3D = 54 values per frame.

We chose to model the rotations of the eighteen cap-
tured joints rather than the 3D Cartesian coordinates
of these joints in order to ensure that the fixed limb
length constraints were respected in the synthesised
motion: as only rotations are applied to the fixed limb
length skeleton definition, there will be no length de-
formation of the limbs after synthesis. We converted
the 3D angles from their original Euler parameterisa-
tion to the exponential map parameterisation (Grassia,
1998), which is locally linear and where singularities
can be avoided. The motion data was captured at a
rate of 30 fps. The walk sequence were annotated
into right and left steps, thanks to an automatic seg-
mentation algorithm based on the hips joint angles.
These two class labels correspond to the basic mo-
tions which will be represented in our walk model.

2.2 Hidden Markov Models

Hidden Markov Models (HMMs) are widely used for
the modelling of time series, and have been used for
motion modelling and recognition since the nineties.
One of the advantages of using HMMs is that they
exempt from using time warping, needed in most ap-
proaches in order to align sequences prior to anal-
yse them or extract the style component among them.
HMMs integrate directly in their modelling both the
time and the stylistic variability of the motion, thanks
to their statistical nature. In addition to the recogni-
tion applications, the last decade has seen a rising in-
terest for the use of HMMs for generation, especially
with the development of tools such as the HTS Toolkit
developed for speech synthesis (Tokuda et al., 2008).

A HMM consists of a finite set of states, with tran-
sitions between the states governed by a set of prob-
abilistic distributions called transition probabilities.
Each state is associated with an outcome (more gener-
ally called observation) probability distribution. Only
this observation is visible, the state is called hidden
or latent: at each time t, the external observer sees
one observation ot , but does not know which state
produced it. HMMs are double stochastic processes,
since both the state transitions and the output distri-
butions are modelled by probabilistic distributions.

Particular HMM structures can be designed for
specific applications. The basic left-to-right HMM
with no skip transitions illustrated in left side of Fig-
ure 2 is an example of such a specific HMM which
will be used in our motion modelling and synthe-
sis application. A left-to-right model with no skips
is a model in which the only possible state transi-
tions at each time are either to stay in the same state
or to go to the next state. The complete character-
isation of a HMM requires the specification of the
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number of states, and the definition of two proba-
bility measures: the state transition probabilities ti; j
between each states pair (si;s j) and the probability
density functions (pdfs) ei of the observations in each
state si. In continuous HMMs, these pdfs are most
often modelled by a mixture of Gaussians, or single
Gaussians as illustrated in Figure 2. Following the
approach proposed by (Yoshimura et al., 1998) for
HMM-based generation, the transition probabilities
can be replaced by Gaussian state duration pdfs di, as
illustrated in the right side of Figure 2. The HMM is
then called a Semi Hidden Markov Model or SHMM.
A compact notation is often used to refer to all the pa-
rameters defining the HMM or SHMM, and such a set
of the model parameters is written l.

Figure 2: A simple three-states left-to-right HMM with no
skip with its associated observation pdfs. A classical HMM
is presented on the left side, while its SHMM correspon-
dence is presented on the right side.

2.3 HMM-based Motion Modelling

HTS is the framework we used for training our mod-
els and for synthesis. It was designed specifically
for speech synthesis. However very strong similar-
ities can be found in the speech and motion modal-
ities. The left-to-right structure of phonemes cor-
responds to the structure of basic motions, identity,
emotions and physical characteristics will influence
both speech and motion modalities, etc. HMM-based
motion modelling and synthesis can hence greatly
benefit from tools developed primarily for speech.

In previous work (Tilmanne et al., 2012), we
transposed the HTS speech designed training and syn-
thesis procedure to our motion use case. In the present
work, walk is modelled using only two SHMMs, one
for the right step and one for the left step. We mod-
elled each step with a five-states SHMM, with mul-
tivariate diagonal Gaussian observation pdfs and uni-
variate Gaussian duration pdfs. For reasons related to
the parameter generation (see Section 3), the first and
second derivatives of the motion data are also mod-
elled. Our walk model consists in 2 (one SHMM per

step) * 5 (states) * [ 2 (mean and variance of duration
pdfs) + 2 (mean and variance of observation pdfs) *
54 (dimensionality of mocap data) * 3 (static, first and
second derivatives) ] = 3260 parameters.

In a first stage, a global walk model is trained
using the complete Mockey database. For each one
of the eleven walk styles, this generic walk model
then undergoes an adaptive training with a reduced
set of data corresponding to the target style only. Af-
ter adaptation, we obtain twelve distinct stylistic walk
models: one neutral style model and one model for
each one of the eleven Mockey styles. Thanks to
the adaptive training, all models are adapted from the
same basis model and are therefore aligned.

3 GENERATION OF MOTION
PARAMETERS BASED ON
“TRAJECTORY HMMS”

Although HMMs have already been tried for char-
acter animation (Brand and Hertzmann, 2000; Li
et al., 2002; Wang et al., 2006), our prototype re-
lies on a different approach towards HMM-based pa-
rameter generation. Indeed, as described in Sec-
tion 2, the core concept behind our motion modelling
framework is the adaptation of advanced HMM-based
speech processing algorithms to the motion use case.
Over the last decade, the speech research community
has come up with very innovative solutions involv-
ing HMMs. Among these innovations, Tokuda et al.
have proposed an algorithm for the use of SHMMs
in speech synthesis (Tokuda et al., 2000). This idea
has brought a new category of statistical parametric
speech synthesizers and the HMM-based speech syn-
thesis toolkit, called HTS (Tokuda et al., 2008), has
become a reference in the field. In Section 3.1, we
describe the algorithm that turns SHMMs into trajec-
tory HMMs, enabling the synthesis of realistic param-
eter trajectories, and we validate this approach for our
motion models. Our motion exploration application
relies on two other innovations from the HTS research
field. The first one turns trajectory HMMs into reac-
tive HMMs, i.e. achieves the parameter generation in
realtime, and is explained in Section 3.2. The sec-
ond one is called model interpolation and Section 3.3
shows how we use it to create a stylistic motion space.

3.1 Maximum Likelihood Parameter
Generation: Trajectory HMMs

The relevance of the HTS algorithm in synthesising
high-quality speech trajectories relies on a core algo-
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rithm by Tokuda et al. called the Maximum Likeli-
hood Parameter Generation or MLPG (Tokuda et al.,
2000). Practically it means that we try to generate
new parameter trajectories that are the most likely to
be observed, for a given statistical model l.

As described in Section 2, each class label of
the database actually corresponds to a N-state left-
to-right SHMM. When synthesising a new sequence,
a transcription of the sequence of class labels to be
synthesised must be available, and each class label
queries its corresponding model. In our gait mod-
elling use case, N = 5, although all the Figures of
this Section display 3 states si for readability reasons.
For each state si, the SHMM contains a univariate
Gaussian distribution di as the state duration model
and a multivariate Gaussian distribution ei as the ob-
servation vector model. The process described below
works for any series of class labels (not just one), as
the SHMMs can be concatenated together before the
parameter generation. However in our walk synthesis
use case, the walk sequence will always correspond to
a succession of right and left steps, and the walk se-
quence model will hence consist in a concatenation of
five-states models corresponding alternatively to the
right and left step models.

3.1.1 “Unwrapping” the Duration Models

The first phase in generating a parameter trajectory
from the queried SHMM is to solve the duration
model for each state. According to the Maximum
Likelihood criterion, each state si of the SHMM must
last the most likely amount of time, i.e. the mean of
its corresponding duration probability density func-
tion di. Therefore the so-called graphical model of
the SHMM is constructed by repeating each si a given
amount of times, corresponding to E(di), where E
means expectation, as described in Figure 3.

This approach advantageously replaces the typical
transition matrix of HMMs with an explicit model,
making this first “unwrapping” phase much easier to
achieve, but also to control. Indeed the duration of
each state is very visible and accessible. For instance,
the five states used in our modelling of gait are ex-
pected to be different phases of the steps. There-
fore we could easily influence the motion stylistics by
shortening or lengthening some of the state durations.

3.1.2 Generation of Parameter Trajectories
from the Observation Models

Once we have built the graphical model from dura-
tion models, we have a left-to-right structure that sup-
ports the evolution of observation statistics over time.
Practically it means that we can associate emission

Figure 3: Illustration of the overall process of solving the
duration models contained in a given SHMM (queried by
the class label). For each state si, the mean of each duration
pdf di is applied on the amount of repetitions of the state, in
order to build the SHMM graphical model.

probabilities to any point on the timeline of the ex-
pected parameter trajectory. Figure 4 (top part) gives
an overview of this alignment process, as the follow-
ing step of what has been created in Figure 3.

Figure 4: Illustration of the overall process of parameter
generation from observation vector statistics, as aligned on
the graphical model. The MLPG adds operations to this
process so that it generates a smooth, most likely trajectory.

However solving this graphical model under the
strict Maximum Likelihood criterion would result in
emitting the mean of the observation vector for each
state si. The resulting trajectory would be a step func-
tion with abrupt transitions when i is incremented, e.g.
when s2 switches to s3. The MLPG algorithm solves
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this issue by adding two more operations:

� Before computing observation statistics, observa-
tion vectors o are extended with their first and sec-
ond derivatives, so that O= [ o Do DDo ]. Then the
extended observation vectors O are used instead
of o. Such HMMs extended with some of the ob-
servation derivatives are called trajectory HMMs.

� A specific matrix operation (Tokuda et al., 2000)
is achieved on the O vectors and parameters of the
statistical models l so that the Maximum Likeli-
hood is found on the whole sequence, instead of
state by state. As this process is achieved on O
and not o, the likelihoods of the first and second
derivatives are also optimised, resulting in smooth
o trajectories. The smoothing process is illus-
trated in Figure 5 (bottom part).

3.1.3 Realistic Motion Synthesis

As a result of applying the MLPG algorithm on mo-
tion vectors, we are able to generate very realistic mo-
tion parameters from the class labels. In our use case,
we have used either class labels for one average gait
model or differentiated class labels for each style. In
both cases, we have verified with subjective tests that
the animated characters were walking in a very natu-
ral manner (Tilmanne et al., 2012).
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Figure 5: Comparison of original gait motion trajectories
vs. the ones synthesised with the MLPG algorithm. The
plot represents the evolution of the 3D Euler angle of the
left hip during a 7.7 seconds walk sequence.

3.2 MAGE: Realtime and Reactive
HMM-based Parameter Generation

The idea of exploring is intrinsically related to the in-
teractivity of the medium. Indeed the explorative ex-
perience can only be realised if the medium – in this

case the motion stylistics – is able to accept user inter-
action, meaning that the parameter generation process
reacts accordingly. Although the MLPG algorithm is
primarily based on a “all-at-once” approach, our team
has been working for several years on a new short-
term MLPG (ST-MLPG) algorithm (Astrinaki et al.,
2012). The ST-MLPG starts to generate the trajecto-
ries in realtime, i.e. as soon as the first class label is
parsed. We showed that this algorithm preserves the
required naturalness and smoothness of the generated
trajectories, while offering the opportunity to alter the
underlying statistics on-the-fly.

The new ST-MLPG algorithm and the overall idea
of reactive HMM-based synthesis led us to release a
modified version of the HTS software, called MAGE
(Astrinaki et al., 2011). The MAGE software library
has been designed to be user-friendly and accessible
for non-experts in HMMs. However the existing ver-
sion was only available for speech synthesis. This
work on gait modelling enabled us to get MAGE to be
completely compliant with mocap data, and therefore
be the first realtime SHMM-based motion synthesiser.

3.3 Creating a “Stylistic Space” with
Model Interpolation/Extrapolation

The ability to compute the ST-MLPG included in
MAGE on our motion models and alter the parameters
of those models – i.e. means and variances – in real-
time gives a first reasonable glance at the exploration
of motion styles. Indeed, in our gait modelling use
case, it means that we can switch instantaneously be-
tween various styles, compare them, slow them down,
etc. However a very important feature is still miss-
ing in order to truly present a “stylistic space” to the
user: the ability to continuously travel between (inter-
polate) and beyond (extrapolate) existing styles.

This notion of model interpolation exists in the
HTS research – hence for speech modelling – for
quite some time (Zen et al., 2009). The idea is to
train K differentiated models lk. We call l0 the aver-
age model, i.e. the model trained on all the available
data, and each k then corresponds to a new model,
trained only on the data of a given style. For instance,
in our gait modelling use case, l1 would be proud, l2
decided, etc. Then we can build a new model l? in
which each parameter is the weighted sum of all the
same parameters taken in the K models lk (or a sub-
set). Both duration and observation models are modi-
fied in the computing of the parameters of l?.

Depending on the strategy behind the weighted
sum, the resulting l? model can be (see Figure 6):

� the blending between two or more arbitrary styles;
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� the inhibition of a given style: interpolation be-
tween a style lk and the average model l0;

� the exaggeration of a given style: interpolation
between a style lk and the average model l0, ex-
trapolating beyond the style lk;

� the inversion of a given style: interpolation be-
tween a style lk and the average model l0, ex-
trapolating beyond the average model l0.

Figure 6: Illustration (on two parameters) of how a
weighted sum between K differentiated models lk can help
to create inhibition, exaggeration, inversion of a given style,
and also blending between two or more arbitrary styles.

Model interpolation based on weighted sums was
already available for speech synthesis in the existing
version of MAGE (Astrinaki et al., 2012). Along with
adapting the computation of the MLPG for mocap
data, we have also adapted the model interpolation
routines. As a result, we can now load our whole
collection of HTS models trained on various motion
styles in MAGE and interactively change the weights
between the parameters of those models, so as to cre-
ate the l? model that is required by the MLPG. This
feature ultimately creates an interactive stylistic space
based on motion statistics. Indeed the user action of
inhibiting, exaggerating, inverting a style or blending
between arbitrary styles will instantaneously be con-
verted into the ongoing animation trajectories to be
applied on the virtual character.

4 APPLICATION DESIGN

Section 3 has described the series of improvements
that we have achieved on the MAGE software library.
In this Section, we show how we have integrated this
new version of MAGE in an end-user application for
the exploration of motion stylistics. In the design of
this application, we wanted the user to be able to care-
fully mix styles, like a musician mixes sounds from
different tracks. Therefore we have developed a stan-
dalone “console-like” application that sits on the top
of Blender (Blender, 2002) and provides a layer of

stylistic abstraction to the user, while sending anima-
tion trajectories in realtime to the virtual character.

Figure 7: Summary of the design used to create our stylistic
gait exploration application: Blender-rendered virtual char-
acter receiving animation data and a standalone GUI run-
ning MAGE in order to send the animation data.

In term of implementation, the application relies
on an OSC communication running between Blender
and a custom standalone C++ application for the
model interpolation and the parameter generation al-
gorithms as included in MAGE. A Python script has
been developed in Blender so as to listen to incoming
OSC messages and apply the received animation data
to the virtual character in realtime. On the other side,
openFrameworks has been used as our C++ applica-
tion builder. MAGE has been integrated in a single-
window openFrameworks project with a series of cus-
tom sliders directly connected to the weights applied
on each lk. As described in Figure 7, each model
slider could either inhibit, exaggerate or invert the
model within the overall blending strategy. An illus-
tration of reactive walk style control can be found at
http://youtu.be/OeUmVDxdJc8.

5 DISCUSSION

The application described in Section 4 has been infor-
mally presented to a group of test users. As soon as
the application is started, the virtual character walks
continuously. At the starting point, the character
walks in a neutral way, i.e. with no specific influ-
ence of any lk stylistic model on the average model.
Users were proposed to play freely with the console
of sliders and highlight the interesting walking styles
that they would find through the exploration.

As illustrated in Figure 8, the user exploration
reveals a much wider range of stylistic expression
than any top-down observation of original mocap data
would have suggested. By playing with features like
inhibition, exaggeration and inversion of a given style,
the users get a much more impersonated perspec-
tive on what has been originally recorded and statisti-
cally modelled for that style. By combining arbitrary
styles, users create new walks that, if they have not
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Figure 8: Examples of gait poses coming from the ex-
ploration application for various configurations of the slid-
ers. We can see inhibited/exaggerated versions and arbitrary
combinations of various styles.

been originally recorded, are however consistent with
the overall stylistic behaviour of the captured subject.

With this application, users have been able to get
their hands on a very high-dimension space (orig-
inally 3260 parameters) through a simplified GUI,
while not reducing nor hiding its complexity and vari-
ability. Compared to playing back original mocap se-
quences, the ability to browse a continuous stylistic
space in realtime is more interactive and user-centred.
Finally the representation of motion data through a
3D virtual character helps users to experience the
real motion and not a non-intuitive series of motion
curves. We think this made a huge difference in users’
ability to understand the ongoing stylistics.

6 CONCLUSIONS

In this paper we presented an innovative approach to
the exploration of stylistic motion capture databases
through a realtime motion synthesis framework. The
feasibility and pertinence of this approach has been
demonstrated on an expressive gait space exploration
use-case. Our application enables the user to freely
browse the stylistic space, exaggerate, inhibit or in-
vert the styles present in the training data, but also
to create new styles through combination of the exist-
ing styles. This reactive control provides a completely
new way of visualising and exploring the motion style
space. Since motion style is a notion difficult to de-
scribe or apprehend, we believe this approach to be a
valuable tool for the exploration and comprehension
of expert gestures which are a part of the intangible
cultural heritage which is very difficult to represent.

ACKNOWLEDGEMENTS

J. Tilmanne and T. Ravet are supported by the
European Union (FP7-ICT-2011-9), under grant
agreement no 600676 (i-Treasures project). N.
d’Alessandro is funded by a regional fund called
Région Wallonne FIRST Spin-Off. M. Astrinaki is
supported by a PhD grant funded by UMONS and
Acapela Group.

REFERENCES

Animazoo (2008). IGS-190. http://www.animazoo.com.
Astrinaki, M., D’Alessandro, N., Picart, B., Drugman, T.,

and Dutoit, T. (2012). Reactive and Continuous Con-
trol of HMM-Based Speech Synthesis. In IEEE Work-
shop on Spoken Language Technology.

Astrinaki, M., Moinet, A., and D’Alessandro, N. (2011).
MAGE: Reactive HMM-Based Software Library.
http://mage.numediart.org.

Blender (2002). Blender. http://www.blender.org.
Brand, M. and Hertzmann, A. (2000). Style Machines. In

27th Annual Conference on Computer Graphics and
Interactive Techniques, pages 183–192.

Grassia, F. S. (1998). Practical Parameterization of Rota-
tions Using the Exponential Map. Journal of Graphics
Tools, 3(3):29–48.

Li, Y., Wang, T., and Shum, H. Y. (2002). Motion Texture:
a Two-Level Statistical Model for Character Motion
Synthesis. In 29th Annual Conference on Computer
Graphics and Interactive Techniques, pages 465–472.

Tilmanne, J., Moinet, A., and Dutoit, T. (2012). Stylis-
tic Gait Synthesis Based on Hidden Markov Models.
EURASIP Journal on Advances in Signal Processing,
2012:72(1):1–14.

Tilmanne, J. and Ravet, T. (2010). The Mockey Database.
http://tcts.fpms.ac.be/˜tilmanne/.

Tokuda, K., Yoshimura, T., Masuko, T., Kobayashi, T., and
Kitamura, T. (2000). Speech Parameter Generation
Algorithms for HMM-Based Speech Synthesis. In
IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 3, pages 1315–1318.

Tokuda et al. (2008). HMM-Based Speech Synthesis Sys-
tem (HTS). http://hts.sp.nitech.ac.jp.

Wang, Y., Xie, L., Liu, Z., and Zhou, L. (2006). The
SOMN-HMM Model and Its Application to Auto-
matic Synthesis of 3D Character Animation. In IEEE
Conference on Systems, Man, and Cybernetics, pages
4948–4952.

Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., and
Kitamura, T. (1998). Duration Modelling for HMM-
Based Speech Synthesis. In 5th International Confer-
ence on Spoken Language Processing, pages 29–32.

Zen, H., Tokuda, K., and Black, A. W. (2009). Statisti-
cal Parametric Speech Synthesis. Speech Communi-
cation, 51(11):1039–1064.

Exploration�of�a�Stylistic�Motion�Space�Through�Realtime�Synthesis

809


