
Integrating Testing into Agile Software Development Processes

R. van den Broek1, M. M. Bonsangue2, M. Chaudron3 and H. van Merode4

1JEM-id, Amersfoort, The Netherlands
2LIACS – Leiden University, Leiden, The Netherlands

3Chalmers – University of Gothenburg, Gothenburg, Sweden
4KLM Royal Dutch Airlines, Schipool, The Netherlands

Keywords: Software Processes, Agile Development, Scrum, Testing, Agile Testing.

Abstract: Although Agile methodologies have grown very popular, there is a limited amount of literature that combines
Agile software methodologies and testing, especially on how testing is integrated with Scrum. In this paper we
present an analysis of problem based on case study performed at the IT department of KLM regarding testing
in a Scrum team. After having triangulated our results with several interviews with external topical experts
and existing literature we propose a visual model that integrates testing activities in Scrum.

1 INTRODUCTION

Over the last years more and more organizations
have started to adopt, or already have adopted, Ag-
ile methodologies for their software development pro-
cesses (VersionOne, 2011). The increased pressure
of the Internet industry on realizing a fast time-to-
market, designing flexible processes, and responding
to changing requirements poses several challenges to
organizations’ established software development ap-
proaches. Combined with the continuous struggle
software development teams face in the dilemma of
increasing productivity while also maintaining and/or
improving the quality of the software delivered (Lind-
vall et al, 2004), organizations and teams are moti-
vated to look out for new ways to develop their soft-
ware.

Agile methodologies build upon the values ex-
pressed in the Agile Manifesto (Cunningham, 2001)
and aim to achieve close customer collaboration, to
deliver business value as soon as possible in an incre-
mental manner, and to respond to changing customer
requirements (Barlow et al, 2011; Cockburn, 2003).
The methodologies captured under the umbrella term
”Agile methodologies” are not new concepts per se,
but the combination of existing best practices with
new techniques and a new mindset make them a re-
freshing and stable approach towards software devel-
opment. Although the benefits of Agile methodolo-
gies seem to be appealing, misinterpretations of the
Agile manifesto and/or inappropriate project contexts

can hinder teams in achieving their goals (Barlow
et al, 2011). Furthermore, various researchers have
recognized that there is no ”one size fits all” (Barlow
et al, 2011; Boehm and Turner, 2003a; Lindvall et al,
2004) methodology for software development, and or-
ganizations should assess both a project’s context and
the organizational context when selecting a suitable
development approach (Boehm and Turner, 2003b).

At the moment, the most frequently practiced Ag-
ile methodology is Scrum (VersionOne, 2011). Scrum
provides a lightweight process framework that can
be described in terms of roles (product owner, scrum
master, team), process (planning, iteration, review),
and artifacts (product and sprint backlogs, burndown
charts) (Schwaber and Sutherland, 2009).

Testing in Agile projects is different from tradi-
tional testing because of the continuous and integrated
nature of testing in the project lifecycle from the very
beginning (Crispin and Gregory, 2009; Lindvall et al,
2004; Talby, Keren, Hazzan, and Dubinsky, 2006).
Furthermore, because every iteration aims to deliver a
”potentially shippable” product, the developed func-
tionality within every iteration should be tested and
validated in order to assure that risks are covered.
Also the role of a tester in Agile projects changes sig-
nificantly with respect to the traditional role (Crispin
and Gregory, 2009; Kaner, 2004; Sumrell, 2007; Vis-
itacion, Rymer, and Knoll, 2009). Typically Ag-
ile projects do not have extensive requirements, nor
a complete architecture, but both evolve (and can
change) over time. As a consequence, testers must be

561van den Broek ., Bonsangue M., Chaudron M. and van Merode H..
Integrating Testing into Agile Software Development Processes.
DOI: 10.5220/0004877105610569
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 561-569
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



able to cope with evolving, incomplete requirements,
architectures, and products. Other challenges posed
to testers are the close team-collaboration, the in-
creased focus on test automation and regression test-
ing, and exploratory testing. Although the differences
between Agile testing and traditional testing are var-
ious, the test types and techniques that are applied in
Agile testing are not different from those applied in
traditional testing (van Veenendaal, 2010; van Vee-
nendaal, 2009). After all, the goal of testing is still to
verify that requirements are met.

The popularity of Agile methodologies has re-
sulted in a set of valuable scientific publications that
mostly report about case studies and experiences dur-
ing the introduction of Agile methodologies. How-
ever, the extent to which the focus has been specif-
ically given to the aspects of testing and quality as-
surance remains very limited. The only exception
we are aware of is (Karlsson and Martensson, 2009),
where a set of brief recommendations is proposed to
the existing test process. Relevant aspects that testers
need to know in Agile methodologies are also men-
tioned in (Astels, 2003; Beck, 2003; Crispin and Gre-
gory, 2009) and (Madeyski and Biela 2007; Madeyski
and Biela 2008). However, these publications remains
rather unclear on the way organizations starting with
Agile development should integrate their testing pro-
cesses.

In this paper we try to cover this gap, by identify-
ing the problem areas (Section 2), outline recommen-
dations (Section 3), and incorporate these in a model
(Section 4) that can be used by organizations to in-
tegrate their testing with Scrum. We have based our
observations on our experience on a project team at
KLM implementing Scrum as development method-
ology, and by visiting two other companies active in
the transportation sector. The results have been an-
alyzed using the grounded theory approach (Strauss
and Corbin, 1994), followed by the development of
a model how testing could be integrated with Scrum
and what practices/activities are recommended to im-
plement in future projects in order to enable a smooth
integration. The developed model and recommenda-
tions have been triangulated with external topical ex-
pert interviews, existing literature, and targeted inter-
views with KLM employees, as briefly explained in
Figure 1.

2 OBSERVATIONS

In this section we describe the case and the observa-
tions made during an implementation at KLM Scrum
as development methodology. We have categorized

our observations into five categories: project prepa-
ration, team composition, product backlog design,
sprint preparation, and product quality.

The project under observation was about the de-
velopment of a mobile web-application to be used by
KLM employees. The core Scrum team selected for
this project initially consisted out of 3 developers, 1
tester, a product owner and a Scrum master. In to-
tal, 7 sprints have been implemented over a period of
3 months whereby each sprint lasted two weeks. It
was the first time at KLM that test competence (CC
Test Management) was involved into an Agile devel-
opment process. Besides testers, also Business, In-
formation Management, and Operations were aligned
to the project in order to have a true cross-functional
group of stakeholders and to be able to pilot Agile
through the whole organization (and not just the IT
department).

2.1 Project Preparation

Project preparation turned out to be an essential as-
pect for the team to reach an efficient way of working
which, if not done properly, can result in a set of im-
pediments and waiting times. It is important to pre-
pare enough elements so that a team can efficiently
start sprinting.

In the project we observed there was no access to
test and acceptance environments before the first it-
eration started. The unavailability of these environ-
ments has caused several problems due to a delay of
5 weeks before resolving. First, the tests that were
actually executed were executed from a developer en-
vironment, thus demanding time from programmers
to prepare their environments. Although Agile ad-
vocates collaboration and interaction (Cunningham,
2001), this situation caused unnecessary delays for
both the tester and the programmer. Second, develop-
ment environments are not similar to test - or accep-
tance environments, thus questioning the value and
quality of the tests.

While Agile promotes communication about team
roles and personal expectations, the project at KLM
faced initial difficulties in overcoming the traditional
viewpoint of a tester’s tasks and responsibilities. In
combination with the unavailability of test environ-
ments the added value of the tester was not recog-
nized, eventually resulting in the termination of a
tester’s contract after 2 iterations.

Further, incomplete and unclear system depen-
dencies caused problems during the development and
testing of the application. It was not known which in-
teractions should be tested, what test data should be
used, and what the expected results of the test data

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

562



Figure 1: Research Methodology.

were supposed to be. Iteration 4 reported a change
in the deployment platform. Although Agile method-
ologies are capable of dealing with changing require-
ments (and so was the project team), platform require-
ments need some stability to avoid wasting valuable
time.

2.2 Team Composition

The project has seen the come and go of several differ-
ent team members. Due to a combination of the ear-
lier stated issues in total, three different persons have
been working as tester in the seven iterations of the
project, leaving periods of one to two weeks between
the exit and entry of the next tester. Furthermore, the
project has employed a total of five programmers with
an average involvement of 2.5 programmers per iter-
ation. With the absence of a tester in iteration 3, only
programmers and business stakeholders tested the ap-
plication (both not possessing the specific test skills).
Furthermore, after a new tester joined the project, the
defect data-trends in iteration 4 and 5 showed peaks
in the number of defects found. These peaks made it
difficult to complete all estimated user stories, given
that the team had not reserved time to resolve defects.

Of course, the entrance of a new member to the
team affects a team. Without previous project knowl-
edge new members need to orient themselves and dig
up assumptions the team already has, which takes
time and can hinder the flow of the team.

2.3 Product Backlog Design

Preparing the product backlog’s content for sprint
planning sessions was not implemented in a proper
way and caused meetings to overrun in time, cre-
ated tensions in these meetings, and contributed to the
lack of overview of the business. Initially, the prod-
uct backlog was not prioritized and user stories that
were placed on the product backlog were too large
in size. Subsequent sprint planning meetings priori-
tized user stories, but they were not concrete enough
for the team to be understood. More urgent was the

fact that some stories were also unclear to the business
stakeholders. The results were lengthy sprint plan-
ning sessions, high effort estimates because of uncer-
tainty, and shifting of the story’s priorities due to the
missing information.

Unclear user stories in sprint planning resulted in
changing sprint backlogs during a sprint, while de-
velopment and testing had already started (which is
against Agile). Occasionally, the content of user sto-
ries changed which resulted in additional rework.

2.4 Sprint Preparation

Sprint preparations aim to set the scope for the up-
coming iteration and to generate effort estimates for
this scope. Although a sprint’s preparation is related
to the product backlog design issues, there were more
aspects that hindered the team. Because of the peaks
of defects discovered in iteration 4 and 5 the team had
to concentrate on resolving defects during sprint plan-
ning rather than on the user story. As a result the time
spent on closing defects exceeded the time reserved
and only an average of 70% of the user stories was
concluded. Combined with the product backlog de-
sign issues, it resulted in programmers not knowing
what the business expected, and testers with difficul-
ties in designing and executing test cases that reflected
the business’ wishes.

To save time, those user stories of which accep-
tance criteria were discussed at sprint planning, were
not documented or stored in a systematical manner.
The result was that the acceptance criteria become
vague (or forgotten) and thus required a re-consult of
the business for re-clarification of already discussed
issues.

2.5 Product Quality

In Agile development it is a team’s responsibility to
deliver increments of a ”potentially shippable” prod-
uct that is continuously assured to be of high qual-
ity. Due to several impediments the team we ob-
served faced time pressures in the first two iterations,

Integrating�Testing�into�Agile�Software�Development�Processes

563



which resulted in the development of quick and dirty
solutions implying that code quality can get at risk,
potentially affecting the product’s quality. The deci-
sion in the tradeoff between resolving the problems
by code refactoring and implementing new function-
ality was not obvious. The first got the team’s pref-
erence, whereas new functionality had the business’
preference.

The demonstration at sprint 3 revealed some de-
fects that were not found during the sprint. Since
there was no tester present in the team on that sprint,
the overall product quality was questionable. Espe-
cially when the business gets to face defects that the
team is unaware of, convincement of putting a product
into production gets harmed. Further, technical doc-
umentation appeared to be incomplete making code
and technical decisions harder to understand

3 RECOMMENDATIONS

Based on the observations and analysis outlined in
Section 2 we have produced a set of recommenda-
tions addressing the issues identified and aiming at
improving the integration of testing into Scrum-based
projects. Although each recommendation can be im-
plemented on itself, the combination of recommenda-
tions shows an interrelated set that complements each
other in the areas where difficulties have been experi-
enced.

3.1 Implement Sprint Zero

In order to deal better with preparation issues, Sprint
Zero1 (also known as ’pre-iteration’, or ’iteration 0’)
can add value to the process by putting in place
enough elements for the team to achieve an efficient
and effective process. Although there is ”sprint” in
the name, the duration of this phase should not be
fixed but tailored to the characteristics and demands
of a project.

For teams and organizations new to Agile it is im-
portant to clearly communicate the changing project
roles (Sumrell, 2007) (especially the tester’s role),
and to manage expectations within, but also outside,
the team (Lindvall et al, 2004; West et al, 2010).
It has been recognized that although teams are self-
organizing they require a shared mindset, values and
principles (Fry and Greene, 2007). Training initia-

1Jakobsen and Johnson (Jakobsen and Johnson, 2008)
see Sprint Zero as a kind of CMMI (Team, 2006) planning,
and state that the use brings more discipline to the project -
resulting in a projection of successes in larger Agile projects

tives and organizing workshops can help in attaining
this goal.

Following the vision of lean development (Pop-
pendieck and Poppendieck, 2003), waste in the soft-
ware development process should be minimized.
Teams interact with many, and depend on some, dif-
ferent organizational stakeholders and actors (Lind-
vall et al, 2004), that each can cause delays for the
project team when the team has failed to contact or
involve them in the project. In order to minimize the
effect of organizational stakeholders on the team and
the process, possible impediments they may cause
should be eliminated early on.

From a test perspective, sprint zero is an ideal time
to design a suitable test strategy. Outlining the over-
all approach towards testing focusing on the product’s
characteristics and risks, but also think of approaches
regarding defect management, test automation, and
regression testing. Furthermore, one might need spe-
cialist testers to do non-functional testing or access to
stakeholders to do user acceptance testing, which can
be reserved/contacted from the beginning.

As preparation to the project it is a good practice
to arrange the test infrastructure (environments and
tooling) before the first iteration starts. Not being able
to thoroughly test from the beginning hinders the true
continuous and integrated nature testing is supposed
to have in Agile development, and leads testing to lag-
ging behind on development immediately.

Although the overall IT architecture of large orga-
nizations is complex, dependencies should be identi-
fied between the system to be developed and the ex-
isting infrastructure. If not, the result can be long
waiting times to get the specifications and access, but
might also be implemented functionality that is based
on the wrong interactions (and thus requires rework).

During sprint zero, the Definition of Done (DoD)
(Claesson, 2011) should be designed in collaboration
with the project stakeholders in order to define when
a release, a sprint, or a user story is satisfied. Not
only can the team set the quality criteria and activities
that they think are required for each user story, iter-
ation, or release; but other stakeholders that interact
with the project/product in later stages such as main-
tenance can also contribute in, for example, cases of
technical documentation.

3.2 Implement Product Backlog
Grooming

Product Backlog Grooming sessions are intended to
review the product backlog before the next sprint
planning and can be used to address the problems re-
lated to the design of the product backlog and user sto-

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

564



ries. Furthermore, by executing it in a parallel fashion
to a running sprint, upcoming sprint planning sessions
are supposed to be relieved from lengthy discussions
and un-ready user stories.

During the grooming sessions user stories are an-
alyzed regarding their size, level of detail, and depen-
dencies. Large stories need to be sliced down and am-
biguous or incomplete stories should be corrected by
the Product Owner. Stories that contain dependencies
with other stories need to be carefully planned (e.g.
preferably not in the same sprint).

These sessions can further help the team in iden-
tifying what extra actions should be taken before
certain pieces of functionality can be implemented.
Whenever new requirements have been designed that
require additional tooling, test data, or environments,
actions can already be taken to prevent waiting time
in the next sprint. Finding out these things during a
sprint planning session may result in delays during
sprints (as occurred in the observed project).

To reduce costs, at least the Product Owner, the
Scrum Master, a tester, and one developer should be
be participating in grooming the product backlog. In
fact each of these participants add value through a dif-
ferent perspective, but especially a tester contributes
because of the critical perspective to get user stories
testable.

Given the fact that product owners and business
stakeholders may have difficulties in designing user
stories (Fry and Greene, 2007; Lindvall et al, 2004;
Seffernick, 2007; West et al, 2010) the adoption of
a Definition of Ready (DoR) is also recommended.
As is the case with the DoD, the DoR aims to set
quality criteria on a user story but this time to label
it as ’READY’. Previous research by (Jakobsen and
Sutherland, 2009) has showed that the DoR is able
to remove the waste caused by issues related to user
stories.

3.3 Use the Whole Team Approach

Our major recommendation is to have a tester in the
team and to keep the team constant for at least the du-
ration of the project. A constant team does not face
the delays that are related to people getting used to
the team and to the project and are thus better able to
learn as a team. Furthermore, with a multi-functional
team including a tester, continuity of product quality
is better assured because the test efforts can be uni-
formly distributed in all sprints.

Having a tester in the team contributes to the prod-
uct backlog design issues by providing a perspective
that is focused on the customer, but also takes into
account the technical problems that may occur during

development. The combination of the complementary
perspectives of programmers, product owner / stake-
holders, and tester, is also referred to as ’The Power
of Three’ (Crispin and Gregory, 2009). Furthermore,
testers are the ones that preserve the ’helicopter view’
over a product and are able to assess whether the over-
all quality would be acceptable to the business.

Although the entire team should be responsible for
testing, and testing should be a task that can be ex-
ecuted by any team member (Crispin and Gregory,
2009), our experience demonstrates that without a
tester the product’s quality might be at risk during
sprints: defect trends show an immediate increase
when a tester is not present in a team. Evans (Evans,
2009) supports the case for the value of the specific
test-skills a tester brings in order to deliver high-
quality software that meets the business’ needs. Ad-
ditional support is provided by (Sumrell, 2007) stat-
ing that everyone should be focused on quality and
that Agile testers are the ones infusing quality into the
team and the product throughout its lifecycle.

An often referred to model that is used for Ag-
ile testing, is ”The Agile Testing Quadrants” (Crispin
and Gregory, 2009). Originally, the model was de-
veloped by Marick (Marick, 2003) in order to distin-
guish the different type of tests that each serve dif-
ferent purposes. Without a tester in the team, it is
unlikely that the four quadrants are covered enough.
Programmers will be primarily focused on the first
quadrant describing technical tests that verify small
pieces of functionality. But business analysts and UI
designers will mostly focus on the third quadrant de-
scribing business tests focused on business scenario’s
and user interaction. This leaves two quadrants with-
out enough attention, namely the one on business tests
that verify whether user story’s acceptance criteria
are met, and the other on technical tests that verify
whether the non-functional requirements, or quality
attributes, are met.

For a team to implement a good ”Whole Team Ap-
proach” (Crispin and Gregory, 2009), it is important
to select a tester that fits Agile development and is
compatible within the team. The continuous and in-
tegrated nature of Agile testing, the team pressure on
delivering business value, and the team’s responsibil-
ity for quality are changing the role of a tester in Agile
projects. A skill of testers part of a Scrum team should
include knowledge about Scrum, hard skills (i.e. test
[automation] skills and acceptance test driven devel-
opment skills), and also good soft skills (i.e. commu-
nicative skills) because of the focus on individuals,
interaction, communication, and feedback (Cunning-
ham, 2001).

Integrating�Testing�into�Agile�Software�Development�Processes

565



3.4 Implement Acceptance Test Driven
Development

Implementing Acceptance Test Driven Development
(ATDD) can help teams in developing a good input
for test case design. ATDD resembles the practice of
extracting acceptance criteria, examples, scenarios, or
workflows from the product owner while discussing
the desired functionality of user stories. The goal of
the technique is to collect the test basis for user sto-
ries that can be enhanced to design test cases for these
stories immediately. Not only does the technique re-
sult in a test basis, it also facilitates and guides the
directions of the discussions.

From a test perspective, acceptance criteria are
important to identify given they are used to validate
functionality. Also, having acceptance criteria clear
and documented at the beginning of an iteration re-
inforces a programmer’s mindset and helps her/him
in developing a properly designed set of unit tests
through Test Driven Development (TDD).

But there is more value to find in practicing
ATDD: it significantly speeds up the process of de-
signing test cases and also has them resemble the
”real-world” better (Adzic, 2009). Furthermore, de-
pending on the nature of the test cases and the piece
of functionality, the tests can be transformed into au-
tomated tests to be executed efficiently and requiring
very little effort from a tester.

3.5 Focus on Value and Risk

Having traditional testing focusing primarily on the
risk areas, Agile development stresses the importance
of realizing business value. Although there is value in
covering those areas where business gets hurt most,
there are also other areas that may not be a high risk
but do deliver high value (i.e. benefits). Testing in Ag-
ile projects should thus not focus only on identifying
and covering ’risk areas’, but should also on identify-
ing and covering the ’value areas’. Functionality that
does not deliver direct ’damage’, but can deliver di-
rect ’benefits’ is as important to the business and thus
should be assured of high quality.

There exist several tools to help teams in defining
what is value for features. Initially, user stories were
designed to model functionality that provides value to
the business by requesting the writer to express who
the stakeholders are and why they want this function-
ality (Cohn, 2004). Adzic (Adzic, 2011) recognized
that there is a need to also have a project overview
of delivering value and introduced effect maps. An
effect map aims to guide a team in setting priorities
to those features that contribute most to the business

goals that were set. By using this tool and combining
this with a risk-value based test approach, both func-
tionality with high risks and high value are covered
by testing.

3.6 Start Test Automation Early

One of the first recommendations that is often made
to Agile teams is to start test automation early on. In-
vestments in the automation of tests will deliver pay
back in later stages by reducing the amount of time
required to execute tests. Automated tests are effi-
cient and consequent in execution and reduce the time
required for testing significantly. Especially regres-
sion testing can benefit from automation given the fact
that the regression test suite grows over time and will
reach a stage where testing can no longer keep up with
development.

However it is questionable whether test automa-
tion has to be applied in every project. For exam-
ple, for projects focussing on user interface on mobile
devices automation is difficult. Also, when a project
lifetime until maintenance is less than 3 months test
automation could be avoided. Finally, test automa-
tion requires a significant initial investment, and thus
it should be considered whether the Return on Invest-
ment (ROI) for test automation is positive. Teams
should consider the expected ROI of test automa-
tion during Sprint Zero, and question to what extent
maybe only parts of the test activities, such as prepar-
ing test data, can be automated.

4 PROPOSED MODEL

To assist organizations (especially those new to
Scrum) with the integration of testing and QA activ-
ities with Scrum and the changing role of a tester in
Agile projects, we have developed a model that out-
lines the different aspects related to testing and QA
within the Scrum framework, see Figure 2 in the ap-
pendix. The rationale behind the model is based on
the project observations, the set of recommendations
outlined in Section 3, the interviews conducted, and
the academic literature consulted. Besides the chang-
ing role of a tester in Agile projects, we also see a
changing role for the test manager: a test manager
will be of a supportive role during the project when
it comes to, for example, the arrangement of test spe-
cialists and the test infrastructure, and will primarily
be actively involved in sprint zero.

The model distinguishes between the process
framework and a sub-layer of identified activities,
practices, and tools that relate to steps in the process.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

566



Figure 2: The Scrum and Testing Framework.

Activities resemble the activities a team and testers
do during the development process; practices resem-
ble the identified practices that are recommended to
incorporate in the Scrum process; and tools resemble
means that can assist the team in performing its work.

Starting from the initiation of a project, we go
through an adjusted version of the general Scrum pro-
cess framework. As can be seen from the figure,
Sprint Zero has been included as we see it as an es-
sential phase for Scrum teams to be able to imple-
ment sprints in an efficient and effective manner from
the start. As stated before, the duration of Sprint
Zero can be flexible as long as the team gets prepared
well enough to start the first sprint. Besides taking
away possible impediments, communicating the role
of testers in the project, and arranging the required
test infrastructure, the team can develop a shared un-
derstanding about quality by defining the overall test
strategy, designing a good definition ready and a good
definition of done.

The inclusion of product backlog grooming and
release planning as clear steps in the process (and
as activities in sprint zero) stresses the importance
we again see in enough preparation. By eliminating
waste regarding the content and composition of user
stories in a timely manner, these activities aim to pre-
vent the team from unnecessary long sprint planning
sessions, ambiguous user stories, unclear priorities
and unclear content. Preparing the product backlog
for sprint planning sessions by timely reviewing also
trains the business in designing their stories in such a

way that they are accepted as ’READY’ by the team.
Following from good product backlog grooming, the
sprint planning sessions in their turn will be more fo-
cused on what they should be: finding out what it is
that the business really needs.

Following from a properly designed set of user
stories, the implementation of ATDD provides a valu-
able way to extract user stories’ acceptance criteria
and examples, which together are a valuable source of
input for test case design. By driving the dialogue be-
tween programmers, testers, and the business, ATDD
aims to guide the team to find out what it is that the
customer really wants (i.e. challenging the business),
what his or her true acceptance criteria are, and what
kind of real-world examples there might appear in
practice. Together with well designed user stories,
ATDD enables a team to develop a large part of test
case design before a sprint has even started.

The above three inclusions relate to the changing
role we see for a tester. Being integrated with the de-
velopment team and being involved with the project
from day 0, testers can add a lot of value to the team
as a whole. Although the added value of a tester may
be clear during the execution of a sprint given the re-
lation to traditional testing (i.e. test case design, ex-
ecution of test cases, defect management, etc.), we
especially see opportunities for testers to add value to
the team during sprint zero, product backlog groom-
ing, and sprint planning sessions.

The model contains several notions of risk and
value based testing in sprint zero, sprint planning,

Integrating�Testing�into�Agile�Software�Development�Processes

567



and product backlog grooming. We see the focus on
both risks and value as an important switch compared
to the traditional risk-perspective. In order to create
a consistent focus throughout the entire project, we
state that teams should start to identify business value
and priorities of desired functionality in sprint zero.
A tool through which this can be done is the effect
map (Adzic, 2011), outlining the relationships be-
tween functionality, stakeholders, and business goals
(i.e. the value the project wants to generate). Know-
ing the value that can be realized by specific pieces
of functionality, the test planning for one iteration can
map the combination of the risks and the value in user
stories in order to set the priorities for testing and in
this way ensuring that the test effort is focused on the
most important aspects for the business.

5 CONCLUSIONS

In this paper we present an empirical study that ex-
poses the difficulties that were faced by a project at
KLM regarding the integration of testing with Scrum.
Based on the project observations, additional inter-
views, and existing literature we have analyzed the
problem areas and propose a set of recommendations
that help organizations to integrate their testing into
Scrum. The recommendations are maybe common
sense and when seen in isolation they are not neces-
sarily novel. Our contribution is in complementing
the recommendations by developing a model that ex-
tends the common known Scrum framework in order
to map the activities, practices, and tools that are re-
lated to testing and quality assurance.

We have not included experimental results to vali-
date our framework, because to draw general conclu-
sions about the added value of the proposed model
a large number of development teams in different
contexts would have to be observed and measured.
However, in order to prevent threats to the valid-
ity of our findings, we have taken several measures.
First, to preserve construct validity and internal va-
lidity, we have consulted multiple sources during
the development of the model: literature, expert in-
terviews, project observations, and workgroup ses-
sions. Second, the interviews and project observa-
tions have been transcribed, coded, and analyzed fol-
lowing the grounded theory approach (Strauss and
Corbin, 1994). Third, to preserve external validity,
two similar companies have been visited, external ex-
perts have been consulted and literature was used in
order to prevent any bias.

ACKNOWLEDGEMENTS

We would like to thank KLM for providing the op-
portunity to observe a real-life project implementing
Scrum and all interviewees that have freed their valu-
able time to help us in our study.

REFERENCES

G. Adzic. Bridging the Communication Gap: Specifica-
tion by Example and Agile Acceptance Testing. Neuri
Limited, 2009.

G. Adzic. Agile product management using Effect Maps.
Agile Record The Magazine for Agile Developers and
Testers, 2011.

D. Astels. Test-Driven Development: A Practical Guide.
Pearson Education Inc., 2003

J. B. Barlow et al. Overview and Guidance on Agile Devel-
opment in Large Organizations. Comm. of the Ass. for
Inform. Systems, 29(1):25–44, 2011.

K. Beck. Test Driven Development: By Example. Pearson
Education Inc., 2003

B. Boehm and R. Turner. Balancing Agility and Discipline:
A Guide for the Perplexed. Addison-Wesley Pearson
Education, 2003.

R. Boehm, B. Turner. Using risk to balance agile and plan-
driven methods. Computer, 36(6):57–66, 2003.

A. Claesson. Test Strategies in Agile Projects. In EuroSTAR
2011, 2011.

A. Cockburn, L. Williams Agile software development:
it’s about feedback and change IEEE Computer,
36(6):39–43, 2003

M. Cohn. User Stories Applied: for Agile Software Devel-
opment. Addison-Wesley Professional, 2004.

L. Crispin and J. Gregory. Agile Testing: a Practical Guide
for Testers and Agile Teams. Addison-Wesley Profes-
sional, 7th ed., 2009.

W. Cunningham. Agile Manifesto, 2001.
http://www.agilemanifesto.org.

D. Evans. How to Succeed in an Extreme Testing Environ-
ment. Cambridge University Press, 2009.

C. Fry and S. Greene. Large Scale Agile Transformation in
an On-Demand World. In AGILE 2007, pages 136–
142. IEEE, 2007.

C. R. Jakobsen and K.A. Johnson. Mature Agile with a
Twist of CMMI. In Agile Conference, 2008, pages
212–217. IEEE, 2008.

C. R. Jakobsen and J. Sutherland. Scrum and CMMI: Going
from Good to Great. In Agile Conference, 2009, pages
333–337. IEEE,2009.

C.J.D. Kaner. The Ongoing Revolution in Software Test-
ing. Software Test & Performance Conference, Seat-
tle, 2004.

E. Karlsson and F. Martensson. Test Processes for a Scrum
Team. Master’s thesis, Lund University, Sweden,
2009.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

568



M. Lindvall, et al. Agile Software Development in Large
Organizations. IEEE Computer Society, 4:26–34, De-
cember 2004.

L. Madeyski and W. Biela. Empirical Evidence Principle
and Joint Engagement Practice to Introduce XP In
Proc. of Extreme Programming and Agile Processes in
Software Engineering volume 4536 of Lecture Notes
in Computer Science, pp. 141–144, Springer, 2007.

L. Madeyski and W. Biela Capable Leader and Skilled and
Motivated Team Practices to Introduce eXtreme Pro-
gramming in Proc. of Balancing Agility and Formal-
ism in Software Development, volume 5082 of Lec-
ture Notes in Computer Science, pp. 96–102, Springer,
2008.

B. Marick. Exploration through Example. http://
www.exampler.com/old-blog/2003/08/21/.

M. Poppendieck and T. Poppendieck. Lean Software De-
velopment: An Agile Toolkit. Addison-Wesley Pro-
fessional, 2003.

K. Schwaber and J. Sutherland. Scrum guide. Scrum Al-
liance, Seattle, 2009.

T. R. Seffernick. Enabling Agile in a large organization: our
journey down the yellow brick road. In Agile Confer-
ence, 2007, pages 200–206. IEEE, 2007.

A. Strauss and J. Corbin. Grounded theory methodology:
An overview. Sage Publications, 1994.

M. Sumrell. From Waterfall to Agile - How does a QA
team transition? In Agile Conference, 2007, pages
291–295. IEEE, 2007.

D. Talby, A. Keren, O. Hazzan, and Y. Dubinsky. Agile
Software Testing in a Large-scale Project. Software,
23(4):30–37, IEEE 2006.

C. P. Team. Cmmi for Development, Version 1.2. 2006.
E. van Veenendaal. Scrum & Testing: Back to the Future.

Testing Experience, 3, 2009.
E. van Veenendaal. Scrum & Testing: Assessing the risks.

Agile Record, 3, 2010.
VersionOne. State of Agile Survey 2011 - The State of Agile

Development. 2012.
M. Visitacion, J. R. Rymer, and A. Knoll. A Few Good

(Agile) Testers. Forrester Research Inc., 2009.
D. West and et al. Overcoming the Primary Challenges Of

Agile Adoption. Forrester Research Inc., 2010.

Integrating�Testing�into�Agile�Software�Development�Processes

569


