
Improving Context-aware Applications for the Well-being Domain
Model-driven Design Guided by Medical Knowledge

Steven Bosems and Marten van Sinderen
Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands

Keywords: Well-being, Context-aware Applications, Sensors, Model Driven Design, Medical Knowledge, Causal
Reasoning.

Abstract: Computing applications for among others well-being and health become increasingly advanced as a result
of their sensor-based awareness of the context in which they are used. Context-aware applications have the
potential of providing enriched services to their users, i.e. services that are appropriate for the context at hand.
A challenge for the design of context-aware applications is to identify and develop service enrichments which
are effective and useful while not being overly complex and costly. It is hard to imagine, both for the designer
and end-user, all possible relevant contexts and best possible corresponding enriched services. An enriched
service which is not appropriate for the context at hand can irritate or even harm the user, and (eventually) leads
to avoiding the use of the service. This paper discusses a model-driven approach that incorporates domain
knowledge concerning the causal relationship between context factors and human conditions. We believe
that such an approach facilitates the identification and development of appropriate sensor-based context-aware
services. We focus on context-aware applications for the well-being domain.

1 INTRODUCTION

Sensors have become ubiquitous in our modern soci-
ety, being literally almost always around us to play a
role in many day-to-day computing applications. Sen-
sors collect data from the physical world. They pro-
vide computing applications with the ability to ob-
serve and learn about the environment and situation
of interest to the user that interacts with these appli-
cations.

Important application domains include, smart
cities, smart environments, security, logistics, indus-
trial control, home automation, and ehealth (Avci
et al., 2010; Nakajima and Shiga, 2011). In this paper,
we focus on well-being.

Well-being is the state of being comfortable,
healthy, or happy. Computing applications that sup-
port well-being obviously can benefit from sensor
data that provide information on the user’s environ-
ment or situation. For example, the user may be in-
formed or advised, such that he can take action that
may improve his well-being, or the user’s environ-
ment (such as light and temperature) may be con-
trolled to this effect.

The development of context-aware well-being ap-
plications, being new and innovative products, re-

quires a different approach than the design of tradi-
tional applications: as they are new to the market,
users have no prior experience with comparable prod-
ucts, making it hard to formulate the desired function-
ality. Furthermore, applications in this domain are
typically mobile; this causes the context of the ap-
plication and user to change continuously, increasing
the difficulty to envision fitting services for every pos-
sible environment and situation. Due to these chal-
lenges, the use of an iterative development process is
more suited. In this paper, we shall elaborate on a
process geared at the development of context-aware
well-being applications.

Context-aware applications use an internal model
of the context. This context model is based on the
data that is captured by sensors. Applications apply
causal reasoning to determine which enriched service
(e.g., status report, advice, intervention, or control
action) best suits the current context as represented
in the context model. For the well-being domain,
we are therefore interested in consolidated medical
knowledge on the causal relationship between con-
text factors and human health/well-being conditions.
Such knowledge captured in a domain model would
provide a good starting point for the design process.
Firstly, the model would allow discussing the appli-

397Bosems S. and van Sinderen M..
Improving Context-aware Applications for the Well-being Domain - Model-driven Design Guided by Medical Knowledge.
DOI: 10.5220/0004877503970403
In Proceedings of the 3rd International Conference on Sensor Networks (SENSORNETS-2014), pages 397-403
ISBN: 978-989-758-001-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



cation functionality (which conditions should be in-
fluenced, by which enrichments, based on which con-
text factors/sensors) before (a prototype of) the appli-
cation is built. Secondly, the model provides bound-
ary conditions for the design, particularly regarding
the internal context model and the causal reasoning
model of the application.

The objective of this paper is to explore one
such model, especially with respect to its role in a
model-driven design process of context-aware appli-
cations for well-being. The design process should
exploit the model, and so facilitate the identifica-
tion and development of more effective and useful
sensor-based context-aware services. Furthermore,
the design process has potential of supporting semi-
automated derivation of the application model and
code.

The structure of this paper is as follows: section 2
discusses the need for domain modeling, section 3 de-
scribes how this domain model is to be used through-
out the development process of well-being applica-
tions, section 4 discusses our method, section 5 gives
an overview of related work, and section 6 provides
concluding remarks.

2 DOMAIN MODELING

The development of context-aware applications
which are effective and useful while not being overly
complex and costly is very challenging. Approaches
that focus on collecting correct and complete user re-
quirements as a way to achieve effectiveness and use-
fulness, only address one side of the problem. More-
over, they have to deal with the drawback of innova-
tive products: users are unable to formulate require-
ments beforehand, i.e. before they have seen and used
the product. Approaches in this area that have so far
been proposed therefore primarily focus on comple-
mentary requirements capturing methods, employing
“playtesting” through executable use cases and mo-
bile discovery (Jorgensen and Bossen, 2003; Seyff
et al., 2008).

Our approach uses dynamic domain models that
incorporate medical knowledge on causal relations
between context factors and well-being conditions.
Context- aware applications use related internal mod-
els to allow context reasoning. We believe that such
models to discuss effectiveness and usefulness, and
can be exploited in model-driven development to ad-
dress complexity and costs.

2.1 Model Contents

In order to model the domain, we first have to identify
the relevant knowledge on well-being. The concept of
well-being is abstract, and tells us in a subjective way
if a person is at ease and comfortable.

Not all factors that affect well-being are at the
same level of abstraction. We categorize them as be-
ing eitherphysical or conceptual. The former entails
those elements in the world that are tangible or vis-
ible, the latter includes those that are abstract ideas
or concepts. For example: a person’s blood pressure
or heart rate is considered a physical factor, whereas
stress is a conceptual factor.

In our domain model, we want to capture condi-
tions and factors from both these categories, and ex-
press how they influence each other. By doing so, we
can analyze causal relationships between elements of
the domain. Furthermore, if we want to influence a
specific element, we can reason how this should be
done.

2.2 Modeling Language

By interviewing experts on the domain of well-being
and well-working, we can construct a domain model
that covers the entire field of well-being. For repre-
senting domain models, we use an extended version
of the causal loop diagram (CLD) language (Ster-
man, 2000). Variables in CLD models represent con-
text factors and well-being conditions, arrows be-
tween variables express positive or negative causal-
ity between them: a positive causal link between the
variables “Stress” and “Blood pressure” indicates that
an increase in stress will cause the blood pressure
to increase as well. The inverse holds for negative
causal links. Our extension consists of annotating the
model variables with an [o] (Observable) if we can
directly observe the variable using sensors, with a [d]
(Derivable) if the variable can be derived, and with a
[c] (Controllable) if the variable can be directly con-
trolled using actuators.

This dynamic domain model allows us to perform
causal reasoning about context factors and well-being
conditions in the domain: if we would like to im-
prove a condition, we can argue how we are to reach
this increase and how we should measure it. The
overall domain model can be used to derive reason-
ing algorithms for context-aware well-being applica-
tions. Furthermore, by including norm values for vi-
tal signs, we can improve our reasoning capabilities:
these norms are taken from medical literature such as
(Hall, 2010), defining upper and lower bounds for vi-
tal signs. For example, the average resting heart rate

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

398



[d] Feeling of well-being

[d] Stress[d] Productivity [o] Heart rate

[o] Blood pressure

[d] Energy level

[o] Physical activity

[d] Perceived

workload

[o] Task

switches

+ +

- -

-

-

+

+
+

-

+

-

+

+

+

Figure 1: Domain model excerpt.

of an adult is between 60 and 100 beats per minute.
By including this information, we can reason what
should be done if for a user this value is out of these
bounds. An expert of our domain model, excluding
the norm values, is given in Figure 1.

3 DESIGN PROCESS

The domain model is the starting point for our de-
velopment method for context-aware well-being ap-
plications. The process consists of four steps, which
are discussed in the following sections. In these steps,
we move from a generic well-being domain model to
a prototype application which can be tested by users
and stakeholders. This prototype is then to evolve into
a marketable application.

3.1 Domain Model Reduction

The initial input for our development process is a
model that describes the entire domain of well-being,
covering all aspects of both mental and physical well-
being. The scope of this model is too broad to start
the development of a specific application. We must
therefore narrow down the scope, capturing the right
amount of information in an application specific do-
main model.

In order to create a model that is specific to the
application we are developing, we must first decide
what part of the well-being domain is to be supported
by the application. For example, an application can
focus on reducing stress, or increasing physical con-
dition. We shall call this our application goal.

Once we have decided on a direction for the ap-
plication, we have to identify which factors and are
related to this focus. To do so, we first analyze which
variables in the model are influenced by our goal.
Looking at an example that focuses on stress man-
agement as a goal, we see (see Figure 1) that stress

causes, among others, a high blood pressure, reduced
productivity, and an increased heart rate. As such,
these are of importance to our application. Once these
conditions have been identified, we can look at other
related variables: a reduction in productivity, for ex-
ample, both causes and is caused by stress. How-
ever, it is also caused by the number of times a user
switches from one task to another during work. As
such, we can reason that the number of task switches
made indirectly causes stress.

During this process step, we need information
from a number of stakeholders. For example,
prospective clients and commissioning companies
may help to determine the application goal. Addition-
ally, we need feedback from domain experts regarding
the factors relevant to our application.

After this step, we have obtained a model that con-
tains an application specific subset of the knowledge
of the complete domain model.

3.2 Application Structure Specification

The next step of our development process entails the
construction of a model that captures the static struc-
ture for our application. (Bosems et al., 2013) de-
scribe a high-level architecture for context-aware sys-
tems to support well-being. The authors found that
context-aware systems and applications follow a sim-
ilar pattern as traditional control systems. Sensors are
used in order to obtain information about the context
of the application. Using the sensor data, the applica-
tion populates an internal context model. This model
also contains derived context information, i.e. infor-
mation about the context that cannot be directly mea-
sured. Based on the context model, applications de-
cide on actions that are to be taken. These actions
are then performed by actuators; these can either be
physical (valves, lights, electro motors), or lexical
(user interfaces). Both the derivation of context in-
formation and the decision process regarding actions
involve reasoning governed by a a reasoning model.
By continuously measuring the context, applications
can potentially determine whether an action had the
desired effect, and if this is not the case, change the
reasoning model to compensate for the mismatch.

This step also has to consider whether the appli-
cation is stand-alone or uses an existing and shared
infrastructure (e.g., that captures raw sensor data and
provides access to meaningful context information).

The application specific domain model is used as
the input for this process step. We need the distinc-
tion between physical and conceptual factors in order
to decide whether factors can be directly measured by
sensors or should be derived, or how we should in-

Improving�Context-aware�Applications�for�the�Well-being�Domain�-�Model-driven�Design�Guided�by�Medical�Knowledge

399



<<abstract>>

Sensor
<<abstract>>

Concept

<<abstract>>

Actuator

HeartRateSensor BloodPressureSensor

TaskSwitches

Productivity Stress

PerceivedWorkLoad

DataInterpretation

UserInterface

Storage

PlanAction

Figure 2: Example static application structure.

fluence them. If we are dealing with physical factors
such as heart rate and blood pressure, they usually can
be measured using sensors. Corresponding sensors
are the first components to be added to the applica-
tion structure.

Secondly, we look conceptual conditions. As
these are not directly measurable, their values are de-
cided through interpretation and deduction of the val-
ues that can be obtained through sensors. Compo-
nents that model the conceptual well-being conditions
are to be added to the model. Additionally, we intro-
duce a component that interprets the data collected by
the sensor components and derives the meanings for
the conceptual components.

An interpretation component performs the reason-
ing in the application regarding the abstract and the
physical domain elements. The result of this inter-
pretation process is then fed to a component that per-
forms the planning of actions: if the reasoning pro-
cess concludes that a value for a domain element is
not within the normal range, the component that plans
the required actions is to deduce how to influence this
value. In this decision process, the application spe-
cific model can be used to perform the needed causal
reasoning.

Also part of the static application structure is the
data model that will be used by the application to store
run-time values and historic data. The latter can be
used for situation analysis: we might have norm val-
ues from literature, but these norms might not fully
align with the normal values for the specific user. In
order to make decisions, we also need this informa-
tion to reason. Historic data can also be used to deter-
mine whether the feedback approach for the user has

been effective.
The development of the static application struc-

ture is performed by a system architect who can
model the application based on the high level archi-
tecture, incorporating the information from the appli-
cation model. An example application structure based
on the dynamic domain model depicted in Figure 1
can be found in Figure 2.

The output of this process step are two models:
(i) a model that captures the static application struc-
ture, and (ii) as well as a data model. As a model-
ing language, we use UML class diagrams, as these
have been proven suitable to model such information
in practice.

3.3 Application Behavior Specification

With the knowledge of norm values, the way these
values are measured (this is captured in the static ap-
plication structure), and means of reasoning about
how the physical and conceptual conditions can be
affected in order to increase or decrease measured or
deduced values of others, we can start describing how
the application is to interact with the world outside the
application, how different components interact with
each other, and what processes are to be performed
by the components.

The sensors and actuators are the application’s
way of observing and interacting with context. When
sensors obtain data from the world around the appli-
cation, they only provide raw data. This data has to
be interpreted before the application can use it. This
is the task for the components modeling the sensors.
Using an interpretation strategy that is specific for the

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

400



Table 1: Process summary.

Step Input Output Stakeholders

Domain Model Reduction Domain model Application specific
model

End-users, domain experts,
prospective buyers

Application Structure Specification Application model,
High level architecture

Static application struc-
ture model

System architect

Application Behavior Specification Application model,
static structure

Behavior model Domain experts, applica-
tion designer

Prototype Development Application model,
Static structure, behav-
ior model

Prototype application Software engineer, end-
user

type of sensor that is modeled, we can translate from
raw data to units that are common in our domain (for
example beats per minute for heart rate, and mm Hg
for blood pressure). This way, the obtained data can
be compared to the norm values. The behavior of the
actuator components is described in a similar way,
translating from the units used in the description of
required actions to the activation of the actuators.

The behavior of the component that reason about
the context can be either push or pull oriented: the
information from the sensor components can be fed
to the reasoning component as it arrives, or the com-
ponent can request this information from the sensors
when it is needed. Pushing information might result
in an abundance of data being transferred, whereas
only pulling information could result the usage of data
that is out of date. The best strategy for this process
is dependent on the application and is considered out-
side the scope of this paper. The communication be-
tween the reasoning component and the component
that plans the appropriate action is to be described as
push communication: if action is deemed needed, the
planning of this action has to start as soon as possible.
If no action is needed, no information is transferred.

When reasoning about conceptual factors, we
have to combine sensor information to be able to say
something about their state. We can analyze which
physical conditions are to be measured in order to de-
duce conceptual factors using the application specific
model. How these measurements should be combined
will depend on which concept we are dealing with,
e.g. the current level of productivity of a person can
be deduced from current sensor measurements, but
the level of stress will also require the evaluation of
historic data.

To deduce what feedback should be given, we
have to analyze our domain model. Since this model
captures how factors influence each other, we can find
possible causes for a variable value to be out of range.
As a result, we can also analyze how we should influ-
ence the user in order for the value to return to normal.
This analysis is to be performed per condition.

In this step, domain experts and application de-
signers have to work together to model the dynamic
behavior of the different application components.

The result of this process step is a behavior model
per application component that illustrates what the
feedback strategy should be depending on measured
values.

3.4 Prototype Development

With the dynamic and the static parts of the applica-
tion described, we can start developing a prototype.
This process is similar to that of developing an or-
dinary application, with the added difficulty of hav-
ing to deal with and reason about context information
and well-being related factors. However, as we have
methodologically been dealing with these specifics,
the implementation of a prototype will consist pri-
marily of providing the user with an interface to the
application, and by deciding which method of feed-
back is suitable for the type of application and the in-
tended user: even if the way of collecting and reason-
ing about context information is perfect, and the right
conclusions are drawn, the application will be point-
less if the appropriate service can not be provided in
the right way. Which type of feedback strategy to
choose, however, is outside the scope of this paper.

A summary of this process is shown in Table 1.

4 DISCUSSION

Because the primary outputs per development step
are models, we see the possibility of incorporat-
ing model-driven techniques, as described by (Kent,
2002). Using model-driven techniques, we may be
able to partially automate stops in our design process.
These techniques employ model transformation rules
that specify how input models of a design step can
be translated in output models which serve as input
for the next step. Transformation rules are based on
the identification of regularities in design activities,

Improving�Context-aware�Applications�for�the�Well-being�Domain�-�Model-driven�Design�Guided�by�Medical�Knowledge

401



models and languages (where automation can save
time and prevent human error). However, since de-
sign is a creative process, manual input from the de-
signer/developer almost always remains necessary in
any design step.

Looking at step 1 of our process, we see the first
need for human intervention: deciding and selecting
which parts of the well-being domain are to be cov-
ered by the application under development can not be
done automatically. We can support the designers by
aiding the selection process, making sure the set of
selected elements is as complete as possible, but the
final decision in this step has to be made by humans.

In order to complete step 2, we have to translate
between two modeling languages, requiring a map-
ping between the two. Because of the structuring
of context-aware applications, we an predict which
variables from the application specific model are to
be mapped to which application structure model el-
ement: observable variables are modeled as sensors,
deducible variables are part of the data interpretation
of the application, and the controllable variables are
mapped onto actuators. As we can see, most of this
step can be performed automatically.

Because we are dealing with the behavior of the
application in step 3, we will require human interven-
tion again. It will be possible to deduce part of the
reasoning to be done by the application, this can be
deduced from the causal links in our application spe-
cific model. However, how these actions are to be
planned and in what way they are to be shown to the
user requires human creativity.

The final step in our process, the creation of the
prototype, can only be supported by the automatic
generation of code based on the models created in
steps 2 and 3. User interface design and implemen-
tation can not be performed automatically. However,
the development can be aided by the domain- and ap-
plication specific models: they allow engineers to rea-
son about behavior, making it easier to implement the
needed actions the application is to present.

In this paper we have not discussed aspects such as
the conceptualization of sensor data, the way condi-
tions can be quantified or how the capturing and stor-
age of large data volumes should be handled by the
application. We consider these aspects to be specific
for the application under development and as such
not generalizable for the development process of all
context-aware well-being applications.

5 RELATED WORK

With smartphones containing an increasing number
of sensors, the development of “apps” that advise the
user on medical subjects has rapidly increased. How-
ever, as any developer, regardless of their medical
background and expertise, can create such a smart-
phone application. The users of this app expect it
to work properly and provide the right information,
but this is not always the case. As a response to this
problem, the European Union and the United States
of America have developed certification and programs
for medical apps (European Commission, 2013; U.S.
Department of Health and Human Services Food and
Drug Administration et al., 2013). Applications that
do not use measurements or provide medical treat-
ment, e.g. the issuing of medication, would not re-
quire certification. However, those that do utilize sen-
sors to obtain the user’s vitals are to be subjected for
testing.

(Jorgensen and Bossen, 2003) discuss a method
of performing requirements engineering for pervasive
health care systems. Even more so than with well-
being applications, the correct working of these sys-
tems is crucial, the treatment of patients depending
on them. The authors propose a three-tier approach to
creating and using executable use cases, going from
prose, to executable models, and finally to an ani-
mated example the user can interact with. The main
difference with our type of application, is that the per-
vasive systems looked at by the authors have a fixed
context, a hospital, in which the users move around.
This is unlike our application, in which the user is the
only constant of the system context, with the environ-
ment continuously changing.

In (Maiden et al., 2004), the authors describe
a model driven approach called RESCUE that inte-
grates 4 modeling techniques in order to obtain a set
of requirements that is as complete as possible. The
four techniques that are integrated are activity mod-
eling, system goal modeling (which is performed in
thei∗ language), use case modeling and requirements
management. Using model transformations, the au-
thors synchronize the data captured in each of these
models in order to keep them consistent. When com-
paring this work to our own, we primarily identify the
difference between the domains: our systems oper-
ate in highly dynamic, changing environments, while
the system the authors of RESCUE looked at are
predominantly static, allowing for more complete re-
quirements elicitation. The use of different angels to
look at the same problem in order to obtain a more
complete picture is, however, an interesting approach
which may be a direction for future work.

SENSORNETS�2014�-�International�Conference�on�Sensor�Networks

402



6 CONCLUSIONS

Sensor-based context-awareness has the potential to
improve the usefulness of applications, allowing de-
velopers to create applications that are able to ob-
serve the world around them, adapting their services
accordingly. However, design and development of
context-aware applications is a task that is trouble-
some at best. Users have a hard time imagining con-
texts in which they are not currently situated. Design
approaches that rely on traditional requirements cap-
turing are therefore not feasible. Requirements cap-
turing methods that involve iterative prototyping and
playtesting may be too time consuming and may over-
look potential. We propose a development method
that uses a model of the domain as a starting point.

This domain model captures the medical knowl-
edge concerning the causal relationships between
context factors and human well-being conditions. It
also captures the medical boundary values of well-
being conditions. The scope of this overall domain
model is then to be reduced to fit the application’s
goal. Using this application specific model, we can
first determine the static structure of the application,
after which the dynamic behavior can be described.
The final step in the process entails the development
of a prototype of the application and providing it to
the user to test it in practice.

Our method is better suited for context-aware
well-being applications than traditional development
methods, as it focuses primarily on the structure of
the domain and the causal relations between context
factors and well-being conditions. Furthermore, our
domain model makes it easier to reason about the de-
sired behavior of the application, preventing the de-
velopment of applications that do not satisfy the user’s
ideas and demands.

ACKNOWLEDGEMENTS

This publication was supported by the Dutch national
program COMMIT (project P7 SWELL).

REFERENCES

Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R.,
and Havinga, P. (2010). Activity recognition using in-
ertial sensing for healthcare, wellbeing and sports ap-
plications: a survey. In23rd Int. Conf. on Architecture
of Computing Systems (ARCS 2010), pages 1–10.

Bosems, S., van Sinderen, M., Achterkamp, R., van der
Meulen, F., van Dantzig, S., Goorden, M., and Mul-

der, S. (2013). COMMIT SWELL D1.2 Overall ar-
chitecture. Technical report.

European Commission (2013). Guidelines on a medical de-
vices vigilance system. Technical report.

Hall, J. E. (2010). Guyton and Hall Textbook of Medical
Physiology. Saunders.

Jorgensen, J. and Bossen, C. (2003). Requirements engi-
neering for a pervasive health care system. In11th
IEEE Int. Requirements Engineering Conf., pages 55–
64. IEEE Comput. Soc.

Kent, S. (2002). Model-Driven Engineering. InIntegrated
Formal Methods, pages 286–298. Springer.

Maiden, N. A. M., Jones, S. V., Manning, S., Greenwood,
J., and Renou, L. (2004). Model-Driven Requirements
Engineering: Synchronising Models in an Air Traf-
fic Management Case Study. In16th Int. Conf. on
Advanced Information Systems Engineering (CAiSE
2004), pages 368–383. Springer.

Nakajima, H. and Shiga, T. (2011). Smart devices and ser-
vices in healthcare and wellness. InSymposium on
VLSI Circuits.

Seyff, N., Graf, F., Grünbacher, P., and Maiden, N.
(2008). Mobile Discovery of Requirements for
Context-Aware Systems. In14th Int. Working Conf.,
REFSQ 2008, pages 183–197.

Sterman, J. D. (2000).Business Dynamics: Systems Think-
ing and Modeling for a Complex World. McGraw-
Hill/Irwin.

U.S. Department of Health and Human Services Food and
Drug Administration, Center for Devices and Radi-
ological Health, and Center for Biologics Evaluation
and Research (2013). Mobile Medical Applications:
Guidance for Industry and Food and Drug Adminis-
tration Staff. Technical report.

Improving�Context-aware�Applications�for�the�Well-being�Domain�-�Model-driven�Design�Guided�by�Medical�Knowledge

403


