
Runtime Assertion Checking and Theorem Proving
for Concurrent and Distributed Systems�

Crystal Chang Din1, Olaf Owe1 and Richard Bubel2
1University of Oslo, Oslo, Norway

2Technische Universität Darmstadt, Darmstadt, Germany

Keywords: Runtime Assertion Checking, Formal Verification, Concurrency, Distributed Systems, Tools.

Abstract: We investigate the usage of a history-based specification approach for concurrent and distributed systems. In
particular, we compare two approaches on checking that those systems behave according to their specification.
Concretely, we apply runtime assertion checking and static deductive verification on two small case studies to
detect specification violations, respectively to ensure that the system follows its specifications. We evaluate
and compare both approaches with respect to their scope and ease of application. We give recommendations
on which approach is suitable for which purpose as well as the implied costs and benefits of each approach.

1 INTRODUCTION

Distributed systems play an essential role in society
today. However, quality assurance of such systems
is non-trivial since they depend on unpredictable fac-
tors. It is highly challenging to test distributed sys-
tems after deployment under different relevant condi-
tions. These challenges motivate frameworks com-
bining precise modeling and analysis with suitable
tool support.

Object orientation is the leading framework for
distributed systems, recommended by the RM-ODP
(International Telecommunication Union, 1995). The
paradigm of concurrent objects communicating by
asynchronous method calls appears as a promising
framework to combine object-orientation and distri-
bution in a natural manner. Asynchronous method
calls allow the caller to continue with its own activ-
ity without blocking while waiting for the reply, and
a method call leads to a new process on the called
object. The notion of futures (Baker Jr. and Hewitt,
1977,Halstead Jr., 1985,Liskov and Shrira, 1988) im-
proves this setting by providing a decoupling of the
process invoking a method and the process reading
the returned value. By sharing future identities, one
enables other objects to get method results directly
from future objects. We consider a core language

�Partly funded by the EU project FP7-610582
ENVISAGE: Engineering Virtualized Services.
(http://www.envisage-project.eu)

following these principles, based on the ABS lan-
guage (HATS, 2011).

The execution of a distributed system can be rep-
resented by its communication history or trace; i.e.,
the sequence of observable communication events be-
tween system components (Hoare, 1985). At any
point in time the communication history abstractly
captures the system state. In fact, traces are used in se-
mantics for full abstraction results (e.g., (Jeffrey and
Rathke, 2005, Ábrahám et al., 2009)). The local his-
tory of an object reflects the communication visible to
that object, i.e., between the object and its surround-
ings. A system may be specified by the finite initial
segments of its communication histories, and a his-
tory invariant is a predicate which holds for all finite
sequences in the set of possible histories, expressing
safety properties (Alpern and Schneider, 1985).

In this work we present and compare a runtime
assertion checker with a verification system/theorem
prover for concurrent and distributed systems using
object-orientation, asynchronous method calls and fu-
tures. Communication histories are generated through
the execution and are assumed wellformed. The mod-
eling language is extended such that users can de-
fine software behavioral specification (Hatcliff et al.,
2012), i.e., invariants, preconditions, assertions and
postconditions, inline with the code. We provide the
ability to specify history-based properties, which are
verified during simulation. Although by runtime as-
sertion checking, we gain confidence in the quality of
programs, correctness is still not fully guaranteed for

480 Chang Din C., Owe O. and Bubel R..
Runtime Assertion Checking and Theorem Proving for Concurrent and Distributed Systems.
DOI: 10.5220/0004877804800487
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 480-487
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

all runs. Formal verification may instead show that
a program is correct by proving that the code satis-
fies a given specification. We choose KeY (Beckert
et al., 2007) as our formal verification tool since it
is a highly automated theorem prover, and with sup-
port for ABS. We extended KeY with extra rules for
dealing with history-based properties. At the end we
compare the differences and challenges of using these
two approaches.

Paper overview. Section 2 introduces and explains
the core language, Section 3 presents (1)the reader-
writer example and (2)the publisher-subscriber exam-
ple, Section 4 formalizes the observable behavior in
the distributed systems, Section 5 shows the result of
runtime assertion checking on the examples (1) and
(2), Section 6 shows the result of theorem proving
on the examples (1) and (2), Section 7 compares run-
time assertion checking with theorem proving, Sec-
tion 8 discusses related work and we then close with
remarks about future work.

2 THE CORE LANGUAGE

Our core language is presented in Fig 1. It includes
basic statements for first order futures, taken from
ABS (HATS, 2011), which is an executable model-
ing language designed with hindsight to the modeling,
formal analysis and code generation of concurrent and
distributed systems.

Methods are organized in classes in a standard
manner. A class C takes a list of formal param-
eters cp, and defines fields w, an optional initial-
ization block s, and methods M. There is read-
only access to class parameters cp as well as method
parameters. A method definition has the form
m(x)fvar y; s; return eg, ignoring type informa-
tion, where x is the list of parameters, y an optional list
of method-local variables, s a sequence of statements,
and the value of e is returned upon termination. As in
the Creol language (Johnsen and Owe, 2007), a ref-
erence to the caller is an implicit parameter denoted
caller.

A future is a placeholder for the return value of a
method call. Each future has a unique identity gen-
erated when the method is invoked. The future is re-
solved upon method termination, by placing the return
value of the method call in the future. Unlike the tra-
ditional method call mechanism, the callee does not
send the return value directly back to the caller. How-
ever, the caller may keep a reference to the future,
allowing the caller to fetch the future value once re-
solved. References to futures may be shared between
objects, e.g., by passing them as parameters. Thus a

Cl ::= classC([T cp]�) f[T w [:= e]?]� [s]? M�g
M ::= T m([T x]�) f[var [T x]�]? s ; return eg
T ::= C j Int j Bool j String j Void j Fut<T >
v ::= x j w
e ::= null j this j v j cp j f (e)
s ::= v := e j fr := v!m(e) j v := e:get j skip

j await e j await e? j assert e
j while (e) fsg j if (e) fsg [else fsg]?
j v := newC(e) j s;s

Figure 1: Core language syntax. Expressions e are side-
effect free, e is a (possibly empty) expression list. [v]� and
[v]? denote repeated and optional parts.

future reference may be passed to third party objects,
and these may then fetch the future value. A future
value may be fetched several times, possibly by dif-
ferent objects. Hence, shared futures provide an effi-
cient way to distribute method call results to a number
of objects.

A future variable fr is declared by Fut< T > fr,
indicating that fr may refer to futures which may con-
tain values of type T . The call statement fr := v!m(e)
invokes the method m on object v with input values
e. The identity of the generated future is assigned to
fr, and the calling process continues execution with-
out waiting for fr to become resolved. The statement
await fr? releases the process until the future fr is
resolved. The query statement v := fr:get is used to
fetch the value of a future. The statement blocks until
fr is resolved, and then assigns the value contained
in fr to v. The await statement await e releases
the process until the Boolean condition e is satisfied.
The language contains additional statements for as-
signment, skip, conditionals, sequential composi-
tion, and includes an assert statement for asserting
conditions.

We assume that call and query statements are
well-typed. If v refers to an object where m
is defined with no input values and return type
Int, the following is well-typed: Fut < Int > fr :=
v!m(); await fr?; Int x := fr:get, corresponding
to a non-blocking method call, whereas Fut< Int>
fr := v!m(); Int x := fr:get corresponds to a blocking
method call.

Class instances are concurrent, encapsulating their
own state and processor, similarly to the actor model
(Hewitt et al., 1973). Each method invoked on the ob-
ject leads to a new process, and at most one process
is executing on an object at a time. Object communi-
cation is asynchronous, as there is no explicit transfer
of control between the caller and the callee. A release
point may cause the active process to be suspended,
allowing the processor to resume other (enabled) pro-
cesses. Note that a process, as well as the initializa-
tion code of an object, may make self calls to recur-

Runtime�Assertion�Checking�and�Theorem�Proving�for�Concurrent�and�Distributed�Systems

481

sive methods with release points thereby enabling in-
terleaving of active and passive behavior. The core
language considered here ignores features orthogonal
to futures, including interface encapsulation and local
synchronous calls.

As in ABS, abstract data types are supported and
in this paper we will use the following notation for
sets and sequences. The empty set is denoted Empty,
addition of an element x to a set s is denoted s+x, the
removal of an element x from a set s is denoted s� x,
and the cardinality of a set s is denoted #s. Similarly,
the empty sequence is denoted Nil, addition of an ele-
ment x to a sequence s is denoted s � x, the removal of
all x from a sequence s is denoted s=x, and the length
of a sequence s is denoted #s. Indexing of the ith ele-
ment in a sequence s is denoted s[i] (assuming i is in
the range 0...#s�1). Membership in a set or sequence
is denoted 2.

3 EXAMPLES

We illustrate runtime assertion checking and theorem
proving for the programs in the core language via two
examples: a fair version of the reader/writer exam-
ple and a publisher/subscriber example. The first ex-
ample shows how we verify the class implementation
by relating the objects state with the local communi-
cation history. The second example shows how we
achieve compositional reasoning by proving the order
of the local history events for each object.

3.1 The Reader-Writer Example

We assume given a shared database db, which pro-
vides two basic operations read and write. In or-
der to synchronize reading and writing activity on
the database, we consider the class RWController, see
Fig. 2. All client activity on the database is as-
sumed to go through a single RWController object.
The RWController provides read and write operations
to clients and in addition four methods used to syn-
chronize reading and writing activity: openR, closeR,
openW and closeW. A reading session happens be-
tween invocations of openR and closeR and writing
between invocations of openW and closeW. Several
clients may read the database at the same time, but
writing requires exclusive access. A client with write
access may also perform read operations during a
writing session. Clients starting a session are respon-
sible for closing the session. Clients have the interface
CallerI (omitted here).

Internally in the class, the attribute readers con-
tains a set of clients currently with read access and

class RWController implements RWinterface{
DB db := new DataBase();
Set<CallerI> readers := Empty;
CallerI writer := null; Int pr := 0;

Void openR(){ await writer = null;
readers := readers + caller;}

Void closeR(){
readers := readers � caller;}

Void openW(){ await writer = null;
writer := caller;
readers := readers + caller;}

Void closeW(){ await writer = caller;
writer := null;
readers := readers � caller;}

String read(){ await caller 2 readers;
pr := pr + 1;
Fut<String> fr := db!read(key);
await fr?; String s := fr.get;
pr := pr - 1; return s;}

Void write(Int key, String value){
await caller=writer && pr=0 &&

readers � caller = Empty;
Fut<Void> fr:=db!write(key,value);
fr.get;} }

Figure 2: Implementation of class RWController.

writer contains the client with write access. If there
is no writer, a client gains write access by execution
of openW. A client may thereby become the writer
even if readers is non-empty. Nevertheless, the con-
troller ensures that reading and writing activity cannot
happen simultaneously on the database. The client
with write access will eventually be allowed to per-
form write operations since all active readers (other
than itself) are assumed to end their sessions at some
point. For readability reasons, we declare local vari-
ables in the middle of a statement list, and omit the
(redundant) return statement of Void methods.

3.2 The Publisher-subscriber Example

In this example clients may subscribe to a service,
while the service object is responsible for generating
news and distributing each news update to the sub-
scribing clients. To avoid bottlenecks when publish-
ing events, the service delegates publishing to a chain
of proxy objects, where each proxy object handles
a bounded number of clients. The implementation
of the classes Service and Proxy is given in Fig. 3.
Again, interfaces are omitted.

The example applies the future concept by letting

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

482

class Service(Int limit,NewsProducerI np)
implements ServiceI{

ProducerI prod; ProxyI proxy;
ProxyI lastProxy;

{prod := new Producer(np);
proxy := new Proxy(limit,this);
lastProxy := proxy; this!produce();}

Void subscribe(ClientI cl){
Fut<ProxyI>last := lastProxy!add(cl);
lastProxy := last.get;}

Void produce(){
Fut<News> fut := prod!detectNews();
proxy!publish(fut);}}

class Proxy(Int limit, ServiceI s)
implements ProxyI{

List<ClientI> myClients = Nil;
ProxyI nextProxy;

ProxyI add(ClientI cl){ ... }
Void publish(Fut<News> fut){
News ns := fut.get; ...
client!signal(ns); ...
nextProxy!publish(fut);}}

Figure 3: Implementation of class Service and Proxy.

the service object delegate publishing of news updates
to the proxies without blocking while waiting for the
result of the news update. This is done by the se-
quence fut := prod!detectNews(); proxy!publish(fut).
Furthermore, the calls on add are blocking, however,
this is harmless since the implementation of add may
not deadlock and terminates efficiently.

4 OBSERVABLE BEHAVIOUR

The observable behavior of a system is described
by communication histories over observable events
(Hoare, 1985). Since message passing is asyn-
chronous, we consider separate events for method in-
vocation, reacting upon a method call, resolving a fu-
ture, and for fetching the value of a future. Each event
is observable to only one object, namely the generat-
ing object. Assume an object o calls a method m on
object o0 with input values e and where u denotes the
future identity. An invocation message is sent from o
to o0 when the method is invoked. This is reflected
by the invocation event ho ! o0;u;m;ei generated
by o. An invocation reaction event ho� o0;u;m;ei
is generated by o0 once the method starts execution.
When the method terminates, the object o0 generates
the future event h o0;u;m;ei. This event reflects
that u is resolved with return value e. The fetching
event ho�;u;ei is generated by o when fetching the

value of the resolved future. Since future identities
may be passed to other objects, e.g, o00, that object
may also fetch the future value, reflected by the event
ho00 �;u;ei, generated by o00. The object creation
event ho " o0;C;ei represents object creation, and is
generated by o when creating a fresh object o0.

For a method call with future u, the ordering of
events is described by the regular expression ho !
o0;u;m;ei � ho � o0;u;m;ei � h o0;u;m;ei[�h_ �
;u;ei]� for some fixed o, o0, m, e, e, and where
_ denotes arbitrary values. Thus the result value
may be read several times, each time with the same
value, namely that given in the preceding future event.
A communication history is wellformed if the order
of communication events follows the pattern defined
above, the identities of the generated future is fresh,
and the communicating objects are non-null.

Invariants. Class invariants express a relation be-
tween the internal state of class instances and ob-
servable communication, and is specified by a pred-
icate over the class attributes and the local history. A
class invariant must hold after initialization, be main-
tained by all methods, and hold at all processor re-
lease points (i.e., await).

A global invariant can be obtained as a conjunc-
tion of class invariants for all objects in the system,
adding wellformedness of the global history (Dovland
et al., 2005).

5 RUNTIME ASSERTION
CHECKING

We implement the runtime assertion checking using
the Maude backend of ABS. The ABS compiler front-
end, which takes a complete ABS model of the soft-
ware system as input, checks the model for syntac-
tic and semantic errors and translates it into an inter-
nal representation. There are various compiler back-
ends. Maude is a tool for executing models defined
in rewriting logic. The Maude back-end takes the
internal representation of ABS models and translates
them to rewriting systems in the language of Maude
for simulation and analysis.

The history-explicit semantics in Maude is im-
plemented by adding a global history reflecting all
events that have occurred in the execution. The local
histories are obtained by projection. We extend the
ABS language with annotations for specifying pre/-
post conditions and invariants. And underlying his-
tory functions are implemented.

Runtime�Assertion�Checking�and�Theorem�Proving�for�Concurrent�and�Distributed�Systems

483

5.1 Specifying and Verifying the
Reader-writer Example

We define a class invariant I for RWController:

I , Writers(H) = fwriterg�null

where H denotes the local history. This illustrates
how the values of class attributes may be expressed in
terms of observable communication. The invariant I
expresses that if the set of writers retrieved from the
history by function Writers(h) is empty then the class
attribute writer is null, otherwise it contains only one
element which is the same as the non-null writer. The
definition of Writers : Seq[Ev]! Set[Obj] is:

Writers(Nil) , Empty
Writers(h � h this; fr0;openW;_i) ,

Writers(h)+ irev(h; fr0):caller
Writers(h � h this; fr0;closeW;_i) ,

Writers(h)� irev(h; fr0):caller
Writers(h �others) , Writers(h)

where others matches all events not matching any of
the above cases. The function irev(h; fr0) extracts the
invocation reaction event, containing the future fr0,
from the history h. The caller is added to the set of
writers upon termination of openW, and the caller is
removed from the set upon termination of closeW.

Implementation. The global history is not trans-
parent in ABS programs, therefore we provide for
each history function a built-in predicate in the ABS
language without explicit history argument. For in-
stance, the built-in predicate getWriters() returns the
result of Writers(h) from the interpreter.

The concrete formulation of I as given to the run-
time assertion checker is
I: compareSet(getWriters(),

Empty + writer � null)

where compareSet(s1,s2) returns true if the set s1 is
equal to the set s2.

5.2 Specifying and Verifying the
Publisher-subscriber Example

In the publisher-subscriber example, we consider ob-
ject systems based on the classes Server and Proxy of
Fig. 3. We may state properties, like:

For every signal invocation from a proxy py to a
client c with news ns, the client must have subscribed
to a service v, which must have issued a publish in-
vocation with a future u generated by a detectNews
invocation, and then the proxy py must have received
news ns from the future u.

This expresses that when clients get news it is only
from services they have subscribed to, and the news is
resulting from actions of the server. Since this prop-
erty depends on pattern matching, we define an al-
gebraic data type Event in ABS. We show below the
definition of two of the five constructors of the Event
type:

data Event =
InvocEv(Any callee, Any fut,

String method, Any arg)|
InvocrEv(Any callee, Any fut,

String method, Any arg)|...;

This Event type is used to define class invariants, to
be verified at runtime for each related object. The
generating object is redundant in the local invariants
and therefore is omitted from the events.

Since there is no super type in the current ABS
language, we cannot define the type of each argument.
Consequently, to specify the value of the arguments in
the ABS events is currently not straight forward. We
overcome this limitation by defining an algebraic data
type Any:

data Any = O | F | AR | any ;

Letting all arguments in the events be of type Any
except method names and class names which are
String. The constructors of type Any are any,
a special constant used as a place-holder for any
expression, and O, F, and AR, are artificial constants
used as place-holders for object identities, future
identities, and arguments, respectively, to simulate
pattern matching in history functions. The constants
O, F, and AR, are used in patterns where a pattern
variable occurs more than once, letting all occur-
rences of O match the same value (and similarly for
F and AR), whereas each occurrence of any matches
any value. For our example, it is enough to define
one constructor for each kind. To identify different
variables of the same kind, more constructors would
be needed, e.g. O1 and O2 for object identities. Now
we may define a class invariant I for Service:

I: has(InvocEv(any,any,"add",any)) =>
isSubseq(list[InvocEv(any,any,"add",AR),

InvocrEv(any,any,"subscribe",AR)])

The predicate has checks the existence of an event
in the local history. A list list[a,b,c] declares the
order of the events where (surprisingly) event a is
the latest. The predicate isSubseq checks if the list
of events is a subsequence of the local history. The
search for a subsequence by isSubseq starts from
the latest event and continues backwards until finding
the first match. In this way, the proved property is
prefix-closed by runtime assertion checking. For

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

484

instance, the invariant I expresses that if the local
history of the Server object has an invocation event
which reflects a call to a method add on some object,
there should exist an invocation reaction event with a
method name subscribe in the prefixed local history
and by pattern matching these two events contain
the same argument AR. If run-time checking gives
that I holds for the current state, the Server object
always receives a client before sending the client to
the Proxy.

6 THEOREM PROVING USING
KEY

In this section we describe our experiences with the
verification of some properties of the reader-writer
and the publisher-subscriber examples. The KeY the-
orem prover (Beckert et al., 2007) is a deductive veri-
fication system for sequential Java programs. For this
case study, we used a variant of the system which sup-
ports reasoning about ABS programs. The underlying
logic is a first-order dynamic logic for ABS (ABSDL)
similar to (Ahrendt and Dylla, 2012). For an ABS pro-
gram p and an ABSDL formula f, the formula [p]f is
true if and only if the following holds: if p terminates
then in its final state f holds. Given an ABS method m
with body mb and a class invariant I, the ABSDL for-
mula I! [mb]I expresses that the method m preserves
the class invariant.

6.1 Formalizing and Verifying the
Reader-writer Example

Formalization of the invariants and proof-obligations
for the purpose of verification proves harder than
for runtime assertion checking. Parts of the reasons
are purely technical and are due to current techni-
cal shortcomings of the KeY tool which can and will
be overcome relatively easily, e.g., absence of a gen-
eral set datatype, automation of reasoning about se-
quences and similar. Other reasons are more deeply
rooted in a basic difference between runtime assertion
checking and verification. To a certain extent runtime
assertion checking can take advantage of a closed sys-
tem view. A closed system view allows to safely as-
sume that certain interleavings (await statements) will
never happen. This allows to simplify the formaliza-
tion of some invariants considerably, in contrast to
verification where we take an open world assumption,
and in addition, have to consider all possible runs.

We take here a closer look at the formalization of
the invariant I from Section 5.1. Invariant I states that
at most one writer may exist at any time and that if a

writer exists then it is the one set by the most recently
completed openW invocation. In a first step, we define
some auxiliary predicates and functions that help us
to access the necessary information: First we define
the function getWriter which takes the local history
as argument and returns a sequence of all writers for
which a successful completed openW invocation exists
that has not yet been matched by a completed closeW
invocation. The axiomatization in ABSDL (slightly
beautified) looks as follows:
8h8w

�
w 6= null ^ 9i(getWriters(h):get(i) = w)

,
9e(isFutEv(e)^e 2 h^getMethod(e) = openW^

w = getCaller(getIREv(h;getFut(e))) ^
8e0(later(e0;e;h)^isFutEv(e0)!

getMethod(e0) 6= closeW))
�

where h is the local history, isFutEv tests if the given
event is a future event, and getIREv returns the invo-
cation reaction event from a given history and future.
The other functions should be self-explanatory. We
can now state our version of I for an object self:

length(getWriters(h))� 1 ^
self:writer= (length(getWriters(h)) = 0 ?
null : getWriters(h):get(0))

Note that the formalization here is stronger than the
one used in runtime assertion checking as we allow at
most one writer in the list of writers, i.e., we disallow
also that the same writer calls (and completes) openW
repeatedly. This stronger invariant is satisfied by our
implementation.

An important lemma we can derive from the def-
inition of getWriters is that it is independent of
events other than future events and invocation reac-
tion events for openW and closeW. This allows us to
simplify the history at several places and to ease the
proving process.

6.2 Formalizing and Verifying the
Publisher-subscriber Example

The formalization and verification of the publisher
subscriber example is inherently harder than that for
the reader writer example. The reason is that the prop-
erties to be specified focus mainly on the structure of
the history. Further, in presence of control releases
the history is extended by an unspecified sequence of
events. In contrast to runtime assertion checking, we
can mostly only rely on the invariants to regain knowl-
edge about the history after a release point. This en-
tails also that we need to actually specify additional
invariants expressing what could not have happened
in between, e.g., certain method invocations. We for-
malized the property similar to the runtime assertion

Runtime�Assertion�Checking�and�Theorem�Proving�for�Concurrent�and�Distributed�Systems

485

approach using an axiomatization of loose sequences.
For runtime assertion checking it was possible to

use pattern matching to express the invariant of Sec-
tion 5.2. On the logic level, we have to use quan-
tification to achieve the same effect. This impairs at
the moment automation as the efficiency of quanti-
fier instantiations decreases rapidly with the number
of nested quantifiers.

7 COMPARISON

In this section we discuss the main differences in
the scope and application between runtime assertion
checking and formal verification. We highlight in par-
ticular the difficulties we faced in the respective ap-
proaches.

Runtime-assertion checking shares with testing
that it is a method to detect the presence of bugs and
gives us confidence in the program’s quality. Formal
verification can instead prove that a program is cor-
rect, i.e., the program code satisfies the given specifi-
cation.

A closer look at the considered specifications re-
veals that for runtime assertion checking, we check
whether a method satisfies its pre- and postcondition
at invocation reaction and future resolving time, re-
spectively. An assertion failure was reported if these
were not satisfied. In verification, we face the follow-
ing additional challenge: The caller of a method can
only ensure that the precondition holds at the time
of the invocation event. But the caller has no con-
trol over the system itself and thus cannot ensure that
the property still holds when the invoked method is
scheduled at the callee side. Possible solutions to
this problem are to ensure that once the precondition
is proved, it is satisfied until and including the mo-
ment when the method is scheduled; a different ap-
proach would be to restrict preconditions to express
only history and state independent properties about
the method parameters. An analogous problem exists
for postconditions.

Similarly, formal verification is harder when com-
pared to assertion checking as in the latter we are only
concerned with a closed system, namely, the one cur-
rently running. This puts less demands on the com-
pleteness of specifications as the number of reachable
states is restricted by the program code itself. In for-
mal verification we have to consider all states that are
not excluded by the specification. For instance, in
runtime assertion checking, it is not necessary to spec-
ify that the same object does not call openW twice
without a call to closeW in between, while this has to
specified explicitly for verification purposes.

The need for strong invariant specifications arises
in particular when dealing with await statements
which release control. During verification, the his-
tory is extended by an unspecified sequence of events
before continuing the execution after those release
points. Almost any knowledge about the new ex-
tended history has then to be provided by the invari-
ants.

Further, it turned out that the specifications re-
lied heavily on quantification and recursively defined
functions/properties. This makes automation of the
proof search significantly more difficult, and finally,
required many direct interactions with the prover.
In contrast to the symbolic execution in verification,
specifications need to be executable in runtime asser-
tion checking such that using quantifiers is not an op-
tion. For our purposes, pattern matching is instead
applied in this place (when the same place holder ap-
pears more than once). In addition, the tool used
for formal verification is still work-in-progress and
not yet on par with the degree of automation KeY
achieves when verifying Java programs.

8 RELATED WORK

Behavioral reasoning about distributed and object-
oriented systems is challenging. Moreover, the gap
in reasoning complexity between sequential and dis-
tributed, object-oriented systems makes tool-based
verification difficult in practice. A survey of these
challenges can be found in (Ahrendt and Dylla, 2012).

The present approach follows the line of work
based on communication histories to model object
communication events in a distributed setting (Hoare,
1985, Dahl, 1977). Objects are concurrent and in-
teract solely by method calls and futures. By creat-
ing unique references for method calls, the label con-
struct of Creol (Johnsen and Owe, 2007) resembles
futures. Verification systems capturing Creol labels
can be found in (Dovland et al., 2005, Ahrendt and
Dylla, 2012). However, a label reference is local to
the caller and cannot be shared.

A compositional reasoning system for asyn-
chronous methods in ABS with futures is introduced
in (Din et al., 2012). In this work, we realize the rea-
soning system (Din et al., 2012) in two approaches:
runtime assertion checking and theorem proving in
KeY (Beckert et al., 2007). The article (Hatcliff
et al., 2012) surveys behavioral interface specification
languages with a focus toward automatic program
verification. A prototype of the verification system
(Ahrendt and Dylla, 2012) based on the two-event se-
mantics (Dovland et al., 2005) has been implemented

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

486

in KeY (Beckert et al., 2007) but requires more com-
plex rules than the present one.

9 CONCLUSIONS AND FUTURE
WORK

In this paper we specified two small concurrent and
distributed programs and checked their adherence to
the specification using two different approaches: run-
time assertion checking and deductive verification.
We were in particular interested in how far the use of
histories allows us to achieve a similar support for dis-
tributed system as state-of-the-art techniques achieve
for sequential programs. The results are positive so
far: runtime assertion checking is nearly on par with
that of a sequential setting. Deductive verification
does harder, but some of the encountered issues stem
from the current early state of the used tool, where
support for reasoning about histories is not yet au-
tomatized to a high degree. In the future we intend
to improve on the automation of the used tool.

REFERENCES

Ábrahám, E., Grabe, I., Grüner, A., and Steffen, M. (2009).
Behavioral interface description of an object-oriented
language with futures and promises. Journal of Logic
and Algebraic Programming, 78(7):491–518.

Ahrendt, W. and Dylla, M. (2012). A system for compo-
sitional verification of asynchronous objects. Science
of Computer Programming, 77(12):1289–1309.

Alpern, B. and Schneider, F. B. (1985). Defining liveness.
Information Processing Letters, 21(4):181–185.

Baker Jr., H. G. and Hewitt, C. (1977). The Incremen-
tal Garbage Collection of Processes. In Proc. of the
1977 symposium on Artificial intelligence and pro-
gramming languages, pages 55–59, USA. ACM.

Beckert, B., Hähnle, R., and Schmitt, P. H., editors (2007).
Verification of Object-Oriented Software: The KeY
Approach, volume 4334 of LNCS. Springer.

Dahl, O.-J. (1977). Can program proving be made prac-
tical? In Amirchahy, M. and Néel, D., editors, Les
Fondements de la Programmation, pages 57–114. In-
stitut de Recherche d’Informatique et d’Automatique,
France.

Din, C. C., Dovland, J., and Owe, O. (2012). Compositional
reasoning about shared futures. In et al, G. E., editor,
Proc. Intl. Conference on Software Engineering and
Formal Methods (SEFM’12), volume 7504 of LNCS,
pages 94–108. Springer.

Dovland, J., Johnsen, E. B., and Owe, O. (2005). Verifica-
tion of concurrent objects with asynchronous method
calls. In Proc. IEEE Intl. Conference on Software Sci-
ence, Technology & Engineering(SwSTE’05), pages
141–150. IEEE Computer Society Press.

Halstead Jr., R. H. (1985). Multilisp: a language for con-
current symbolic computation. ACM Transactions on
Programming Languages and Systems, 7(4):501–538.

Hatcliff, J., Leavens, G. T., Leino, K. R. M., Müller, P., and
Parkinson, M. (2012). Behavioral interface specifica-
tion languages. ACM CS, 44(3):16:1–16:58.

HATS (2011). Full ABS Modeling Framework (Mar 2011).
Deliverable 1.2 of project FP7-231620 (HATS), avail-
able at http://www.hats-project.eu.

Hewitt, C., Bishop, P., and Steiger, R. (1973). A universal
modular actor formalism for artificial intelligence. In
Proc. 3rd international conference on Artificial intel-
ligence, pages 235–245.

Hoare, C. A. R. (1985). Communicating Sequential Pro-
cesses. International Series in Computer Science.
Prentice Hall.

International Telecommunication Union (1995). Open Dis-
tributed Processing - Reference Model parts 1–4.
Technical report, ISO/IEC.

Jeffrey, A. S. A. and Rathke, J. (2005). Java Jr.: Fully ab-
stract trace semantics for a core Java language. In
Proc. European Symposium on Programming, volume
3444 of LNCS, pages 423–438. Springer.

Johnsen, E. B. and Owe, O. (2007). An asynchronous com-
munication model for distributed concurrent objects.
Software and Systems Modeling, 6(1):35–58.

Liskov, B. H. and Shrira, L. (1988). Promises: Linguistic
support for efficient asynchronous procedure calls in
distributed systems. In Wise, D. S., editor, Proc. SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI’88), pages 260–267. ACM
Press.

Runtime�Assertion�Checking�and�Theorem�Proving�for�Concurrent�and�Distributed�Systems

487

