
A GUI Modeling DSL for Pattern-Based GUI Testing
PARADIGM

Rodrigo M. L. M. Moreira1 and Ana C. R. Paiva1

1INESC TEC and Department of Informatics Engineering
Faculty of Engineering of the University of Porto, Porto, Portugal

Keywords: GUI Modeling, GUI Testing, Domain-Specific Languages, PARADIGM, Pattern-Based GUI Testing,
Graphical Modeling DSL.

Abstract: Today’s software feature user interface (UI) patterns. Those patterns describe generic solutions for common
recurrent problems. However, to the best of our knowledge, there is no specific testing methodology that is
particularly suited for testing those patterns providing generic testing solutions that can be reused after minor
configurations in order to test slightly different implementations. Pattern-Based Graphical User Interface
Testing (PBGT) is a recent methodology that aims at systematizing and automating the GUI testing process,
by sampling the input space using “UI Test Patterns” that express generic solutions to test common recurrent
GUI’s behaviour. This paper describes the development process of PARADIGM, a domain specific language
(DSL) to be used in the context of PBGT and empirically evaluates PARADIGM to assess its diminished
modeling efforts, usefulness, graphical power, and acceptability.

1 INTRODUCTION

Nowadays the majority of software applications fea-
ture a Graphical User Interface (GUI). They are the
system’s entry point, upon which users communicate
with the underlying software. GUIs have become
quite popular and represent a big role on the success
of the software. GUIs stand as the first contact be-
tween the system and its users. Users’ opinion is ex-
tremely important as it is their decision to either use
such software or not. If the user finds errors in the
GUI, he will lose trust on the software. Therefore, it
becomes important to test GUIs for their functional
correctness.

GUIs often feature UI Patterns (Moreira et al.,
2013) 1. UI Patterns are recurring solutions to
solve common GUI design problems. Until quite re-
cently, no approach existed to test UI Patterns for
their functional correctness. Our prior work (Cunha
et al., 2010; Moreira et al., 2013) introduces a
new methodology called Pattern-Based GUI Testing
method (PBGT), that aims at systematizing and au-
tomating the GUI testing process. In addition, PBGT
develops the notion of UI Test Pattern, which provides
a reusable and configurable test strategy, in order to
test a GUI that was implemented using a set of UI

1http://ui-patterns.com/, http://pttrns.com/

Patterns.
This paper describes PARADIGM, a DSL to be

used in the context of PBGT. It describes the activ-
ities followed during its development, according to
best practices and a set of guidelines, and presents an
empirical evaluation to assess its diminished model-
ing effort, usefulness, graphical power, and accept-
ability. Examples of the PBGT approach and the us-
age of PARADIGM to model real applications, can be
found in (Moreira et al., 2013).

Modeling GUIs for testing offers a number of
challenges. The need to express specific domain fea-
tures, along with the desire to express them using
paradigms familiar to the domain experts, leads to
the demand for domain specific languages. However,
DSLs are, in general, difficult to design, implement
and maintain. In addition, developing DSLs from
scratch represent a laborous manual task. Moreover,
when/if a DSL grows in complexity and size, its de-
sign becomes more error-prone.

Alloy (Jackson, 2011) is an intuitive formal mod-
eling language, with a syntax that is simple easy to
read and write. It is supported by the Alloy Analyzer
tool, a friendly SAT (satisfability) based tool that en-
ables automatic model V&V (verification and valida-
tion). In the context of our work, Alloy is used to sup-
port the development of a DSL from scratch. From

126 M. L. M. Moreira R. and C. R. Paiva A..
A GUI Modeling DSL for Pattern-Based GUI Testing - PARADIGM.
DOI: 10.5220/0004880601260135
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 126-135
ISBN: 978-989-758-030-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



the Alloy model of the DSL, it is possible to gen-
erate instances (that should represent possible valid
GUI test models) and analyze those instances in or-
der to define and tune language constraints. This is
an iterative process that ends when the constraints
necessary to ensure the construction of well-formed
PARADIGM test models are found.

The main contributions of this current paper in-
clude:

– a detailed description concerning the process (ac-
cording to best practices) that was followed to cre-
ate a new DSL (PARADIGM) for the PBGT do-
main;

– a novel iterative approach using Alloy in DSL de-
velopment;

– an empirical case study to assess the effort re-
quired to model GUIs with PARADIGM;

– evaluation of PARADIGM usage at an industrial
environment.

2 BACKGROUND

This section presents existing GUI Modeling ap-
proaches and tools/frameworks that support the de-
velopment of graphical editors.

2.1 GUI Modeling

Spec# (Microsoft, 2013) is a model-based specifica-
tion language developed by Microsoft Research. It
extends the existing object-oriented .NET program-
ming language C# with specification constructs like
pre-conditions, post-conditions, invariants, and non-
null types. GUIs can be modelled with Spec# de-
scribing actions performed by the end-user and the
expected outcome of each user action (Paiva et al.,
2003). Hence, GUI Spec# models are the input to
Spec Explorer (Microsoft, 2012) with GUI Mapping
Tool (Paiva et al., 2005), which is a model-based test-
ing tool, that generates and executes test cases auto-
matically. However, the creation of GUI models with
Spec# is very demanding and time consuming.

The Visual Abstract Notation for GUI Model-
ing and Testing (VAN4GUIM) (Moreira and Paiva,
2008) is an approach that tries to diminish this ef-
fort, by hiding formalism details used in Model-Based
Testing (MBT) approaches. Furthermore, it aims
at promoting the use of MBT in industrial environ-
ments by providing a graphical front-end to assist
GUI modeling, and thus making the crafting of mod-
els more appealing to testers rather than the textual
notation. This visual notation is based on Canonical

Abstract Prototyping (Constantine, 2003) and Con-
curTaskTrees - CTT (Paternò et al., 1997). It consists
of five UML profiles: Containers, who are respon-
sible to hold/group UI elements; User Actions, that
are tools to act upon containers; Hybrids that result in
combination between elements to model user actions
who act upon specific containers; CTT connectors to
describe relationship among elements and; Window
Manager to describe windows behavior. GUIs mod-
eled with VAN4GUIM are then translated automati-
cally to Spec#, according to a set of translation rules.
However, the model does not feature all GUIs behav-
ior. Additional behavior needs to be included manu-
ally in the generated Spec#. After the Spec# model
is completed it will be used as input to Spec Explorer
with GUI Mapping Tool.

Event Flow Graphs (EFG) are a popular approach
that allow to create a GUI model by capturing the flow
of events, featuring all possible event interactions in
the UI (Memon et al., 2001). GUI models are gener-
ated via a tool called GUI Ripping Tool. However, to
the best of our knowledge, no tool exists to model an
EFG by hand.

2.2 Tools for Language Implementation

Numerous tools have the capability to generate graph-
ical editors from a metamodel of a DSL language.
Such tools differ on the: (i) implementation to attain
concrete graphical syntaxes; (ii) implementation com-
plexity; and (iii) maintenance efforts.

Microsoft Domain-Specific Language Tools
(Cook et al., 2007) allow to create a representation of
the model of a language, to specify their relations, to
describe the semantics of the language and to define
the DSL graphical representation. Furthermore,
Microsoft DSL Tools offer a solid and seamless
implementation, nonetheless depending on the im-
plementation goals, the fact of being platform reliant,
can be considered as a restriction.

The Eclipse platform contains a set of modeling
frameworks, such as Eclipse Modeling Framework
(EMF) (Steinberg et al., 2009), Graphical Editing
Framework (GEF) (Rubel et al., 2011) and Graphical
Modeling Framework (GMF) (Gronback and Boldt,
2013). EMF is a modeling framework that facilitates
building tools to support modeling languages. GEF
provides the graphical support needed for building a
model/language editor on the top of the EMF frame-
work. In addition, GMF is a more advanced and
generative framework for developing graphical edi-
tors for providing support for DSL development, by
leveraging EMF and GEF. These frameworks are pop-
ular, straightforward to use and maintain. Moreover,

A�GUI�Modeling�DSL�for�Pattern-Based�GUI�Testing�-�PARADIGM

127



they have a strong community support.
StarUML (StarUML, 2005) is an open source

project having in mind flexibility, extensibility, and
fast development. StarUML can be extended to pro-
vide further functionality over the tool by the devel-
opment of new modules. The tool acts as modeling
platform to provide functionality for various platform
technologies and external tools. This modeling soft-
ware offers great extensibility, but it requires a deep
knowledge over the core extension mechanisms of the
tool. Furthermore, this tool only runs on win32 sys-
tems and its development has stagnated.

Open ModelSphere (Grandite, 2008) is a platform
independent modeling tool. This tool is supported by
an experienced community and be freely modified as
desired. The downside is the complexity to cope with
the addition of new language elements. In addition, it
also requires a deep knowledge over the ModelSphere
layered model.

3 DSL IMPLEMENTATION

In general, DSLs are high-level languages exclusively
tailored to specific tasks. They are designed to make
their users effective in a specific domain. They are
important because they represent a more natural, ro-
bust, precise, and maintainable way of capturing the
essence of a given problem, rather than merely being
expressed in a general-purpose language.

The PBGT methodology requires a GUI model to
be crafted specifically for this domain. Thus, a lan-
guage is required to assist in the creation of mod-
els particularly tailored for PBGT. With the latter in
mind, several DSLs for GUI modeling have been eval-
uated, and have been described in the previous sec-
tion. However, to the best of our knowledge, there
is no DSL built from the right beginning of its devel-
opment with reusability concerns, providing UI Test
Patterns that can be adapted for testing different im-
plementations after a small configuration step. This
language promotes reusability either by reusing exist-
ing elements or extending them to be reused by others.
In addition, our DSL allows building a model describ-
ing the test goals instead of describing the expected
behavior.

PARADIGM is a DSL that has been created, from
scratch, for PBGT. The main goals of this language
are:

– provide higher level of abstraction models;

– provide generic test strategies for testing GUIs;

– provide language flexibility and promote reuse;

– provide extension mechanisms to cope with pos-
sible new UI Patterns trends;

– simple to use and maintain;

– and reduce the effort in building models.

PARADIGM development was based on a “tai-
lored DSL engineering process” (Strembeck and
Zdun, 2009), as well as guidance from Mar-
tin Fowler’s book “Domain Specific Languages”
(Fowler, 2010) and “Design Guidelines for Domain
Specific Languages” (Karsai et al., 2009). These ref-
erences define a set of best practices to follow during
the development of a DSL.

A DSL development is an iterative process. This
process is comprised by 5 major activities (Strem-
beck and Zdun, 2009): (1) Definition of the Language
Core Model with the language elements and their re-
lations; (2) Add constraints (if needed) to restrict the
language funcionalities (Language Restrictions); (3)
Specify the Syntax of the language to describe how
the elements are represented; (4) Describe the dy-
namic Behavior of the elements of the language, i.e.,
how such elements perform and interact; (5) Integrate
the DSL within a tool to support the construction of
models (Platform Integration).

3.1 Language Core Model

A language core model captures all relevant domain
abstractions and specifies relations among them. Ab-
stractions refer to concepts within the context of
PBGT. In PARADIGM, these abstractions are behav-
ioral elements (UI Test Patterns), structural elements
and language connectors.

A DSL model written in UML (Figure 1) can be
defined as a metamodel or a UML profile. We opted
for a metamodel approach since (Brucker and Doser,
2007): (i) the defined model does not need to be trans-
ferred to other domains; (ii) we want to have a more
abstract syntax; (iii) it provides easier semantic def-
inition; (iv) and the domain is well-defined due to
a unique precise set of concepts (UI Test Patterns,
mainly).

3.1.1 Elements

An Element is an abstract entity that represents the
concepts within PBGT domain. A model written
in PARADIGM starts with the Init element and fin-
ishes with the End. Both Init and End are special-
izations of the abstract entity Element. Models can
be structured in different levels of abstraction. For
instance, as models grow it is possible to use structur-
ing techniques, to handle different hierarchical levels,

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

128



Figure 1: PARADIGM Language Metamodel.

so that a model A can “live” inside a model B. Struc-
tural Form elements were created specifically for this
purpose. A Form (Structural element) embodies a
model (or sub-model), with an Init and End elements.
Groups are also structural elements but they are used
to gather elements that may be executed in any or-
der. Behavioral elements represent the UI Test Pat-
terns that define strategies for testing the UI Patterns.

3.1.2 Connectors

ConcurTaskTrees (CTT) (Paternò et al., 1997) are a
popular, expressive and powerful graphical notation
for task representation. It defines a set of temporal
operators to combine tasks. The connectors within
the PARADIGM language are inspired by CTT.

PARADIGM defines three connectors: “Se-
quence”; “SequenceWithDataPassing”; and “Se-
quenceWithMovedData”. The “Sequence” connector
indicates that the target element cannot start before
the source element has completed. The “Sequence-
WithDataPassing” connector has the same behavior
as “Sequence” and, additionally, indicates that the tar-
get element receives data from the source element.
“SequenceWithMovedData” has a similar meaning to
the “SequenceWithDataPassing” connector, however,
the source element transfers data to the target, so the
source loses the data that was transferred. In addi-
tion, there is another kind of relation among elements
– “Dependency” – indicating that the target element
depends on the properties of a set of source elements,
for instance, when it is the result of a calculation.

3.1.3 Language Constraints

The model of the PARADIGM’s language contains
additional constraints that cannot be expressed di-
rectly in the UML language model. During DSL de-
velopment some initials thoughts regarding language
constraints tend to evolve in time and need to be
enhanced as the language model increases and pro-
gresses. To assist in defining the constraints to be
imposed on the language, we have decided to follow
an iterative development process by building the lan-
guage model in Alloy as will be explained in the se-
quel.

3.1.4 PARADIGM Model and Restrictions in
Alloy

Alloy is a lightweight formal language that supports
structural and behavioral modeling. It is suitable for
early stages of software development, which allows
discovering the correct software abstractions. Alloy
is based on relational logic that combines the quanti-
fiers of first order logic with the operators of the rela-
tional calculus. In addition, Alloy allows expressing
complex structural and behavioral constraints. One
of the advantages of Alloy is its simple but powerful
notation.

An Alloy model contains a set of imports, signa-
tures, relations, facts, predicates, functions, assertions
and commands. A signature introduces a typed set of
atoms and may have fields. Facts are constraints on
relations that always hold. Predicates define reusable
constraints. Functions define reusable expressions.
Commands allow performing “check” and “run” anal-
ysis. Where “run” checks model consistency by look-
ing for valid instances and; “check” verifies the asser-
tion looking for counter examples.

The PARADIGM UML metamodel (Figure 1)
was translated to Alloy in order to generate instances
(that should represent possible valid GUI test mod-
els) and, afterwards, analyze them to think about the
properties that such models should have and tune
the language constraints. This is an iterative process
that ends when the instances obtained from the Alloy
model correspond to valid well-formed PARADIGM
models. This is when the correct set of constraints is
found.

As such, the starting point of this process was to
define the structure of PARADIGM models as they
may be structured in different levels of abstraction.
From this Alloy model (Figure 2), it is possible to
generate instances (e.g., Figure 3) (with Alloy An-
alyzer Tool) for a scope of at most 11 elements of
each signature but exactly 2 Forms and 1 Group. We
have defined an extra signature (comparing with the

A�GUI�Modeling�DSL�for�Pattern-Based�GUI�Testing�-�PARADIGM

129



UML metamodel), Model, a specialization of Form
to describe the upper level of the overall model and
for simplifying the specification. Figure 3 shows
a GUI test model with 2 hierarchical levels (Model
and Form). The Model has one Init (Init1), one End
(End1), one Behavior or UI Test Pattern (Behavior1),
a Form and a Group. The Form has one Init (Init0),
one End (End0) and a UI Test Pattern (Behavior0).
The Group has two UI Test Patterns (Behavior2 and
Behavior3). This instance allowed us to check if the
model specification was correct (by featuring the de-
signed restrictions).

Figure 2: Alloy model featuring PARADIGM hierarchical
levels.

Figure 3: Instance of the Alloy model (from Figure 2) re-
garding PARADIGM hierarchical levels.

Afterwards, we evolved the model in order to in-
clude the description of the language connectors and
constraints (Figure 4) that ensure that each connec-
tor links only two elements that are within the same
Structural element (Model, Form and Group). Before
each statement there is a description of its meaning
starting with “– –”. An example of an instance gener-
ated from this model is illustrated in Figure 5.

The refined language constraints for PARADIGM
are:

Figure 4: Alloy model featuring PARADIGM connectors.

Figure 5: Instance of the Alloy model (from Figure 4) re-
garding PARADIGM connectors.

LC1: A Connector cannot connect an element to
itself;

LC2: A Connector cannot have Init as destination
neither End as source;

LC3: An Init element cannot connect directly to
an End element;

LC4: Two elements cannot be connected more
than once by connectors of the same type;

LC5: Two Elements can only be connected if they
belong to the same Structural Element (Model; Form;
Group);

LC6: Elements inside a Form (but not inside
Groups of that Form) cannot be loose, i.e., for all el-
ements within a Form, there is at least one path from
the Init to the End that traverses that element.

3.2 Behavior Specification

The DSL behavior specification, also noted as dy-
namic semantics, stands as a part of the language

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

130



model and defines the behavior concerning the us-
age of a given DSL language element. PARADIGM’s
behavioral semantics establishes the instructions on
how to use the language and defines the interactions
among language elements.

To some extent, the DSL language constraints al-
ready define the behavior of the PARADIGM lan-
guage. Nevertheless, these are not sufficient to de-
fine the behavioral varieties of the PARADIGM ele-
ments. So, it is important to also define the possi-
ble configuration of the UI Test Patterns during the
modeling phase to allow testing generic behavior over
slightly different implementations and with different
input data.

3.2.1 UI Test Patterns

UI Patterns represent common functionalities that can
be implemented in different ways. Nevertheless, what
is important to notice is the common behavior that
is reflected in these generic implementations. A UI
Test Pattern aims at testing those UI Patterns accross
its several slightly different implementations. Mas-
ter/Detail, Find, Sort, Input and Call are UI Test Pat-
terns.

Definition 1. UI Test Pattern defines a test strategy
which is formally defined by a set of tuples with the
form:

< Goal;V;A;C;P >;where

Goal is the id of the test; V is a set of pairs
f[variable, inputData]g relating test input data with
the variables involved in the test; A is the sequence
of actions to perform during test case execution; C
is the set of possible checks to perform during test
case execution, for example, “check if it remains in
the same page”; P is a Boolean expression (precondi-
tion) defining the set of states in which it is possible to
execute the test. In another way, Goal is the “name”
of the test. A and the variables in V describe “what”
to do and “how” to execute the test. C describes the
final purpose (or why) the test should be executed. P
defines when can be executed.

The Goal, variables in V, A and C are defined
by the developer during the implementation phase of
the language. During the modeling phase, the tester
needs to configure each UI Test Pattern within the
model. He has to select the testing Goals (tests) and,
for each of those Goals, provide test input data, se-
lect the checks to perform, and define the precondi-
tion that describes the states where it is possible to
execute the corresponding actions. The tester can se-
lect the same Goal multiple times for a UI Test Pattern
providing different configurations.

Input UI Test Pattern. This UI Test Pattern
should be used to test the behavior of input fields for
valid and invalid input data.
– Goals: “Valid data” (INP VD) and “Invalid data”

(INP ID);
– Set of variables: finputg;
– Checks to perform: f“message box”, “label”,

“error provider”g;
– Sequence of actions: [provide input].

During configuration, the user has to provide valid
input data for INP VD (and invalid input data for
INP ID), select the checks to perform and define the
precondition.

Master/Detail UI Test Pattern. This pattern
should be applied to test UI Patterns that feature two
areas, master and detail, related in such a way that,
when the master changes, the detail changes accord-
ingly. Examples of these UI Patterns can be found in
software applications such as iTunes2 and Finder3.

– Goals: “Change master” (MD);
– Set of variables: fmaster, detailg;
– Checks to perform: f“detail has value X”, “de-

tail does not have value X”, “detail is empty”g;
– Sequence of actions: [select master].

During configuration the user has to provide mas-
ter input data for MD, select the checks to perform
and define the precondition.

Login UI Test Pattern. This pattern should be
used to test an authentication. The goal is to check
if it is possible to authenticate with a valid user-
name/password and check if it is not possible to au-
thenticate with invalid usernames/passwords.
– Goals: “Valid login” (LG VAL) and “Invalid lo-

gin” (LG INV);
– Set of variables: fusername, passwordg;
– Checks to perform: f“change page”, “pop-up er-

ror”, “same page”g;
– Sequence of actions: [provide username; provide

password; press submit].
During configuration the user has to provide valid

username/password input data for LG VAL (and in-
valid username/password for LG INV), select the
checks to perform and define the precondition.

Find UI Test Pattern. This pattern should be used
when someone wants to test the result of a search that
shows up after a submit action. The goal is to verify
that the result of the search is as expected (it finds the
right set of values).

2http://www.apple.com/itunes/
3http://support.apple.com/kb/ht2470

A�GUI�Modeling�DSL�for�Pattern-Based�GUI�Testing�-�PARADIGM

131



– Goals: “Value found” (FND VF) and “Value not
found” (FND NF);

– Set of variables: fv1,...,vNg;

– Checks to perform: f“empty set”, “if it has X
elements”, “if it does not have element X”, “if the
result in line X is Y”g;

– Sequence of actions: [provide v1,... , provide vN].

During configuration, the user has to define the
value for N, provide input data for variables v1,...,vN ,
select the check to perform and define the precondi-
tion.

Sort UI Test Pattern. The Sort UI Test Pattern
is used to check if the result (of a sort action) is or-
dered accordingly to the chosen sort criterion. The
idea is to test user interfaces that contain sortable
items/elements, such as, tables and lists.

– Goals: “ascending” (SRT ASC) and “descend-
ing” (SRT DESC);

– Set of variables: fv1,...,vNg;

– Checks to perform: f“element from field X in
position Y has value Z”g;

– Sequence of actions: [provide v1,... , provide vN].

During configuration, the user has to define the
value for N, provide input data for variables v1,...,vN ,
select the check to perform and define the precondi-
tion.

Call UI Test Pattern. This UI Test Pattern is used
to check the functionality of the corresponding invo-
cation.

– Goals: “Action succeeded” (CL AS) and “Action
failed” (CL AF);

– Set of variables: f g;

– Checks to perform: f“pop-up message”, “stay in
the same page”, “change to page X”g;

– Sequence of actions: [press].

During configuration, the user has only to select
the check to perform and define the precondition.

3.3 Syntax

The next step in the DSL development is the definition
of its syntax (Figure 6). Hence, we defined the graph-
ical symbols for the language connectors and for the
language elements. The reasons for selecting a graph-
ical notation over a textual one, was based on the fol-
lowing aspects: (i) easier to understand; (ii) simpler
to navigate and; (iii) intuitive and faster learning for
end-users.

All PARADIGM’s elements and connectors are
defined by: (i) an icon/figure to represent the element

graphically; (ii) a short label to name the element; (iii)
a number (between square brackets) to identify the el-
ement, according to its context; and (iv) a Boolean
value, also placed between square brackets, to indi-
cate if the element is optional.

Figure 6: PARADIGM’ Syntax.

3.4 Integration

Eclipse was the selected target platform for
PARADIGM. GMF was the selected framework
for the development of a specific tool, called
PARADIGM Modeling Environment (ME) (Monteiro
and Paiva, 2013), targeted to assist the construction
of PARADIGM models in the context of PBGT.
However, several tools for language implementation
have also been evaluated, but they failed in simplicity
in the development, maintenance and support aspects.

PARADIGM ME tool development incorporated
all the previous definitions of the language: ele-
ments and their properties, connectors, graphical
representation and constraints. These constraints
were implemented in OCL (Cabot and Gogolla,
2012)). In addition, new widgets were defined just
for improving end-user interaction (menus, toolbars
and buttons). This tool provides support for modeling
GUIs using PARADIGM and further functionality:
UI Test Pattern configuration; test cases generation
from models; test case execution and; test coverage
information. Since PARADIGM aims to be an
expandable language (to cope with latest UI trends),
new elements and connectors may be added. This
means the language can be expanded during imple-
mentation phase (development) and/or afterwards
(modeling phase). For instance, the tester is able to
create his own set of behavioral elements by reusing
and combining the existent ones within Forms. The
set of those Forms can be seen as a library of new
elements that can be reused within other model.

4 EMPIRICAL EVALUATION

To assess the effectiveness and real-world relevance
of our approach, we have conducted a set of case

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

132



studies following guidelines from Runeson and Höst
(Runeson and Höst, 2009). The goal is to measure the
feasibility of the PBGT approach, starting from the
modeling phase until the generated test cases output.
More specifically, to assess the less efforts required
to model a GUI, to configure the UI Test Patterns and
the capability to model common UIs. Furthermore,
we also want to known the acceptance level of
PARADIGM, among GUI testers. Our evaluation
addresses the following research questions:

RQ1: What are the overall modeling efforts required
to craft a model with PARADIGM, when compared
with other Model-Based GUI Testing approaches?
RQ2: Are current language elements and connectors
adequate and effective to model UIs, with the goal to
finding errors?
RQ3: What is the graphical effectiveness and power
of PARADIGM?

4.1 Experimental Objects

italiancharts. This is a public site that reflects the
best selling music singles and albums in Italy. It can
be found at http://italiancharts.com (to be referred as
EO1).
The Address Book. The Address Book is an open
source address management system, that in short, al-
lows to create unlimited number of addresses and as-
sociated information (to be referred as EO2).
Professional Calendar/Agenda. This application is
written in C#, and provides a calendar view for cre-
ating appointments and day events (to be referred as
EO3).
zkCalendar. This tool features scheduling function-
ality, with daily, weekly and monthly views (to be re-
ferred as EO4).
Industrial Applications. Two industrial applications
(to be referred as IA1 and IA2) that due to confiden-
tiality terms cannot be revealed.

4.2 Experimental Setup

To address RQ1 we have selected three Model-
Based GUI Testing approaches, namely: Spec#,
VAN4GUIM, and PARADIGM. With these ap-
proaches, models have to be crafted manually.

The experiments were performed by two different
teams: one comprised by research students and the
other comprised by professionals working in a soft-
ware company (to test their two own internal devel-
oped applications). Elements from both teams had
not been in contact with PARADIGM developers nei-
ther had previous knowledge about PBGT, Spec# and

VAN4GUIM. We presented these 3 approaches to the
teams in two different sessions during which they had
the opportunity to clarify doubts in order to be pre-
pared to start the experiments. In order to address
RQ1 we measured the time (in minutes) required to
create and configure the models using the 3 different
approaches mentioned before. To address RQ2 and
RQ3 we gathered feedback from the teams to ver-
ify if they were able to model the proposed UIs and
to assess language acceptability, graphical effective-
ness and communicative aptitude. Thus, to evaluate
PARADIGM, we selected 8 dimensions, according
to Moody’s criteria (Moody, 2007), that in our per-
spective are the ones that can be applied to evaluate
PARADIGM. Then, once the teams finished the con-
struction of the models, we delivered a questionnaire,
featuring the selected dimensions. For each dimen-
sion, the teams were able to select only one value of
the following scale (in terms of perception): High – 3;
Medium – 2; Low – 1; Do not know/blank – 0. Fur-
ther, we also evaluated VAN4GUIM according to the
same criteria, in order to perform a comparision be-
tween PARADIGM and VAN4GUIM. Spec# was not
included in this comparision, since it is not a graphi-
cal language.

4.3 Findings

After completion of the case studies above, we ob-
tained the following results. Table 1 displays the time
measurements, in minutes, concerning the modeling
(displayed as M in the table cells) and configuration
(displayed as C in the table cells) efforts that were
required for the experimental objects (EO). This table
registered the data to address RQ1.

The results regarding the evaluation of
PARADIGM and VAN4GUIM, according to
Moody’s quality criteria, are represented in Table
2. Each table cell shows the average value for each
dimension of each method. The total represents the
sum of the cells dividing by all dimensions (8). Table
2 displays the data to fulfill RQ2 and RQ3.

4.4 Discussion

By analyzing Table 1, we found that, on average,
it took 343 minutes to craft models with Spec#,
243 minutes with VAN4GUIM and 64 minutes
with PARADIGM. Regarding the configuration ef-
fort, Spec# and VAN4GUIM are similar, i.e., teams
spent 48 and 45 minutes respectively. However, with
PARADIGM it took 31 minutes. Concerning these
results, it is important to mention that with Spec#
and VAN4GUIM the focus is directed towards mod-

A�GUI�Modeling�DSL�for�Pattern-Based�GUI�Testing�-�PARADIGM

133



Table 1: Case studies results.

EO Method
Spec# VAN4GUIM PARADIGM

EO1 M:303
C:46

M:181
C:41

M:62
C:20

EO2 M:210
C:34

M:121
C:31

M:32
C:14

EO3 M:177
C:32

M:110
C:27

M:26
C:12

EO4 M:183
C:40

M:125
C:38

M:30
C:22

IA1 M:546
C:61

M:421
C:57

M:104
C:50

IA2 M:671
C:76

M:498
C:75

M:131
C:68

Table 2: PARADIGM and VAN4GUIM findings concern-
ing Moody’s quality criteria, with input collected from the
teams.

Quality Criteria PARADIGM VAN4GUIM
Discriminability 2.2 2.0
Perceptual and
cognitive limits 2.8 2.5

Emphasis 2.9 2.8
Perceptual
directness 2.6 2.5

Structure 2.8 2.8
Identification 2.7 2.5
Expressiveness 2.8 2.6
Simplicity 2.7 2.7
Total 21.5 / 8 ’ 2.7 20.4 / 8 ’ 2.6

eling user actions. With PARADIGM the modeling
is focused on testing goals. It is possible to conclude
that with PARADIGM the modeling efforts and also
the configuration aspects are much lower rather than
Spec# and VAN4GUIM.

To assess the overall acceptability, the graphical
richness and communicative ability of PARADIGM,
we collected feedback through a questionnaire ful-
filled by the team members. The results are
shown in Table 2. We evaluated PARADIGM
against VAN4GUIM according to 8 dimensions from
Moody’s criteria. The values of each cell (from Ta-
ble 2) represent the teams perception and evaluation
of each dimension. The higher the proximity to-
wards value 3, the higher and better their percep-
tion is, in respect to the given dimension concern-
ing the graphical notation in question. For exam-
ple, the discriminability dimension consists on the
perception if language elements are easy to differ-
entiate. For this dimension, PARADIGM registered
the average of 2.2 and VAN4GUIM the average of

2.0. This result indicates that according to the scale,
PARADIGM has a better rating on this dimension.
Due to space restrictions, we cannot explain all di-
mensions. However, the meaning of each one can
be found in (Moody, 2007). As for the overall rat-
ings for all dimensions, PARADIGM registered a rat-
ing of 2.7 and VAN4GUIM obtained a rating of 2.6.
Thus, both notations appear to have similar accept-
ability, perceptiveness and graphical richness. How-
ever, PARADIGM registered the highest score (with a
slight difference) among the evaluation performed by
the teams. This fact indicates that PARADIGM lan-
guage elements are expressive, easy to identify, effec-
tive and graphically rich. Given the obtained positive
feedback, results also point that PARADIGM can be
adopted at industry level.

We are aware that more studies are needed which
can be seen as a threat to validity. Nevertheless, the
case studies presented in this paper point to the di-
minished effort in modeling GUIs with PARADIGM.
Furthermore, we also evaluated the DSL at industrial
level and the feedback was promising. Both modeling
and configuration efforts for the models, depend on
the testing goals designed for each application. This
means that depending on the depth and detail of the
testing goals, the results could have been different.

5 CONCLUSIONS

This paper presented PARADIGM, a DSL to be used
in the context of PBGT, and the steps performed, ac-
cording to best practices, in the development of such
DSL. In addition, it also presents an empirical evalu-
ation of the PARADIGM comparing with other mod-
eling approaches (Spec# and VAN4GUIM) and an
evaluation at industrial level. The case studies re-
sults show that building models in PARADIGM re-
quires less effort when compared with Spec# and
VAN4GUIM. The results obtained from the industrial
case study are encouraging and indicate that the over-
all approach has, in fact, potential of being adopted
by the industry.

ACKNOWLEDGEMENTS

This work is financed by the ERDF - European Re-
gional Development Fund through the COMPETE
Programme (operational programme for competi-
tiveness) and by National Funds through the FCT
- Fundação para a Ciência e a Tecnologia (Por-
tuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-020554.

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

134



REFERENCES

Brucker, A. D. and Doser, J. (2007). Metamodel-based
UML Notations for Domain-specific Languages. In
Favre, J. M., Gasevic, D., Lämmel, R., and Winter, A.,
editors, 4th International Workshop on Software Lan-
guage Engineering (ATEM 2007). Nashville, USA.

Cabot, J. and Gogolla, M. (2012). Object constraint lan-
guage (OCL): a definitive guide. In Proceedings of the
12th international conference on Formal Methods for
the Design of Computer, Communication, and Soft-
ware Systems: formal methods for model-driven en-
gineering, SFM’12, pages 58–90, Berlin, Heidelberg.
Springer-Verlag.

Constantine, L. (2003). Canonical Abstract Prototypes for
Abstract Visual and Interaction Design. In Interac-
tive Systems. Design, Specification, and Verification,
volume 2844 of LNCS, pages 1–15. Springer-Verlag,
Berlin/Heidelberg.

Cook, S., Jones, G., Kent, S., and Wills, A. (2007). Domain-
Specific Development with Visual Studio DSL Tools.
Addison-Wesley Professional, first edition.

Cunha, M., Paiva, A. C. R., Sereno Ferreira, H., and Abreu,
R. (2010). PETTool: A Pattern-Based GUI Testing
Tool. In 2nd International Conference on Software
Technology and Engineering (ICSTE’10), SFM’12,
pages 202–206.

Fowler, M. (2010). Domain Specific Languages. Addison-
Wesley Professional, 1st edition.

Grandite (2008). Open Modelsphere – Free
Modeling Software Open Source GPL.
http://www.modelsphere.org/. Accessed January,
2013.

Gronback, R. C. and Boldt, N. (2013). Graphical Modeling
Framework. http://www.eclipse.org/modeling/gmp.
Accessed April, 2013.

Jackson, D. (2011). Software Abstractions: Logic, Lan-
guage, and Analysis. MIT Press; 2nd Revised edition.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schneider,
M., and Vlkel, S. (2009). Design Guidelines for Do-
main Specific Languages. In Rossi, M., Sprinkle, J.,
Gray, J., and Tolvanen, J.-P., editors, Proceedings of
the 9th OOPSLA Workshop on Domain-Specific Mod-
eling (DSM’09), pages 7–13.

Memon, A. M., Soffa, M. L., and Pollack, M. E. (2001).
Coverage Criteria for GUI Testing. In In Proceedings
of the 8th European Software Engineering Conference
(ESEC) and 9th ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering
(FSE-9), pages 256–267. ACM Press.

Microsoft (2012). Model-based Testing
with SpecExplorer - Microsoft Re-
search. http://research.microsoft.com/en-
us/projects/specexplorer/. Accessed February,
2012.

Microsoft (2013). Spec# - Microsoft Re-
search. http://research.microsoft.com/en-
us/projects/specsharp/. Accessed January, 2013.

Monteiro, T. and Paiva, A. C. R. (2013). Pattern Based GUI

Testing Modeling Environment. In ICST Workshops,
pages 140–143.

Moody, D. (2007). What Makes a Good Diagram? Im-
proving the Cognitive Effectiveness of Diagrams in
IS Development. In Wojtkowski, W., Wojtkowski,
W., Zupancic, J., Magyar, G., and Knapp, G., editors,
Advances in Information Systems Development, pages
481–492. Springer US.

Moreira, R. M. L. M. and Paiva, A. C. R. (2008). Vi-
sual Abstract Notation for GUI Modelling and Test-
ing – VAN4GUIM. In Cordeiro, J., Shishkov,
B., Ranchordas, A., and Helfert, M., editors,
ICSOFT (SE/MUSE/GSDCA), pages 104–111. IN-
STICC Press.

Moreira, R. M. L. M., Paiva, A. C. R., and Memon, A.
(2013). A Pattern-Based Approach for GUI Modeling
and Testing. In Proceedings of the 24th International
Symposium on Software Reliability Engineering, IS-
SRE’13, Pasadena, CA, USA. IEEE Computer Soci-
ety.

Paiva, A., Faria, J. C. P., and Vidal, R. F. A. M. (2003).
Specification-Based Testing of User Interfaces. In In-
teractive Systems. Design, Specification, and Verifi-
cation, 10th International Workshop, volume 2844 of
LNCS, pages 139–153. Springer.

Paiva, A. C., Faria, J. C., Tillmann, N., and Vidal, R. A.
(2005). A Model-to-Implementation Mapping Tool
for Automated Model-Based GUI Testing. In Lau,
K.-K. and Banach, R., editors, Formal Methods and
Software Engineering, volume 3785 of LNCS, pages
450–464. Springer Berlin Heidelberg.

Paternò, F., Mancini, C., and Meniconi, S. (1997). Concur-
TaskTrees: A Diagrammatic Notation for Specifying
Task Models. In Proceedings of the IFIP TC13 In-
ternational Conference on Human-Computer Interac-
tion, INTERACT ’97, pages 362–369, London, UK,
UK. Chapman & Hall, Ltd.

Rubel, D., Wren, J., and Clayberg, E. (2011). The Eclipse
Graphical Editing Framework (GEF). Addison-
Wesley Professional, 1st edition.

Runeson, P. and Höst, M. (2009). Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical Software Engineering, 14(2):131–
164.

StarUML (2005). Staruml – The Open Source UML/MDA
Platform. http://staruml.sourceforge.net/en/. Ac-
cessed January, 2013.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

Strembeck, M. and Zdun, U. (2009). An approach for
the systematic development of domain-specific lan-
guages. Softw. Pract. Exper., 39(15):1253–1292.

A�GUI�Modeling�DSL�for�Pattern-Based�GUI�Testing�-�PARADIGM

135


