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Abstract: It is generally acknowledged that software testing is both challenging and time-consuming. Understanding 
the factors that may positively or negatively affect testing effort will point to possibilities for reducing this 
effort. Consequently there is a significant body of research that has investigated relationships between static 
code properties and testability. The work reported in this paper complements this body of research by 
providing an empirical evaluation of the degree of association between runtime properties and class-level 
testability in object-oriented (OO) systems. The motivation for the use of dynamic code properties comes 
from the success of such metrics in providing a more complete insight into the multiple dimensions of 
software quality. In particular, we investigate the potential relationships between the runtime characteristics 
of production code, represented by Dynamic Coupling and Key Classes, and internal class-level testability. 
Testability of a class is considered here at the level of unit tests and two different measures are used to 
characterise those unit tests. The selected measures relate to test scope and structure: one is intended to 
measure the unit test size, represented by test lines of code, and the other is designed to reflect the intended 
design, represented by the number of test cases. In this research we found that Dynamic Coupling and Key 
Classes have significant correlations with class-level testability measures. We therefore suggest that these 
properties could be used as indicators of class-level testability. These results enhance our current knowledge 
and should help researchers in the area to build on previous results regarding factors believed to be related 
to testability and testing. Our results should also benefit practitioners in future class testability planning and 
maintenance activities. 

1   INTRODUCTION  

Software testing is a core software engineering 
activity. Although software systems have been 
growing larger and more complex for some time, 
testing resources, by comparison, have remained 
limited or constrained (Mouchawrab et al., 2005). 
Software testing activities can also be costly, 
requiring significant time and effort in both planning 
and execution, and yet they are often unpredictable 
in terms of their effectiveness (Bertolino, 2007). 
Understanding and reducing testing effort have 
therefore been enduring fundamental goals for both 
academic and industrial research.    

The notion that a software product has properties 
that are related to the effort needed to validate that  
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product is commonly referred to as the ‘testability’ 
of that product (ISO, 2001). In fact, this term can be 
traced back to 1994, when Binder (1994) coined the 
phrase “Design for Testability” to describe software 
construction that considers testability from the early 
stages of the development. The core expectation is 
that software components with a high degree of 
testability are easier to test and consequently will be 
more effectively tested, raising the software quality 
as compared to software that has lower testability. 
Improving software testability should help to reduce 
testing cost, effort, and demand for resources. Traon 
and Robach (1995) noted that if components are 
difficult to test, then the size of the test cases 
designed to test those components, and the required 
testing effort, will necessarily be larger. Components 
with poor testability are also more expensive to 
repair when problems are detected late in the 
development process. In contrast, components and 
software with good testability can dramatically 
increase the quality of the software as well as reduce 
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the cost of testing (Gao et al., 2003).  
While clearly a desirable trait, testability has 

been recognised as being an elusive concept, and its 
measurement and evaluation are acknowledged to be 
challenging endeavours (Mouchawrab et al., 2005). 
In spite of the ISO definition, or perhaps because of 
its rather broad meaning, multiple views have been 
adopted when authors have considered software 
testability. Researchers have therefore identified 
numerous factors that (may) have an impact on the 
testability of software. For instance, software 
testability is said to be affected by the extent of the 
required validation, the process and tools used, and 
the representation of the requirements, among other 
factors (Bruntink and van Deursen, 2006). Given 
their various foundations it is challenging to form a 
complete and consistent view on all the potential 
factors that may affect testability and the degree to 
which these factors are present and influential under 
different testing contexts. Several are considered 
here to provide an initial overview of the breadth of 
factors of potential influence on testability. 

A substantial body of work has addressed a 
diversity of design and code characteristics that can 
affect the testability of a software product. For 
example, the relationships been internal class 
properties in OO systems and characteristics of the 
corresponding unit tests have been investigated in 
several previous studies e.g., Bruntink and van 
Deursen (2006), Badri et al., (2011). In these studies, 
several OO design metrics (drawn mainly from the 
C&K suite (Chidamber and Kemerer, 1994)) have 
been used to investigate the relationship between 
class/system structure and test complexity. Some 
strong and significant relationships between several 
complexity- and size-related metrics of production 
code and internal test code properties have been 
found (Bruntink and van Deursen, 2006).  

In their research, Bruntink and van Deursen used 
only static software measures, and this is the case for 
all previous work in this area. In this paper we build 
on the view of Basili et al. (1996) that traditional 
static software metrics may be necessary but not 
sufficient for characterising, assessing and 
predicting the entire quality profile of OO systems, 
and so we propose the use of dynamic metrics to 
represent further characteristics. Dynamic metrics 
are the sub-class of software measures that capture 
the dynamic behaviour of a software system and 
have been shown to be related to software quality 
attributes (Cai, 2008, Gunnalan et al., 2005, Scotto 
et al., 2006). Consideration of this group of metrics 
provides a more complete insight into the multiple 
dimensions of software quality when compared to 

static metrics alone (Dufour et al., 2003). Dynamic 
metrics are usually computed based on data 
collected during program execution (i.e., at runtime) 
and may be obtained from the execution traces of the 
code (Gunnalan et al., 2005), although in some cases 
simulation can be used instead of the actual 
execution. Therefore they can directly reflect the 
quality attributes of that program, product or system 
in operation. This paper extends the investigation of 
software characteristics as factors in code testability 
by characterising that code using dynamic metrics. 
A fuller discussion of dynamic metrics and their 
relative advantages over static metrics is presented 
in another article (Tahir and MacDonell, 2012). 

The rest of the paper is structured as follows. 
Section 2 provides the research context for this 
paper by reviewing related work, and confirms the 
potential of relating dynamic code metrics to 
testability. Section 3 argues for the suitability of the 
Dynamic Coupling and Key Classes concepts as 
appropriate dynamic metrics to characterise the code 
in relation to testability. These metrics are then used 
in the design of a suitable set of experiments to test 
our hypotheses on specific case systems, as 
described in sections 4 and 5. The results of these 
experiments are then presented in section 6 and their 
implications are discussed in section 7. Threats to 
the study’s validity are noted in section 8. Finally, 
the main conclusions from the study and some 
thoughts on related future work are presented in 
section 9. 

2   RELATED WORK 

Several previous works have investigated the 
relationships between properties of software 
production code components and properties of their 
associated test code, with the focus primarily on unit 
tests. The focus of that work has varied from 
designing measures for testability and testing effort 
to assessing the strength of the relationships between 
them. Given constraints on space, we consider a few 
typical studies here. Our intent is to be illustrative as 
opposed to exhaustive, and these studies are 
representative of the larger body of work in this 
research domain. 

Bruntink and van Deursen (2006) investigated 
the relationship between several OO metrics and 
class-level testability for the purpose of planning and 
estimating later testing activities. The authors found 
a strong correlation between class-level metrics, 
such as Number of Methods (NOM), and test level 
metrics, including the number of test cases and the 
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lines of code per test class. Five different software 
systems, including one open source system, were 
traversed during their experiments. However, no 
evidence of relationships was found between 
inheritance-related metrics, e.g., Coupling Between 
Objects (CBO), and the proposed testability metrics. 
This is likely to be because the test metrics were 
considered at the class level. These inheritance-
related metrics are expected to have a strong 
correlation with testability at the integration and/or 
system level, as polymorphism and dynamic binding 
increase the complexity of a system and the number 
of required test cases, and contribute to a consequent 
decrease in testability (Mouchawrab et al., 2005). 
This suggestion can only be confirmed through 
evaluation at the object level using dynamic metrics. 
In a similar study, Badri et al., (2011) investigated 
the relationship between cohesion and testability 
using the C&K static Lack of Cohesion metric. They 
found a significant relationship between this 
measure of static cohesion and software testability, 
where testability was measured using the metrics 
suggested by Bruntink and van Deursen (2006). 

In other work related to testability, Arisholm et 
al., (2004) found significant relationships between 
Dynamic Coupling measures, especially Dynamic 
Export Coupling, and change-proneness. Export 
Coupling appears to be a significant indicator of 
change-proneness and likely complements existing 
coupling measures based on static analysis (i.e., 
when used with size and static coupling measures).  

3   TESTABILITY CONCEPTS  

3.1 Dynamic Coupling 

In this study Dynamic Coupling has been selected as 
one of the system characteristics to measure and 
investigate regarding its relationship to testability. 
Coupling has been shown in prior work to have a 
direct impact on the quality of software, and is also 
related to the software quality characteristics of 
complexity and maintainability (Offutt et al., 2008); 
(Al Dallal, 2013). It has been shown that, all other 
things being equal, the greater the coupling level, the 
greater the complexity and the harder it is to 
maintain a system (Chaumun et al., 2000); (Tahir et 
al., 2010). This suggests that it is reasonable to 
expect that coupling will be related to testability. 
Dynamic rather than static coupling has been 
selected for our investigation to address some 
shortcomings of the traditional static measures of 
coupling. For many years coupling has been 

measured statically, based on the limited structural 
properties of software (Zaidman and Demeyer, 
2008). This misses the coupling at runtime between 
different components at different levels (classes, 
objects, packages, and so on), which should capture 
a more complete picture and so relate better to 
testability. This notion of measuring Dynamic 
Coupling is quite common in the emergent software 
engineering research literature. In our recent 
systematic mapping study of dynamic metrics, 
Dynamic Coupling was found to be the most widely 
investigated system characteristic used as a basis for 
dynamic analysis (Tahir and MacDonell, 2012). 

For the purposes of this work the approach taken 
by (Arisholm et al., 2004) is followed, and Dynamic 
Coupling metrics that capture coupling at the object 
level are used. Two objects are coupled if at least 
one of them acts upon the other (Chidamber and 
Kemerer, 1994). The measure of coupling used here 
is based on runtime method invocations/calls: two 
classes, class A and class B, are said to be coupled if 
a method from class A (caller) invokes a method 
from class B (callee), or vice versa. Details of the 
specific metrics used to measure this form of 
coupling are provided in section 4.2.1. 

3.2 Key Classes 

The notion of a Key Class is introduced in this study 
as a new production code property to be measured 
and its relationship to class testability investigated. 
The meaning of Key Classes in this study is defined 
and its expected relationship to testability described. 

OO systems are formed around groups of classes 
some of which are linked together. As software 
systems grow in size, so the number of classes used 
increases in these systems. To analyse and 
understand a program or a system, how it works and 
the potential for decay, it is important to know 
where to start and which aspects should be given 
priority. From a maintenance perspective, 
understanding the roles of classes and their relative 
importance to a system is essential. In this respect 
there are classes that could have more influence and 
play more prominent roles than others. This group of 
classes is referred to here as ‘Key Classes’. We 
define a Key Class as a class that is executed 
frequently in the typical use profile of a system. 
Identifying these classes should inform the more 
effective planning of testing activities. One of the 
potential usages of these classes is in prioritizing 
testing activities – testers could usefully prioritize 
their work by focusing on testing these Key Classes 
first, alongside consideration of other factors such as 
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risk and criticality information. 
The concept of Key Classes is seen elsewhere in 

the literature, but has an important distinction in 
meaning and usage in this research. For example, in 
work of Zaidman and Demeyer (2008), classification 
as a Key Class is based on the level of coupling of a 
class. Therefore, Key Classes are those classes that 
are tightly coupled. In contrast, our definition is 
based on the usage of these classes: Key Classes are 
those classes that have high execution frequency at 
runtime. A metric used to measure Key Classes is 
explained in section 4.2.2. 

The following section now describes and justifies 
the design of this study. 

4   STUDY DESIGN 

In this section we explain our research questions and 
the hypotheses that the work is aimed at testing. We 
also define the various metrics used in operational 
terms and our analysis procedures. 

One of the key challenges faced when evaluating 
software products is the choice of appropriate 
measurements. Metric selection in this research has 
been determined in a “goal-oriented” manner using 
the GQM framework (Basili and Weiss, 1984) and 
its extension, the GQM/MEDEA framework (Briand 
et al., 2002). Our goal is to better understand what 
affects software testability, and our objective is to 
assess the presence and strength of the relationship 
between Dynamic Coupling and Key Classes on the 
one hand and code testability on the other. The 
specific purpose is to measure and ultimately predict 
class testability in OO systems. Our viewpoint is as 
software engineers, and more specifically, testers, 
maintainers and quality engineers. The targeted 
environment is Java-based open source systems.  

4.1 Research Questions and 
Hypotheses 

We investigate two factors that we contend are in 
principle related to system testability: Dynamic 
Coupling and Key Classes. For this purpose, we 
have two research questions to answer:  

RQ1: Is Dynamic Coupling of a class significantly 
correlated with the internal class testability measures 
of its corresponding test class/unit?  

RQ2: Are Key Classes significantly correlated with 
the internal class testability measures of their 
corresponding test classes/units? 

The following two research hypotheses are 

investigated to answer the research questions:  

H0: Dynamic Coupling has a significant correlation 
with class testability measures. 

H1: Key Classes have a significant correlation with 
class testability measures. 

The corresponding null hypotheses are:  

H2: Dynamic Coupling has no significant 
correlation with class testability measures. 

H3: Key Classes have no significant correlation with 
class testability measures. 

4.2 Dynamic Measures 

In section 3 we described the Dynamic Coupling and 
Key Classes testability concepts. In this section we 
define specific dynamic metrics that can be used to 
measure these testability concepts. 

4.2.1 Dynamic Coupling Measures 

As stated in subsection 3.1, Dynamic Coupling is 
intended to be measured in two forms - when a class 
is accessed by another class at runtime, and when a 
class accesses other classes at runtime (i.e., to 
account for both callers and callees). To measure 
these levels of coupling we select the previously 
defined Import Coupling (IC) and Export Coupling 
(EC) metrics (Arisholm et al., 2004). IC measures 
the number of method invocations received by a 
class (callee) from other classes (callers) in the 
system. EC measures the number of method 
invocations sent from a class (caller) to other classes 
(callees) in the system. Note that both metrics are 
collected based on method invocations/calls. More 
detailed explanations of these metrics are provided 
in Arisholm et al., (2004). 

4.2.2 Key Classes Measure 

The concept of Key Classes is explained in section 
3.2. The goal here is to examine if those Key Classes 
(i.e., those classes with higher frequency of 
execution) have a significant relationship with class 
testability (as defined in the next subsection). We 
define the Execution Frequency (EF) dynamic 
metric to identify those Key Classes. EF for class C 
counts the number of executions of methods within 
class C. Consider a class C, with methods m1, m2,. 
mn. Let EF(mi) be the number of executions of 
method m of class C, then: 

EFሺܥሻ ൌ EFሺ݉݅ሻ


ୀଵ

 (1)
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where n is the number of executed methods within 
class C. 

4.3 Class Testability Measures 

The testability of a class is considered here in 
relation to unit tests. In this work, we utilise two 
static metrics to measure unit test characteristics: 
Test Lines of Code (TLOC) and the Number of Test 
Cases (NTC). These metrics are motivated by the 
test suite metrics suggested by Bruntink and van 
Deursen (2006). TLOC, derived from the classic 
Lines of Code (LOC) metric, is a size measure that 
counts the total number of physical lines of code 
within a test class or classes. NTC is a test design 
metric that counts the total number of test cases in a 
test class.  

Our hypotheses thus reflect an expectation that 
the Dynamic Coupling and Key Classes of 
production code classes are related to the size and 
scope of their associated test classes.  

4.4 Testing the Relationships 

As we are interested in the potential associations 
between variables, a statistical test of correlation is 
used in the evaluation of our hypotheses. After 
collecting our metrics data we first apply the 
Shapiro-Wilk (S-W) test to check the normality of 
each data distribution. This is necessary as selection 
of the relevant correlation test should be informed 
by the nature of the distributions, being normal or 
non-normal. The S-W test is a particularly 
appropriate one to use here given the size of our data 
sets (as detailed in the next section). The null 
hypothesis for the S-W test is that data is normally 
distributed. Our data collection methods are 
explained in more detail in the following section. 

5   DATA COLLECTION 

The collection of dynamic metrics data can be 
accomplished in various ways. The most common 
(and most accurate) way is to collect the data by 
obtaining trace information using dynamic analysis 
techniques during software execution. Such an 
approach is taken in this study and is implemented 
by collecting metrics using the AspectJ1 framework, 
a well-established Java implementation of Aspect 

 
                                                           
1 http://www.eclipse.org/aspectj/ 

Oriented Programming (AOP). Previous works 
(including those of Cazzola and Marchetto (2008), 
Adams et al., (2009) and Tahir et al., (2010)) have 
shown that AOP is an efficient and practical 
approach for the objective collection of dynamic 
metrics data, as it can enable full runtime automatic 
source-code instrumentation to be performed.  

Testability metrics data, including LOC, TLOC, 
and Number of Classes (NOC), are collected using 
the CodePro Analytix2 tool. The values of these 
metrics were later checked and verified using the 
Eclipse Metrics Plugin3. Values for the NTC metric 
are collected from the JUnit4 framework and these 
values were verified manually by the first author. 

We used the two different traceability techniques 
suggested by Rompaey and Demeyer (2009) to 
identify unit test classes and link them to their 
corresponding production classes. First, we used the 
Naming Convention technique to link test classes to 
production classes following their names. It has been 
widely suggested (for instance, in the JUnit 
documentation) that a test class should be named 
after the corresponding class(es) that it tests, by 
adding “Test” to the original class name. Second, we 
used a Static Call Graph technique, which inspects 
method invocations in the test case. The latter 
process was carried out manually by the first author. 
The effectiveness of the Naming Convention 
technique is reliant on developers’ efforts in 
conforming to a coding standard, whereas the Static 
Call Graph approach reveals direct references to 
production classes in the test classes.  

It is important to note here that we only consider 
core system code: only production classes that are 
developed as a part of the system are assessed. 
Additional classes (including those in jar files) are 
excluded from the measurement process. These files 
are generally not part of the core system under 
development and any dependencies could negatively 
influence the results of the measurement process. 

5.1 Case Studies 

To consider the potential relationships between class 
testability and the selected dynamic metrics we 
selected three different open source systems to be 
used in our experiments. The selection of these 
systems was conducted with the goal of examining 
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applications of reasonable size, with some degree of 
complexity, and easily accessible source code. The 
main criteria for selecting the applications are: 1) 
each application should be fully open source i.e., 
source code (for both production code and test code) 
is publicly available; 2) each application must be 
written in Java, as we are using the JUnit and 
AspectJ frameworks, which are both written for 
Java; 3) each application should come with test 
suites; and 4) each application should comprise at 
least 25 test classes.  

The systems selected for our experiments are: 
JabRef5, Dependency Finder6 and MOEA7. Brief 
descriptions of the selected systems are shown in 
Table 1. Table 2 reports particular characteristics 
and size information of both the production and test 
code of the three systems. 

Table 1: Brief Descriptions of the Selected Systems. 

System Description 

JabRef 

A cross-platform bibliography tool that 
provides GUI-based reference 
management support for the BibTeX file 
format – a LaTeX based referencing 
format. 

Dependency 
Finder 

An analyser tool that extracts 
dependencies, develops dependency 
graphs and provides basic OO metric 
information for Java compiled code. 

MOEA 

A Java-based framework oriented to the 
development and experimentation of 
multi-objective evolutionary and 
optimization algorithms. 

 

The size classification used in Table 2 is adapted 
from the work of Zhao and Elbaum (2000), where 
application size is categorised into bands based on 
the number of kiloLOC (KLOC): small (fewer than 
1 KLOC), medium (1-10 KLOC), large (10-100 
KLOC) and extra-large (more than 100 KLOC). 

5.2 Execution Scenarios 

In order to arrive at dynamic metrics values that are 
associated with typical, genuine use of a system the 
selected execution scenarios must be representative 
of such use. Our goal is to mimic ‘actual’ system 
behaviour, as this will enhance the utility of our 
results. The scenarios are therefore designed to use 
the key system features, based on the available  
                                                           
5 http://JabRef.sourceforge.net/ 
6 http://depfind.sourceforge.net/ 
7 http://www.moeaframework.org/ 

documentation and user manuals for the selected 
systems, as well as our prior knowledge of these 
systems. Further information on the selected 
execution scenario for each system now follows. 
Note that all three systems have GUI access, and the 
developed scenarios assume use via the GUI. 

JabRef: the tool is used to generate and store a list 
of references from an original research report. We 
included all reference types supported by the tool 
(e.g., journal articles, conference proceedings, 
reports, standards). Reports were then extracted 
using all available formats (including XML, SQL 
and CSV). References were managed using all the 
provided features. All additional plugins provided at 
the tool’s website were added and used during this 
execution.  

Dependency Finder: this scenario involves using 
the tool to analyse the source code of four medium-
large sized systems one after another, namely, 
FindBugs, JMeter, Ant and Colossus. We computed 
dependencies (dependency graphs) and OO metrics 
at all layers (i.e., packages, classes, features). 
Analysis reports on all four systems were extracted 
and saved individually. 

MOEA: MOEA has a GUI diagnostic tool that 
provides access to a set of 6 algorithms, 57 test 
problems and search operators. We used this 
diagnostic tool to apply those different algorithms on 
the predefined problems. We applied each of these 
algorithms at least once on each problem. We 
displayed metrics and performance indicators for all 
results provided by those different problems and 
algorithms. Statistical results of these multiple runs 
were displayed at the end of the analysis. 

6   RESULTS 

On applying the S-W test to our data for all three 
systems the evidence led us to reject the null 
hypothesis regarding their distribution, and so we 
accepted that the data were not normally distributed 
(see Figures 1-3 for illustration). We therefore 
decided to use Kendall's tau (τ) rank coefficient test. 
Kendall's tau is a rank-based non-parametric 
statistical test that measures the association between 
two measured quantities. In our work Kendall’s tau 
is calculated to assess the degree of association 
between each dynamic metric of the production code 
(i.e., IC, EC and EF) and the class testability 
metrics, defined in sections 4.2 and 4.3 respectively. 

We used the classification of Cohen (1988) to 
interpret the degree of association between variables.  
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Table 2: Characteristics of the selected systems. 

System Version KLOC Size NOC 
# JUnit 
classes 

 NTC 
Test 
KLOC 

JabRef 2.9.2 84.717 Medium 616 55 237 5.392 

Dependency Finder  1.2.1 beta4 26.231 Medium 416 258 2,003 32.095 

MOEA 1.17 24.307 Medium 438 280 1,163 16.694 

Table 3: Dynamic coupling correlation results. 

Systems Metrics 
TLOC NTC 
 τ p τ p 

JabRef 
EC .292 .054 .291  .068 
IC .193 .193 .148 .041 

Dependency Finder 
EC .389 .000 .319 .000 
IC .388 .000 .251 .003 

MOEA 
EC .230 .008 .093 .300 
IC -.055 .504 -.190 .027 

 
The value of τ indicates the association between 

two ranked variables, and it ranges from -1 (perfect 
negative correlation) to +1 (perfect positive 
correlation). We interpret that variables are 
independent when τ = 0, that there is a low direct 
association when 0 < τ ≤ 0.29, a medium direct 
association when 0.3 ≤ τ ≤ 0.59, and a strong direct 
association when 0.6 ≤ τ ≤ 1. This interpretation also 
applies to negative correlations, but the association 
is inverse rather than direct (Daniel, 2000). The p 
value represents the statistical significance of the 
relationship. We consider an association to be 
statistically significant where p ≤ 0.05. 

 

Figure 1: Data distribution boxplots for the JabRef system. 

The number of observations considered in each 
test varies in accordance with the systems’ execution 
scenarios described in subsection 5.2. Observation 
points, in fact, represent the number of tested classes 
that were traversed in the execution (viz. classes that 
have corresponding tests and were captured during 

the execution by any of the dynamic metrics used). 
The number of observations for JabRef is 26, 80 for 
Dependency Finder and 76 for MOEA.  
 

 

Figure 2: Data distribution boxplots for the Dependency 
Finder system. 

Table 3 shows the Kendall’s tau results for the 
two dynamic coupling metrics against the test suite 
metrics. Corresponding results for the execution 
frequency (EF) metric against the test suite metrics 
are presented in Table 4. 

For dynamic coupling, we see (Table 3) a mix of 
results from the collected metrics. EC is observed to 
have a significant relationship with the TLOC metric 
in two of the three systems. These relationships vary 
from low direct (in the case of MOEA) to medium 
direct (in the Dependency Finder case). However, a 
similar significant correlation between EC and NTC 
is only evident for the Dependency Finder system (a 
medium direct association). 
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Table 4: Execution Frequency (EF) correlation results. 

Systems Metrics 
TLOC NTC 

 τ p  τ p 
JabRef EF .344 .016 .306 .041 

Dependency Finder  EF .216 .005 .158 .048 

MOEA EF .005 .953 -.074 .366 

 

 

Figure 3: Data distribution boxplots for the MOEA 
system.  

In terms of relationships with the NTC metric 
(Table 4), a low direct association between IC and 
NTC is evident in the case of JabRef. Analysis of 
Dependency Finder reveals a significant medium 
direct association between these metrics. A low 
inverse association between IC and NTC is evident 
for the MOEA system. 

Positive and significant associations were found 
between EF and the test suite metrics for two of the 
three systems (the exception being the MOEA 
system). We found a significant, medium direct 
association between EF and TLOC and between EF 
and NTC in the case of JabRef. In Dependency 
Finder, low direct associations between EF and both 
TLOC and NTC were revealed. 

7   DISCUSSION 

Based on our analysis we accept H0 and reject H2; 
that is, we note evidence of a significant association 
between dynamic coupling (either EC or IC) and the 
two test suite metrics for all three systems analysed 
here. As we also found EF to be significantly 
associated with the test suite metrics for two of the 
three systems considered we also accept H1 and 
reject H3 on the balance of evidence.  

An additional test of relevance in this study is to 
consider whether our dynamic testability metrics are 

themselves related, as this may indicate that only a 
subset of these metrics needs to be collected. We 
therefore performed further correlation analysis to 
investigate this. 

Our results indicate that the Dynamic Coupling 
metrics are correlated with EF (Table 5) to varying 
degrees for the three systems investigated. High 
direct and medium direct associations between one 
or both of the two Dynamic Coupling metrics (i.e., 
IC and EC) and the EF metric are evident for all 
three systems. 

Table 5: Correlation results between coupling and EF 
dynamic metrics. 

Metrics 
IC EC 

τ p τ p

EF 

JabRef .194 .198 .691 .000 
Dependency 
Finder 

.415 .000 .376 .000 

MOEA .221 .008 .304 .000 
 

In summary, we found EC to have a significant 
correlation with TLOC, where IC was significantly 
associated with NTC. We interpret this to indicate 
that Dynamic Coupling, in some form, has a 
significant correlation with test suite metrics. We 
draw a similar inference regarding Key Classes; this 
property is also significantly associated with our test 
suite metrics. Additionally, we found the two 
dynamic testability concepts studied here, i.e., 
Dynamic Coupling and Key Classes, to be 
themselves significantly correlated.  

In revisiting our research questions, we found 
Dynamic Coupling to have a significant (although 
not strong) direct association with testability metrics 
(RQ1). A more significant correlation was found 
between Key Classes (i.e., frequently executed 
classes) and class testability metrics. By answering 
RQ1 and RQ2, we suggest that Dynamic Coupling 
and Key Classes can act, to some extent, as 
complementary indicators of class testability. We 
contend here that a tightly coupled or frequently 
executed class would need a large corresponding test 
class (i.e., higher numbers of TLOC and NTC). This 
expectation has been found to be evidenced in at 
least two of the three systems examined.  
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8   THREATS TO VALIDITY 

We acknowledge a number of threats that could 
affect the validity of our results.  

- Limited Number and Form of Systems: The 
results discussed here are derived from the analysis 
of three open source systems. The consideration of a 
larger number of systems, perhaps also including 
closed-source systems, could enable further 
evaluation of the associations revealed in this study. 

- Execution Scenarios: All our execution 
scenarios were designed to mimic as closely as 
possible ‘actual’ system behaviour, based on the 
available system documentation and, in particular, 
indications of each system’s key features. We 
acknowledge, however, that the selected scenarios 
might not be fully representative of the typical uses 
of the systems. Analysing data collected based on 
different scenarios might give different results. This 
is a very common threat in most dynamic analysis 
research. However, we tried to mitigate this threat 
by carefully checking user manuals and other 
documentation of each of the examined systems and 
deriving the chosen scenarios from these sources. 
Most listed features were visited (at least once) 
during the execution. We are planning to examine 
more scenarios in the future and compare the results 
from these different scenarios. 

- Testing Information: Only available test 
information was used. We did not collect or have 
access to any information regarding the testing 
strategy of the three systems. Test strategy and 
criteria information could be very useful if combined 
with the test metrics, given that test criteria can 
inform testing decisions, and the number of test 
cases designed is highly influenced by the 
implemented test strategy. 

- Test Class Selection: We only considered 
production classes that have corresponding test 
classes, which may lead to a selection bias. Classes 
that are extremely difficult to test, or are considered 
too simple, might have zero associated test classes. 
Such production classes are not considered in our 
analyses. Due to their availability, we only included 
classes that had associated JUnit test classes, and 
ignored all others. 

9   CONCLUSIONS AND FUTURE 
WORK 

In this work we set out to investigate the presence 
and significance of any associations between two 

runtime code properties, namely Dynamic Coupling 
and Key Classes, and the internal testability of 
classes in three open source OO systems. Testability 
was measured based on the systems’ production 
classes and their associated unit tests. Two different 
metrics were used to measure internal class 
testability, namely TLOC and NTC. As we were 
interested in the relationships between system 
characteristics at runtime, Dynamic Coupling and 
Key Classes were measured using dynamic software 
metrics collected via AOP. Results were then 
analysed statistically using the Kendall's tau 
coefficient test to study the associations.  

The resulting evidence indicates that there is a 
significant association between Dynamic Coupling 
and internal class testability. We found that 
Dynamic Coupling metrics, and especially the 
export coupling metric (EC), have a significant 
direct association with TLOC. A less significant 
association was found between dynamic import 
coupling (IC) and NTC. Similarly, Key Classes are 
also shown to be significantly associated with our 
test suite metrics in two of the three systems 
examined.  

The findings of this work contribute to our 
understanding of the nature of the relationships 
between characteristics of production and test code. 
The use of dynamic measures can provide a level of 
insight that is not available using static metrics 
alone. These relationships can act as an indicator for 
internal class level testability, and should be of help 
in informing maintenance and reengineering tasks.  

Several future research directions are suggested 
by the outcomes of this research. This work can be 
extended by examining a wider range of systems 
(such as closed-source systems) to enable further 
evaluation of the findings. Another research 
direction would be to investigate whether Dynamic 
Coupling and Key Class information can be used 
together to predict the size and structure of test 
classes. Predicting class-level testability should 
improve the early estimation and assessment of the 
effort needed in testing activities. This work could 
also be extended to an investigation of the 
association between other source code factors and 
testability using runtime information. It would also 
be potentially beneficial to incorporate the current 
information about class testability with other testing 
information such as test coverage and test strategy. 
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