
Understanding Class-level Testability Through Dynamic Analysis

Amjed Tahir1, *, Stephen G. MacDonell2 and Jim Buchan1
1Software Engineering Research Laboratory, Auckland University of Technology, Auckland, New Zealand

2 Department of Information Science, University of Otago, Dunedin, New Zealand

Keywords: Software Testability, Dynamic Metrics, Dynamic Analysis, Unit Testing, Software Understanding.

Abstract: It is generally acknowledged that software testing is both challenging and time-consuming. Understanding
the factors that may positively or negatively affect testing effort will point to possibilities for reducing this
effort. Consequently there is a significant body of research that has investigated relationships between static
code properties and testability. The work reported in this paper complements this body of research by
providing an empirical evaluation of the degree of association between runtime properties and class-level
testability in object-oriented (OO) systems. The motivation for the use of dynamic code properties comes
from the success of such metrics in providing a more complete insight into the multiple dimensions of
software quality. In particular, we investigate the potential relationships between the runtime characteristics
of production code, represented by Dynamic Coupling and Key Classes, and internal class-level testability.
Testability of a class is considered here at the level of unit tests and two different measures are used to
characterise those unit tests. The selected measures relate to test scope and structure: one is intended to
measure the unit test size, represented by test lines of code, and the other is designed to reflect the intended
design, represented by the number of test cases. In this research we found that Dynamic Coupling and Key
Classes have significant correlations with class-level testability measures. We therefore suggest that these
properties could be used as indicators of class-level testability. These results enhance our current knowledge
and should help researchers in the area to build on previous results regarding factors believed to be related
to testability and testing. Our results should also benefit practitioners in future class testability planning and
maintenance activities.

1 INTRODUCTION

Software testing is a core software engineering
activity. Although software systems have been
growing larger and more complex for some time,
testing resources, by comparison, have remained
limited or constrained (Mouchawrab et al., 2005).
Software testing activities can also be costly,
requiring significant time and effort in both planning
and execution, and yet they are often unpredictable
in terms of their effectiveness (Bertolino, 2007).
Understanding and reducing testing effort have
therefore been enduring fundamental goals for both
academic and industrial research.

The notion that a software product has properties
that are related to the effort needed to validate that

 *A. Tahir is now with the Department of Information Science,

University of Otago, New Zealand

product is commonly referred to as the ‘testability’
of that product (ISO, 2001). In fact, this term can be
traced back to 1994, when Binder (1994) coined the
phrase “Design for Testability” to describe software
construction that considers testability from the early
stages of the development. The core expectation is
that software components with a high degree of
testability are easier to test and consequently will be
more effectively tested, raising the software quality
as compared to software that has lower testability.
Improving software testability should help to reduce
testing cost, effort, and demand for resources. Traon
and Robach (1995) noted that if components are
difficult to test, then the size of the test cases
designed to test those components, and the required
testing effort, will necessarily be larger. Components
with poor testability are also more expensive to
repair when problems are detected late in the
development process. In contrast, components and
software with good testability can dramatically
increase the quality of the software as well as reduce

38 Tahir A., G. MacDonell S. and Buchan J..
Understanding Class-level Testability Through Dynamic Analysis.
DOI: 10.5220/0004883400380047
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 38-47
ISBN: 978-989-758-030-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

the cost of testing (Gao et al., 2003).
While clearly a desirable trait, testability has

been recognised as being an elusive concept, and its
measurement and evaluation are acknowledged to be
challenging endeavours (Mouchawrab et al., 2005).
In spite of the ISO definition, or perhaps because of
its rather broad meaning, multiple views have been
adopted when authors have considered software
testability. Researchers have therefore identified
numerous factors that (may) have an impact on the
testability of software. For instance, software
testability is said to be affected by the extent of the
required validation, the process and tools used, and
the representation of the requirements, among other
factors (Bruntink and van Deursen, 2006). Given
their various foundations it is challenging to form a
complete and consistent view on all the potential
factors that may affect testability and the degree to
which these factors are present and influential under
different testing contexts. Several are considered
here to provide an initial overview of the breadth of
factors of potential influence on testability.

A substantial body of work has addressed a
diversity of design and code characteristics that can
affect the testability of a software product. For
example, the relationships been internal class
properties in OO systems and characteristics of the
corresponding unit tests have been investigated in
several previous studies e.g., Bruntink and van
Deursen (2006), Badri et al., (2011). In these studies,
several OO design metrics (drawn mainly from the
C&K suite (Chidamber and Kemerer, 1994)) have
been used to investigate the relationship between
class/system structure and test complexity. Some
strong and significant relationships between several
complexity- and size-related metrics of production
code and internal test code properties have been
found (Bruntink and van Deursen, 2006).

In their research, Bruntink and van Deursen used
only static software measures, and this is the case for
all previous work in this area. In this paper we build
on the view of Basili et al. (1996) that traditional
static software metrics may be necessary but not
sufficient for characterising, assessing and
predicting the entire quality profile of OO systems,
and so we propose the use of dynamic metrics to
represent further characteristics. Dynamic metrics
are the sub-class of software measures that capture
the dynamic behaviour of a software system and
have been shown to be related to software quality
attributes (Cai, 2008, Gunnalan et al., 2005, Scotto
et al., 2006). Consideration of this group of metrics
provides a more complete insight into the multiple
dimensions of software quality when compared to

static metrics alone (Dufour et al., 2003). Dynamic
metrics are usually computed based on data
collected during program execution (i.e., at runtime)
and may be obtained from the execution traces of the
code (Gunnalan et al., 2005), although in some cases
simulation can be used instead of the actual
execution. Therefore they can directly reflect the
quality attributes of that program, product or system
in operation. This paper extends the investigation of
software characteristics as factors in code testability
by characterising that code using dynamic metrics.
A fuller discussion of dynamic metrics and their
relative advantages over static metrics is presented
in another article (Tahir and MacDonell, 2012).

The rest of the paper is structured as follows.
Section 2 provides the research context for this
paper by reviewing related work, and confirms the
potential of relating dynamic code metrics to
testability. Section 3 argues for the suitability of the
Dynamic Coupling and Key Classes concepts as
appropriate dynamic metrics to characterise the code
in relation to testability. These metrics are then used
in the design of a suitable set of experiments to test
our hypotheses on specific case systems, as
described in sections 4 and 5. The results of these
experiments are then presented in section 6 and their
implications are discussed in section 7. Threats to
the study’s validity are noted in section 8. Finally,
the main conclusions from the study and some
thoughts on related future work are presented in
section 9.

2 RELATED WORK

Several previous works have investigated the
relationships between properties of software
production code components and properties of their
associated test code, with the focus primarily on unit
tests. The focus of that work has varied from
designing measures for testability and testing effort
to assessing the strength of the relationships between
them. Given constraints on space, we consider a few
typical studies here. Our intent is to be illustrative as
opposed to exhaustive, and these studies are
representative of the larger body of work in this
research domain.

Bruntink and van Deursen (2006) investigated
the relationship between several OO metrics and
class-level testability for the purpose of planning and
estimating later testing activities. The authors found
a strong correlation between class-level metrics,
such as Number of Methods (NOM), and test level
metrics, including the number of test cases and the

Understanding�Class-level�Testability�Through�Dynamic�Analysis

39

lines of code per test class. Five different software
systems, including one open source system, were
traversed during their experiments. However, no
evidence of relationships was found between
inheritance-related metrics, e.g., Coupling Between
Objects (CBO), and the proposed testability metrics.
This is likely to be because the test metrics were
considered at the class level. These inheritance-
related metrics are expected to have a strong
correlation with testability at the integration and/or
system level, as polymorphism and dynamic binding
increase the complexity of a system and the number
of required test cases, and contribute to a consequent
decrease in testability (Mouchawrab et al., 2005).
This suggestion can only be confirmed through
evaluation at the object level using dynamic metrics.
In a similar study, Badri et al., (2011) investigated
the relationship between cohesion and testability
using the C&K static Lack of Cohesion metric. They
found a significant relationship between this
measure of static cohesion and software testability,
where testability was measured using the metrics
suggested by Bruntink and van Deursen (2006).

In other work related to testability, Arisholm et
al., (2004) found significant relationships between
Dynamic Coupling measures, especially Dynamic
Export Coupling, and change-proneness. Export
Coupling appears to be a significant indicator of
change-proneness and likely complements existing
coupling measures based on static analysis (i.e.,
when used with size and static coupling measures).

3 TESTABILITY CONCEPTS

3.1 Dynamic Coupling

In this study Dynamic Coupling has been selected as
one of the system characteristics to measure and
investigate regarding its relationship to testability.
Coupling has been shown in prior work to have a
direct impact on the quality of software, and is also
related to the software quality characteristics of
complexity and maintainability (Offutt et al., 2008);
(Al Dallal, 2013). It has been shown that, all other
things being equal, the greater the coupling level, the
greater the complexity and the harder it is to
maintain a system (Chaumun et al., 2000); (Tahir et
al., 2010). This suggests that it is reasonable to
expect that coupling will be related to testability.
Dynamic rather than static coupling has been
selected for our investigation to address some
shortcomings of the traditional static measures of
coupling. For many years coupling has been

measured statically, based on the limited structural
properties of software (Zaidman and Demeyer,
2008). This misses the coupling at runtime between
different components at different levels (classes,
objects, packages, and so on), which should capture
a more complete picture and so relate better to
testability. This notion of measuring Dynamic
Coupling is quite common in the emergent software
engineering research literature. In our recent
systematic mapping study of dynamic metrics,
Dynamic Coupling was found to be the most widely
investigated system characteristic used as a basis for
dynamic analysis (Tahir and MacDonell, 2012).

For the purposes of this work the approach taken
by (Arisholm et al., 2004) is followed, and Dynamic
Coupling metrics that capture coupling at the object
level are used. Two objects are coupled if at least
one of them acts upon the other (Chidamber and
Kemerer, 1994). The measure of coupling used here
is based on runtime method invocations/calls: two
classes, class A and class B, are said to be coupled if
a method from class A (caller) invokes a method
from class B (callee), or vice versa. Details of the
specific metrics used to measure this form of
coupling are provided in section 4.2.1.

3.2 Key Classes

The notion of a Key Class is introduced in this study
as a new production code property to be measured
and its relationship to class testability investigated.
The meaning of Key Classes in this study is defined
and its expected relationship to testability described.

OO systems are formed around groups of classes
some of which are linked together. As software
systems grow in size, so the number of classes used
increases in these systems. To analyse and
understand a program or a system, how it works and
the potential for decay, it is important to know
where to start and which aspects should be given
priority. From a maintenance perspective,
understanding the roles of classes and their relative
importance to a system is essential. In this respect
there are classes that could have more influence and
play more prominent roles than others. This group of
classes is referred to here as ‘Key Classes’. We
define a Key Class as a class that is executed
frequently in the typical use profile of a system.
Identifying these classes should inform the more
effective planning of testing activities. One of the
potential usages of these classes is in prioritizing
testing activities – testers could usefully prioritize
their work by focusing on testing these Key Classes
first, alongside consideration of other factors such as

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

40

risk and criticality information.
The concept of Key Classes is seen elsewhere in

the literature, but has an important distinction in
meaning and usage in this research. For example, in
work of Zaidman and Demeyer (2008), classification
as a Key Class is based on the level of coupling of a
class. Therefore, Key Classes are those classes that
are tightly coupled. In contrast, our definition is
based on the usage of these classes: Key Classes are
those classes that have high execution frequency at
runtime. A metric used to measure Key Classes is
explained in section 4.2.2.

The following section now describes and justifies
the design of this study.

4 STUDY DESIGN

In this section we explain our research questions and
the hypotheses that the work is aimed at testing. We
also define the various metrics used in operational
terms and our analysis procedures.

One of the key challenges faced when evaluating
software products is the choice of appropriate
measurements. Metric selection in this research has
been determined in a “goal-oriented” manner using
the GQM framework (Basili and Weiss, 1984) and
its extension, the GQM/MEDEA framework (Briand
et al., 2002). Our goal is to better understand what
affects software testability, and our objective is to
assess the presence and strength of the relationship
between Dynamic Coupling and Key Classes on the
one hand and code testability on the other. The
specific purpose is to measure and ultimately predict
class testability in OO systems. Our viewpoint is as
software engineers, and more specifically, testers,
maintainers and quality engineers. The targeted
environment is Java-based open source systems.

4.1 Research Questions and
Hypotheses

We investigate two factors that we contend are in
principle related to system testability: Dynamic
Coupling and Key Classes. For this purpose, we
have two research questions to answer:

RQ1: Is Dynamic Coupling of a class significantly
correlated with the internal class testability measures
of its corresponding test class/unit?

RQ2: Are Key Classes significantly correlated with
the internal class testability measures of their
corresponding test classes/units?

The following two research hypotheses are

investigated to answer the research questions:

H0: Dynamic Coupling has a significant correlation
with class testability measures.

H1: Key Classes have a significant correlation with
class testability measures.

The corresponding null hypotheses are:

H2: Dynamic Coupling has no significant
correlation with class testability measures.

H3: Key Classes have no significant correlation with
class testability measures.

4.2 Dynamic Measures

In section 3 we described the Dynamic Coupling and
Key Classes testability concepts. In this section we
define specific dynamic metrics that can be used to
measure these testability concepts.

4.2.1 Dynamic Coupling Measures

As stated in subsection 3.1, Dynamic Coupling is
intended to be measured in two forms - when a class
is accessed by another class at runtime, and when a
class accesses other classes at runtime (i.e., to
account for both callers and callees). To measure
these levels of coupling we select the previously
defined Import Coupling (IC) and Export Coupling
(EC) metrics (Arisholm et al., 2004). IC measures
the number of method invocations received by a
class (callee) from other classes (callers) in the
system. EC measures the number of method
invocations sent from a class (caller) to other classes
(callees) in the system. Note that both metrics are
collected based on method invocations/calls. More
detailed explanations of these metrics are provided
in Arisholm et al., (2004).

4.2.2 Key Classes Measure

The concept of Key Classes is explained in section
3.2. The goal here is to examine if those Key Classes
(i.e., those classes with higher frequency of
execution) have a significant relationship with class
testability (as defined in the next subsection). We
define the Execution Frequency (EF) dynamic
metric to identify those Key Classes. EF for class C
counts the number of executions of methods within
class C. Consider a class C, with methods m1, m2,.
mn. Let EF(mi) be the number of executions of
method m of class C, then:

EFሺܥሻ ൌ EFሺ݉݅ሻ

ୀଵ

 (1)

Understanding�Class-level�Testability�Through�Dynamic�Analysis

41

where n is the number of executed methods within
class C.

4.3 Class Testability Measures

The testability of a class is considered here in
relation to unit tests. In this work, we utilise two
static metrics to measure unit test characteristics:
Test Lines of Code (TLOC) and the Number of Test
Cases (NTC). These metrics are motivated by the
test suite metrics suggested by Bruntink and van
Deursen (2006). TLOC, derived from the classic
Lines of Code (LOC) metric, is a size measure that
counts the total number of physical lines of code
within a test class or classes. NTC is a test design
metric that counts the total number of test cases in a
test class.

Our hypotheses thus reflect an expectation that
the Dynamic Coupling and Key Classes of
production code classes are related to the size and
scope of their associated test classes.

4.4 Testing the Relationships

As we are interested in the potential associations
between variables, a statistical test of correlation is
used in the evaluation of our hypotheses. After
collecting our metrics data we first apply the
Shapiro-Wilk (S-W) test to check the normality of
each data distribution. This is necessary as selection
of the relevant correlation test should be informed
by the nature of the distributions, being normal or
non-normal. The S-W test is a particularly
appropriate one to use here given the size of our data
sets (as detailed in the next section). The null
hypothesis for the S-W test is that data is normally
distributed. Our data collection methods are
explained in more detail in the following section.

5 DATA COLLECTION

The collection of dynamic metrics data can be
accomplished in various ways. The most common
(and most accurate) way is to collect the data by
obtaining trace information using dynamic analysis
techniques during software execution. Such an
approach is taken in this study and is implemented
by collecting metrics using the AspectJ1 framework,
a well-established Java implementation of Aspect

1 http://www.eclipse.org/aspectj/

Oriented Programming (AOP). Previous works
(including those of Cazzola and Marchetto (2008),
Adams et al., (2009) and Tahir et al., (2010)) have
shown that AOP is an efficient and practical
approach for the objective collection of dynamic
metrics data, as it can enable full runtime automatic
source-code instrumentation to be performed.

Testability metrics data, including LOC, TLOC,
and Number of Classes (NOC), are collected using
the CodePro Analytix2 tool. The values of these
metrics were later checked and verified using the
Eclipse Metrics Plugin3. Values for the NTC metric
are collected from the JUnit4 framework and these
values were verified manually by the first author.

We used the two different traceability techniques
suggested by Rompaey and Demeyer (2009) to
identify unit test classes and link them to their
corresponding production classes. First, we used the
Naming Convention technique to link test classes to
production classes following their names. It has been
widely suggested (for instance, in the JUnit
documentation) that a test class should be named
after the corresponding class(es) that it tests, by
adding “Test” to the original class name. Second, we
used a Static Call Graph technique, which inspects
method invocations in the test case. The latter
process was carried out manually by the first author.
The effectiveness of the Naming Convention
technique is reliant on developers’ efforts in
conforming to a coding standard, whereas the Static
Call Graph approach reveals direct references to
production classes in the test classes.

It is important to note here that we only consider
core system code: only production classes that are
developed as a part of the system are assessed.
Additional classes (including those in jar files) are
excluded from the measurement process. These files
are generally not part of the core system under
development and any dependencies could negatively
influence the results of the measurement process.

5.1 Case Studies

To consider the potential relationships between class
testability and the selected dynamic metrics we
selected three different open source systems to be
used in our experiments. The selection of these
systems was conducted with the goal of examining

2https://developers.google.com/java-devtools/codepro/doc/
3 http://metrics2.sourceforge.net/
4 http://junit.org/

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

42

applications of reasonable size, with some degree of
complexity, and easily accessible source code. The
main criteria for selecting the applications are: 1)
each application should be fully open source i.e.,
source code (for both production code and test code)
is publicly available; 2) each application must be
written in Java, as we are using the JUnit and
AspectJ frameworks, which are both written for
Java; 3) each application should come with test
suites; and 4) each application should comprise at
least 25 test classes.

The systems selected for our experiments are:
JabRef5, Dependency Finder6 and MOEA7. Brief
descriptions of the selected systems are shown in
Table 1. Table 2 reports particular characteristics
and size information of both the production and test
code of the three systems.

Table 1: Brief Descriptions of the Selected Systems.

System Description

JabRef

A cross-platform bibliography tool that
provides GUI-based reference
management support for the BibTeX file
format – a LaTeX based referencing
format.

Dependency
Finder

An analyser tool that extracts
dependencies, develops dependency
graphs and provides basic OO metric
information for Java compiled code.

MOEA

A Java-based framework oriented to the
development and experimentation of
multi-objective evolutionary and
optimization algorithms.

The size classification used in Table 2 is adapted
from the work of Zhao and Elbaum (2000), where
application size is categorised into bands based on
the number of kiloLOC (KLOC): small (fewer than
1 KLOC), medium (1-10 KLOC), large (10-100
KLOC) and extra-large (more than 100 KLOC).

5.2 Execution Scenarios

In order to arrive at dynamic metrics values that are
associated with typical, genuine use of a system the
selected execution scenarios must be representative
of such use. Our goal is to mimic ‘actual’ system
behaviour, as this will enhance the utility of our
results. The scenarios are therefore designed to use
the key system features, based on the available

5 http://JabRef.sourceforge.net/
6 http://depfind.sourceforge.net/
7 http://www.moeaframework.org/

documentation and user manuals for the selected
systems, as well as our prior knowledge of these
systems. Further information on the selected
execution scenario for each system now follows.
Note that all three systems have GUI access, and the
developed scenarios assume use via the GUI.

JabRef: the tool is used to generate and store a list
of references from an original research report. We
included all reference types supported by the tool
(e.g., journal articles, conference proceedings,
reports, standards). Reports were then extracted
using all available formats (including XML, SQL
and CSV). References were managed using all the
provided features. All additional plugins provided at
the tool’s website were added and used during this
execution.

Dependency Finder: this scenario involves using
the tool to analyse the source code of four medium-
large sized systems one after another, namely,
FindBugs, JMeter, Ant and Colossus. We computed
dependencies (dependency graphs) and OO metrics
at all layers (i.e., packages, classes, features).
Analysis reports on all four systems were extracted
and saved individually.

MOEA: MOEA has a GUI diagnostic tool that
provides access to a set of 6 algorithms, 57 test
problems and search operators. We used this
diagnostic tool to apply those different algorithms on
the predefined problems. We applied each of these
algorithms at least once on each problem. We
displayed metrics and performance indicators for all
results provided by those different problems and
algorithms. Statistical results of these multiple runs
were displayed at the end of the analysis.

6 RESULTS

On applying the S-W test to our data for all three
systems the evidence led us to reject the null
hypothesis regarding their distribution, and so we
accepted that the data were not normally distributed
(see Figures 1-3 for illustration). We therefore
decided to use Kendall's tau (τ) rank coefficient test.
Kendall's tau is a rank-based non-parametric
statistical test that measures the association between
two measured quantities. In our work Kendall’s tau
is calculated to assess the degree of association
between each dynamic metric of the production code
(i.e., IC, EC and EF) and the class testability
metrics, defined in sections 4.2 and 4.3 respectively.

We used the classification of Cohen (1988) to
interpret the degree of association between variables.

Understanding�Class-level�Testability�Through�Dynamic�Analysis

43

Table 2: Characteristics of the selected systems.

System Version KLOC Size NOC
JUnit
classes

 NTC
Test
KLOC

JabRef 2.9.2 84.717 Medium 616 55 237 5.392

Dependency Finder 1.2.1 beta4 26.231 Medium 416 258 2,003 32.095

MOEA 1.17 24.307 Medium 438 280 1,163 16.694

Table 3: Dynamic coupling correlation results.

Systems Metrics
TLOC NTC
 τ p τ p

JabRef
EC .292 .054 .291 .068
IC .193 .193 .148 .041

Dependency Finder
EC .389 .000 .319 .000
IC .388 .000 .251 .003

MOEA
EC .230 .008 .093 .300
IC -.055 .504 -.190 .027

The value of τ indicates the association between

two ranked variables, and it ranges from -1 (perfect
negative correlation) to +1 (perfect positive
correlation). We interpret that variables are
independent when τ = 0, that there is a low direct
association when 0 < τ ≤ 0.29, a medium direct
association when 0.3 ≤ τ ≤ 0.59, and a strong direct
association when 0.6 ≤ τ ≤ 1. This interpretation also
applies to negative correlations, but the association
is inverse rather than direct (Daniel, 2000). The p
value represents the statistical significance of the
relationship. We consider an association to be
statistically significant where p ≤ 0.05.

Figure 1: Data distribution boxplots for the JabRef system.

The number of observations considered in each
test varies in accordance with the systems’ execution
scenarios described in subsection 5.2. Observation
points, in fact, represent the number of tested classes
that were traversed in the execution (viz. classes that
have corresponding tests and were captured during

the execution by any of the dynamic metrics used).
The number of observations for JabRef is 26, 80 for
Dependency Finder and 76 for MOEA.

Figure 2: Data distribution boxplots for the Dependency
Finder system.

Table 3 shows the Kendall’s tau results for the
two dynamic coupling metrics against the test suite
metrics. Corresponding results for the execution
frequency (EF) metric against the test suite metrics
are presented in Table 4.

For dynamic coupling, we see (Table 3) a mix of
results from the collected metrics. EC is observed to
have a significant relationship with the TLOC metric
in two of the three systems. These relationships vary
from low direct (in the case of MOEA) to medium
direct (in the Dependency Finder case). However, a
similar significant correlation between EC and NTC
is only evident for the Dependency Finder system (a
medium direct association).

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

44

Table 4: Execution Frequency (EF) correlation results.

Systems Metrics
TLOC NTC

 τ p τ p
JabRef EF .344 .016 .306 .041

Dependency Finder EF .216 .005 .158 .048

MOEA EF .005 .953 -.074 .366

Figure 3: Data distribution boxplots for the MOEA
system.

In terms of relationships with the NTC metric
(Table 4), a low direct association between IC and
NTC is evident in the case of JabRef. Analysis of
Dependency Finder reveals a significant medium
direct association between these metrics. A low
inverse association between IC and NTC is evident
for the MOEA system.

Positive and significant associations were found
between EF and the test suite metrics for two of the
three systems (the exception being the MOEA
system). We found a significant, medium direct
association between EF and TLOC and between EF
and NTC in the case of JabRef. In Dependency
Finder, low direct associations between EF and both
TLOC and NTC were revealed.

7 DISCUSSION

Based on our analysis we accept H0 and reject H2;
that is, we note evidence of a significant association
between dynamic coupling (either EC or IC) and the
two test suite metrics for all three systems analysed
here. As we also found EF to be significantly
associated with the test suite metrics for two of the
three systems considered we also accept H1 and
reject H3 on the balance of evidence.

An additional test of relevance in this study is to
consider whether our dynamic testability metrics are

themselves related, as this may indicate that only a
subset of these metrics needs to be collected. We
therefore performed further correlation analysis to
investigate this.

Our results indicate that the Dynamic Coupling
metrics are correlated with EF (Table 5) to varying
degrees for the three systems investigated. High
direct and medium direct associations between one
or both of the two Dynamic Coupling metrics (i.e.,
IC and EC) and the EF metric are evident for all
three systems.

Table 5: Correlation results between coupling and EF
dynamic metrics.

Metrics
IC EC

τ p τ p

EF

JabRef .194 .198 .691 .000
Dependency
Finder

.415 .000 .376 .000

MOEA .221 .008 .304 .000

In summary, we found EC to have a significant
correlation with TLOC, where IC was significantly
associated with NTC. We interpret this to indicate
that Dynamic Coupling, in some form, has a
significant correlation with test suite metrics. We
draw a similar inference regarding Key Classes; this
property is also significantly associated with our test
suite metrics. Additionally, we found the two
dynamic testability concepts studied here, i.e.,
Dynamic Coupling and Key Classes, to be
themselves significantly correlated.

In revisiting our research questions, we found
Dynamic Coupling to have a significant (although
not strong) direct association with testability metrics
(RQ1). A more significant correlation was found
between Key Classes (i.e., frequently executed
classes) and class testability metrics. By answering
RQ1 and RQ2, we suggest that Dynamic Coupling
and Key Classes can act, to some extent, as
complementary indicators of class testability. We
contend here that a tightly coupled or frequently
executed class would need a large corresponding test
class (i.e., higher numbers of TLOC and NTC). This
expectation has been found to be evidenced in at
least two of the three systems examined.

Understanding�Class-level�Testability�Through�Dynamic�Analysis

45

8 THREATS TO VALIDITY

We acknowledge a number of threats that could
affect the validity of our results.

- Limited Number and Form of Systems: The
results discussed here are derived from the analysis
of three open source systems. The consideration of a
larger number of systems, perhaps also including
closed-source systems, could enable further
evaluation of the associations revealed in this study.

- Execution Scenarios: All our execution
scenarios were designed to mimic as closely as
possible ‘actual’ system behaviour, based on the
available system documentation and, in particular,
indications of each system’s key features. We
acknowledge, however, that the selected scenarios
might not be fully representative of the typical uses
of the systems. Analysing data collected based on
different scenarios might give different results. This
is a very common threat in most dynamic analysis
research. However, we tried to mitigate this threat
by carefully checking user manuals and other
documentation of each of the examined systems and
deriving the chosen scenarios from these sources.
Most listed features were visited (at least once)
during the execution. We are planning to examine
more scenarios in the future and compare the results
from these different scenarios.

- Testing Information: Only available test
information was used. We did not collect or have
access to any information regarding the testing
strategy of the three systems. Test strategy and
criteria information could be very useful if combined
with the test metrics, given that test criteria can
inform testing decisions, and the number of test
cases designed is highly influenced by the
implemented test strategy.

- Test Class Selection: We only considered
production classes that have corresponding test
classes, which may lead to a selection bias. Classes
that are extremely difficult to test, or are considered
too simple, might have zero associated test classes.
Such production classes are not considered in our
analyses. Due to their availability, we only included
classes that had associated JUnit test classes, and
ignored all others.

9 CONCLUSIONS AND FUTURE
WORK

In this work we set out to investigate the presence
and significance of any associations between two

runtime code properties, namely Dynamic Coupling
and Key Classes, and the internal testability of
classes in three open source OO systems. Testability
was measured based on the systems’ production
classes and their associated unit tests. Two different
metrics were used to measure internal class
testability, namely TLOC and NTC. As we were
interested in the relationships between system
characteristics at runtime, Dynamic Coupling and
Key Classes were measured using dynamic software
metrics collected via AOP. Results were then
analysed statistically using the Kendall's tau
coefficient test to study the associations.

The resulting evidence indicates that there is a
significant association between Dynamic Coupling
and internal class testability. We found that
Dynamic Coupling metrics, and especially the
export coupling metric (EC), have a significant
direct association with TLOC. A less significant
association was found between dynamic import
coupling (IC) and NTC. Similarly, Key Classes are
also shown to be significantly associated with our
test suite metrics in two of the three systems
examined.

The findings of this work contribute to our
understanding of the nature of the relationships
between characteristics of production and test code.
The use of dynamic measures can provide a level of
insight that is not available using static metrics
alone. These relationships can act as an indicator for
internal class level testability, and should be of help
in informing maintenance and reengineering tasks.

Several future research directions are suggested
by the outcomes of this research. This work can be
extended by examining a wider range of systems
(such as closed-source systems) to enable further
evaluation of the findings. Another research
direction would be to investigate whether Dynamic
Coupling and Key Class information can be used
together to predict the size and structure of test
classes. Predicting class-level testability should
improve the early estimation and assessment of the
effort needed in testing activities. This work could
also be extended to an investigation of the
association between other source code factors and
testability using runtime information. It would also
be potentially beneficial to incorporate the current
information about class testability with other testing
information such as test coverage and test strategy.

REFERENCES

Adams, B., De Schutter, K., Zaidman, A., Demeyer, S.,

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

46

Tromp, H. & De Meuter, W. 2009. Using aspect
orientation in legacy environments for reverse
engineering using dynamic analysis--an industrial
experience report. Journal of Systems and Software,
82, 668-684.

Al Dallal, J. 2013. Object-oriented class maintainability
prediction using internal quality attributes.
Information and Software Technology, 55, 2028-2048.

Arisholm, E., Briand, L. C. & Foyen, A. 2004. Dynamic
coupling measurement for object-oriented software.
IEEE Transactions on Software Engineering, 30, 491-
506.

Badri, L., Badri, M. & Toure, F. 2011. An empirical
analysis of lack of cohesion metrics for predicting
testability of classes. International Journal of Software
Engineering and Its Applications, 5, 69-86.

Basili, V. R., Briand, L. C. & Melo, W. L. 1996. A
validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software
Engineering, 22, 751-761.

Basili, V. R. & Weiss, D. M. 1984. A methodology for
collecting valid software engineering data. IEEE
Transactions on Software Engineering, 10, 728-738.

Bertolino, A. 2007. Software testing research:
Achievements, challenges, dreams. Future of Software
Engineering. IEEE Computer Society.

Binder, R. V. 1994. Design for testability in object-
oriented systems. Communications of the ACM, 37,
87-101.

Briand, L. C., Morasca, S. & Basili, V. R. 2002. An
operational process for goal-driven definition of
measures. IEEE Transactions on Software
Engineering, 28, 1106-1125.

Bruntink, M. & Van Deursen, A. 2006. An empirical study
into class testability. Journal of Systems and Software,
79, 1219-1232.

Cai, Y. 2008. Assessing the effectiveness of software
modularization techniques through the dynamics of
software evolution. 3rd Workshop on Assessment of
COntemporary Modularization Techniques. Orlando,
US.

Cazzola, W. & Marchetto, A. 2008. Aop-hiddenmetrics:
Separation, extensibility and adaptability in sw
measurement. Journal of Object Technology, 7, 53–
68.

Chaumun, M. A., Kabaili, H., Keller, R. K., Lustman, F.
& Saint-Denis, G. 2000. Design properties and object-
oriented software changeability. European Conference
on Software Maintenance and Reengineering. IEEE
Computer Society.

Chidamber, S. R. & Kemerer, C. F. 1994. A metrics suite
for object oriented design. IEEE Transactions on
Software Engineering, 20, 476-493.

Cohen, J. 1988. Statistical power analysis for the
behavioral sciences, L. Erlbaum Associates.

Daniel, W. W. 2000. Applied nonparametric statistics,
Boston MA, USA, KENT Publishing Company.

Dufour, B., Driesen, K., Hendren, L. & Verbrugge, C.
2003. Dynamic metrics for java. 18th Annual ACM
SIGPLAN Conference on Object-oriented

Programing, Systems, Languages, and Applications.
Anaheim, California, USA: ACM.

Gao, J. Z., Jacob, H.-S. & Wu, Y. 2003. Testing and
quality assurance for component-based software,
Norwood, MA, USA, Artech House Publishers.

Gunnalan, R., Shereshevsky, M. & Ammar, H. H. 2005.
Pseudo dynamic metrics [software metrics].
International Conference on Computer Systems and
Applications. IEEE Computer Society.

Iso 2001. Software engineering - product quality-part 1.
Quality model Geneva: International Organization for
Standardization.

Mouchawrab, S., Briand, L. C. & Labiche, Y. 2005. A
measurement framework for object-oriented software
testability. Information and Software Technology, 47,
979-997.

Offutt, J., Abdurazik, A. & Schach, S. 2008.
Quantitatively measuring object-oriented couplings.
Software Quality Journal, 16, 489-512.

Rompaey, B. V. & Demeyer, S. 2009. Establishing
traceability links between unit test cases and units
under test. European Conference on Software
Maintenance and Reengineering. IEEE Computer
Society.

Scotto, M., Sillitti, A., Succi, G. & Vernazza, T. 2006. A
non-invasive approach to product metrics collection.
Journal of Systems Architecture, 52, 668-675.

Tahir, A., Ahmad, R. & Kasirun, Z. M. 2010.
Maintainability dynamic metrics data collection based
on aspect-oriented technology. Malaysian Journal of
Computer Science, 23, 177-194.

Tahir, A. & Macdonell, S. G. A systematic mapping study
on dynamic metrics and software quality. 28th
International Conference on Software Maintenance,
2012. 2473587: IEEE Computer Society, 326-335.

Traon, Y. L. & Robach, C. 1995. From hardware to
software testability. International Test Conference on
Driving Down the Cost of Test. IEEE Computer
Society.

Zaidman, A. & Demeyer, S. 2008. Automatic
identification of key classes in a software system using
webmining techniques. Journal of Software
Maintenance and Evolution, 20, 387-417.

Zhao, L. & Elbaum, S. 2000. A survey on quality related
activities in open source. SIGSOFT Software
Engineering Notes, 25, 54-57.

Understanding�Class-level�Testability�Through�Dynamic�Analysis

47

