
An Online Passive Testing Approach for Communication Protocols

Jorge Lopez, Xiaoping Che and Stephane Maag
Institut Mines-Telecom/Telecom SudParis CNRS UMR 5157, Evry, France

Keywords: Online Testing, Passive Testing, Formal Methods.

Abstract: Testing a protocol at runtime in an online way is a complex and challenging work. It requires the same precise-
ness in conformance testing and efficiency in performance testing, where conformance testing is a functional
test which verifies whether the behaviors of the protocol satisfy defined requirements, and performance testing
is a qualitative and quantitative test which checks whether the performance requirements of the protocol have
been satisfied under certain conditions. As a matter of course, it raises an interesting issue of converging these
two kinds of testing by using the same formal approach, and applying the approach online. In this paper, we
present a novel logic-based online testing approach to test the protocol conformance and performance through
formally specified properties. In order to evaluate and assess our methodology, we developed a prototype
and experimented it with a set of Session Initiation Protocol properties in a real IP Multimedia Subsystem
environment. Finally, the relevant verdicts and discussions are provided.

1 INTRODUCTION

Testing is a crucial activity in the evaluation pro-
cess of a system or an implementation under test
(IUT). Among the well known and commonly ap-
plied approaches, the passive testing techniques (also
called monitoring or run-time verification) are to-
day gaining efficiency and reliability (Bauer et al.,
2011). These techniques are divided in two main
groups: online and offline testing approaches. Of-
fline testing aims at collecting set of protocol traces
while running (through interfaces, ports or points of
observations (P.O)) and then checking some proper-
ties through these traces afterwards. Several model
based offline testing techniques have been studied by
the community in order to passively test systems or
protocol implementations (Veanes et al., 2005; Lee
and Miller, 2006; Raimondi et al., 2008; Cao et al.,
2010). Nevertheless, though offline testing still raises
many interesting issues (Lalanne and Maag, 2013),
online testing approaches bring out these same issues
plus the challenges that are inherent to online testing.
Among these inherent constraints, we shall cite the
non-collection of traces. Indeed, in passive online
testing, the traces are observed (through an eventual
sniffer), analyzed on-the-fly to provide test verdicts
and no trace sets are studied a posteriori to the testing
process. In our work, we focus on the online testing
of an IUT using passive testing technique.

Testing an implementation of a protocol is often

associated to the checking of its conformance and per-
formance. Conformance testing is a functional test
which verifies whether the behaviors of the proto-
col satisfy defined requirements. Performance test-
ing is a qualitative and quantitative test which checks
whether the performance requirements of the proto-
col have been satisfied under certain conditions. They
are mainly applied to validate or verify the scalabil-
ity and reliability of the system. Many benefits can
be brought to the testing process if conformance and
performance testing inherit from the same approach
and can be applied online.

Our main objective is then to propose a novel pas-
sive online testing approach based on formal confor-
mance and performance testing techniques (Che et al.,
2012) (Che and Maag, 2013). Although some crucial
works have been done in run-time conformance test-
ing area (Bauer et al., 2011), they study run-time ver-
ification of properties expressed either in linear-time
temporal logic (LTL) or timed linear-time temporal
logic (TLTL). Different from their work focusing on
testing functional properties based on formal models,
our work concentrates on formally testing functional
and non-functional properties without formal models,
through real protocols in an online manner.

In this work, we firstly extend one of our pre-
vious proposed methodologies to present a passive
testing approach for checking the conformance and
performance requirements of communicating proto-
cols. Furthermore, we design an online testing frame-

136 Lopez J., Che X. and Maag S..
An Online Passive Testing Approach for Communication Protocols.
DOI: 10.5220/0004885501360143
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 136-143
ISBN: 978-989-758-030-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

work to test these requirements in real-time, with new
verdicts definitions of ‘Pass’, ‘Fail’, ‘Time-Fail’ and
‘Inconclusive’. Finally, since several protocol con-
formance and performance requirements need to be
tested in order to verify the efficiency of our online
approach, we perform our approach in a real IP Multi-
media Subsystem (IMS) communicating environment
for assessing its preciseness and efficiency.

Our paper’s primary contributions are:
� A formal approach is proposed for formally ex-

pressing the conformance and performance re-
quirements, and data portions are taken into ac-
count.

� An online testing framework is designed for test-
ing conformance and performance requirements
in real-time, and new definition of testing verdicts
are introduced.
The reminder of the paper is organized as follows.

In Section 2, a short review of the related works are
provided. In Section 3, a brief description of the syn-
tax and semantics used to describe the tested proper-
ties is presented. In Section 4, we illustrate our on-
line testing framework and relevant algorithms. Our
approach has been implemented and experimented in
Section 5. It has been performed through a real IMS
framework to test Session Initiation Protocol (SIP)
properties. The real-time communications of the IMS
allow to evaluate our approach efficiently. Finally, we
conclude and provide interesting perspectives in Sec-
tion 6.

2 RELATED WORKS

While a huge number of papers are dedicated to on-
line testing. In this section we present the prior works
in these fields.

Model Based Online Testing. Model based test-
ing is a crucial technique in the testing research do-
main. In (Larsen et al., 2004), the authors present T-
UPPAAL– a tool for online black-box testing of real-
time embedded systems from non-deterministic timed
automata specifications. They describe a sound and
complete randomized online testing algorithm and
implement it by using symbolic state representation
and manipulation techniques. They propose the no-
tion of relativized timed input/output conformance as
the formal implementation relation. Likewise, some
other researchers describe a practical online testing al-
gorithm that is implemented in the model-based test-
ing tool called Spec Explorer (Veanes et al., 2005),
which is being used daily by several Microsoft prod-
uct groups. They formalize the model programs as

interface automata, and use the interface automata for
conformance testing. The conformance relation be-
tween a model and an implementation under test is
formalized in terms of refinement between interface
automata. Besides, in (Raimondi et al., 2008), the
authors describe how timed automata can be used as
a formalism to support efficient online monitoring of
timeliness, reliability and throughput constraints ex-
pressed in web service SLAs. And they present an im-
plementation to derive on-line monitors for web ser-
vices automatically form SLAs using an Eclipse plu-
gin and Apache AXIS handlers. The readers would
notice that all these works are based on modeling the
system by automata or timed automata, due to the
convenience that the constructed models can be han-
dled by existing verification tools. However, when the
system can not be accessed or modeled, our work will
be a complementary to these techniques since we do
not need to formalize the system by any automata.

Online Conformance Testing. In the online test-
ing area, there are lots of work focus on conformance
testing. In (Cao et al., 2010), the authors present a
framework that automatically generates and executes
tests ”online” for conformance testing of a compos-
ite of Web services described in BPEL. The proposed
framework considers unit testing and it is based on a
timed modeling of BPEL specification, and an online
testing algorithm that generates, executes and assigns
verdicts to every generated state in the test case. Nev-
ertheless, in (Nguyen et al., 2012), the authors defined
a formal model based on Symbolic Transition Graph
with Assignment (STGA) for both peers and choreog-
raphy with supporting complex data types. The local
and global conformance properties are formalized by
the Chor language in their works. The local properties
are used to test behaviors of one isolated peer with re-
spect to its specification model, while the global prop-
erties test the collaboration of a set of peers with re-
spect to its choreography model. Inspired from all
these works, our work does not require to model the
IUT and tackles not only conformance requirements,
but also the performance requirements.
indent Moreover, another similar work is provided by
the authors of (Hallé and Villemaire, 2012). They
presented an algorithm for the runtime monitoring
of data-aware workflow constraints. Sample proper-
ties taken from runtime monitoring scenarios in exist-
ing literature were expressed using LTL-FO+, an ex-
tension of Linear Temporal Logic that includes first-
order quantification over message contents. Similarly
to our work, data are a more central part of the def-
inition of formulas, and formulas are defined with
quantifiers specific to the labels. Although the syntax
of the logic they used is flexible, it can quickly lose

An�Online�Passive�Testing�Approach�for�Communication�Protocols

137

clarity as the number of variables required increases.
Our work improves on this by allowing to group con-
straints with clause definitions.

Online Performance Testing. Many studies have
investigated the performance of online systems. A
method for analyzing the functional behavior and
the performance of programs in distributed systems
is presented in (Hofmann et al., 1994). In the
paper, the authors discuss event-driven monitoring
and event-based modeling. However, no evaluation
of the methodology has been performed. In (Du-
mitrescu et al., 2004), the authors present a distributed
performance-testing framework, which aimed at sim-
plifying and automating service performance testing.
They applied Diperf to two GT3.2 job submission ser-
vices, and several metrics are tested, such as Service
response time, Service throughput, Offered load, Ser-
vice utilization and Service fairness.

Besides, in (Wei et al., 2009), the authors propose
two online algorithms to detect 802.11 traffic from
packet-header data collected passively at a monitor-
ing point. The algorithms have a number of appli-
cations in real-time wireless LAN management, they
differ in that one requires training sets while the other
does not. Moreover, in (Yuen and Chan, 2012), the
authors present a monitoring algorithm SMon, which
continuously reduces network diameter in real time in
a distributed manner. Nevertheless, most of these ap-
proaches are based on monitoring techniques, they do
not provide a formalism to test a specific performance
requirement. Our approach allows to formally spec-
ified protocol performance requirements in order to
check whether the real-time performance of the pro-
tocol remains as expected in its standard.

Although lots of works have been done in the on-
line testing area. Inspired from and based on their
works, our work is different from focusing on using
model-driven techniques, evaluating the performance
of the system. We concentrate on how to formally
and passively test the conformance and performance
requirements written in the standard. And also we are
trying to converge the online conformance and perfor-
mance testing by using the same formal approach.

3 FORMAL APPROACH

We will provide in this section basic definitions, syn-
tax and semantics of our formalism which are neces-
sary for the understanding of our approach.

3.1 Basics

A communication protocol message is a collection
of data fields of multiple domains. Data domains are
defined either as atomic or compound (Che et al.,
2012). An atomic domain is defined as a set of
numeric or string values. A compound domain is
defined as follows.

Definition 1. A compound value v of length
n > 0, is defined by the set of pairs f(li;vi) j li 2 L
^vi 2 Di [feg; i = 1:::ng, where L = fl1; :::; lng is
a predefined set of labels and Di are sets of values,
meaningful from the application viewpoint, and
called data domains. Let D be a Cartesian product of
data domains, D = D1�D2� :::�Dn. A compound
domain is the set of pairs (L;d), where d belongs to D.

Once given a network protocol P, a compound do-
main Mp can generally be defined by the set of labels
and data domains derived from the message format
defined in the protocol specification/requirements. A
message m of a protocol P is any element m 2Mp.

For each m 2Mp, we add a real number tm 2 R+

which represents the time when the message m is
received or sent by the monitored entity.

Example 1. A possible message for the SIP pro-
tocol, specified using the previous definition could be

m = f(method; ‘INVITE’);(time; ‘210.400123000’);
(status;e);(f rom; ‘alice@a.org’);(to; ‘bob@b.org’);
(cseq;f(num;7);(method; ‘INVITE’)g)g

representing an INVITE request from alice@a.org
to bob@b.org. The value of time ‘210.400123000’
(t0 + 210:400123000) is a relative value since the
P.O started its timer (initial value t0) when capturing
traces.

A trace is a sequence of messages of the same do-
main containing the interactions of a monitored entity
in a network, through an interface (the P.O), with one
or more peers during an arbitrary period of time. The
P.O also provides the relative time set T � R+ for all
messages m in each trace.

3.2 Syntax and Semantics of Our
Formalism

In our previous work, a syntax based on Horn clauses
is defined to express properties that are checked
on extracted traces. We briefly describe it in the
following. Formulas in this logic can be defined with
the introduction of terms and atoms, as it follows.

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

138

Definition 2. A term is defined in BNF as
term ::= c j x j x:l:l:::l where c is a constant in some
domain, x is a variable, l represents a label, and
x:l:l:::l is called a selector variable.

Definition 3. A substitution is a finite set of
bindings q = fx1=term1; :::;xk=termkg where each
termi is a term and xi is a variable such that xi 6= termi
and xi 6= x j if i 6= j.

Definition 4. An atom is defined as

A ::= p

kz }| {
(term; :::; term)
j term = term
j term 6= term
j term < term
j term+ term = term

where p(term; :::; term) is a predicate of label p and
arity k. The timed atom is a particular atom defined as

p

kz }| {
(termt ; :::; termt), where termt 2 T .

The relations between terms and atoms are stated
by the definition of clauses. A clause is an expression
of the form

A0 A1^ :::^An

where A0 is the head of the clause and A1^ :::^An its
body, Ai being atoms.

A formula is defined by the following BNF:

f ::= A1^ :::^An j f! f j 8xf j 8y>xf

j 8y<xf j 9xf j 9y>xf j 9y<xf

where A1; :::;An(n � 1) are atoms, x;y represent for
different messages of a trace and f<, >g indicate the
order relation of messages.

In our approach, while the variables x and y are
used to formally specify the messages of a trace, the
quantifiers commonly define “it exists” (9) and “for
all” (8). Therefore, the formula 8xf means “for all
messages x in the trace, f holds”.

The semantics used in our work is related to the
traditional Apt–Van Emdem–Kowalsky semantics for
logic programs (Emden and Kowalski, 1976), from
which an extended version has been provided in order
to deal with messages and trace temporal quantifiers.
Based on the above described operators and quanti-
fiers, we provide an interpretation of the formulas to
evaluate them to > (‘Pass’), ? (‘Fail’) or ‘?’ (‘Incon-
clusive’) (Che et al., 2012).

Then the truth values f>,?,?g are provided to the
interpretation of the obtained formulas on real proto-
col execution traces. However, different from offline
testing, definite verdicts should be immediately re-
turned in online testing. Which indicates that only >

(‘Pass’) and ? (‘Fail’) should be emitted in the final
report, and the indefinite verdict ‘?’ (‘Inconclusive’)
will be used as temporary unknown status, but finally
must be transformed to one of the definite verdicts.

4 ONLINE TESTING
FRAMEWORK

In this section, we will introduce our novel online test-
ing framework and provide the relevant algorithm for
testers.

4.1 Framework

For the aim of testing conformance and performance
requirements in an online way, we design and use a
passive online testing architecture. As Figure 1 de-
picts, the testing process consists of five following
parts.

Figure 1: Core functions of our testing framework.

1. Formalization: Initially, the informal protocol
requirements are formalized to formulas by us-
ing Horn-logic based syntax and semantics men-
tioned in section 3. Due to the space limitation,
we will not go into details. The interested readers
may have a look at the papers (Che et al., 2012)
and (Lalanne and Maag, 2013).

2. Setup: When all the requirements are formalized
to formulas, they will be sent to the Tester with
the definition of verdicts.

� Pass: The message or trace satisfies the require-
ment.

� Fail: The message or trace does not satisfy the
requirement.

� Time-Fail: Since we are testing on-line, a time-
out is used to stop searching target message
in order to provide the real-time status. The
timeout value should be the maximum response
time written in the protocol. If we can not

An�Online�Passive�Testing�Approach�for�Communication�Protocols

139

observe the target message within the timeout
time, then a Time-Fail verdict will be assigned
to this property. It has to be noticed that this
kind of verdict is only provided when no time
constraint is required in the requirement. If any
time constraint is required, the violation of re-
quirements will be concluded as Fail, not as a
Time-Fail verdict.

� Inconclusive: Uncertain status of the proper-
ties. It only exists at the beginning of the test
or at the end of the test.

3. Capturing: The monitor consecutively captures
the traces of protocols to be tested from the IUT.
When the messages have been captured, each
message will be tagged with a time-stamp in or-
der to test the properties with time requirements.

4. Transfer: The tagged messages are transferred to
the Tester when the Tester is capable for testing.
Since we optimize our algorithm in order to have
the best effort, the tester is always capable for test-
ing when dealing with less than 20 million pack-
ages per minute.

5. Evaluation: The Tester checks whether or not
the incoming traces satisfy the formalized require-
ments and provide the final verdicts. Based on
different results and the definition of verdicts, we
conclude the verdicts as: Pass, Fail or Time-Fail.

4.2 Testing Algorithm

The online testing algorithm is described in Algo 1.
Algorithm 1 describes the behaviors of an online
tester. Firstly, the tester will capture packets from the
predefined interface by using libpcap1, and it will tag
time stamps to all the captured packets at the same
time (Line 1-3).

Secondly, it will load all the properties (formal-
ized requirements) have to be tested, and match each
packet with the properties in chronological order. In
this step, only the packets needed for the current prop-
erty will be saved and tackled. The other irrelevant
packets will be discarded in order to accelerate the
testing process (Line 4-15). This process will keep
running until all the properties have been checked.

When finishing the checking process, it will report
the testing result and empty the buffer immediately in
order to make good use of the limited memory (Line
16-29).

1http://www.tcpdump.org/

5 EXPERIMENTS

After introducing our novel framework, we will de-
scribe the testing environment and interpret the ex-
periments results in this section.

5.1 Environment

The IP Multimedia Subsystem is a standardized
framework for delivering IP multimedia services to
users in mobility. It aims at facilitating the access
to voice or multimedia services in an access indepen-
dent way, in order to develop the fixed-mobile conver-
gence. The core of the IMS network consists on the
Call Session Control Functions (CSCF) that redirect
requests depending on the type of service, the Home
Subscriber Server (HSS), a database for the provision-
ing of users, and the Application Server (AS) where
the different services run and interoperate. Most com-
munication with the core network and between the
services is done using the Session Initiation Proto-
col (Rosenberg et al., 2002).

The Session Initiation Protocol is an application-
layer protocol that relies on request and response mes-
sages for communication, and it is an essential part
for communication within the IMS framework. Mes-
sages contain a header which provides session, ser-
vice and routing information, as well as an body part
to complement or extend the header information. Sev-
eral RFCs have been defined to extend the protocol
to allow messaging, event publishing and notification.
These extensions are used by services of the IMS such
as the Presence service and the Push to-talk Over Cel-
lular (PoC) service.

For our experiments, communication traces were
obtained through ZOIPER2. ZOIPER softphone is a
VoIP soft client, meant to work with any IP-based
communications systems and infrastructure. It pro-
vides secure high-quality voice calls and conference,
fax sending and receiving functionality, and enhanced
IP-calling features wrapped in a compact interface
and small download size.

As Figure 2 shows, a simple environment is con-
structed for our experiments. We run two ZOIPER
VoIP clients on the virtual machines using Virtual-
Box for Mac version 4.2.16. The virtual machines
have 4GB of RAM, one processor Intel i5 @2.3GHz
and the software being used is Zoiper 3.0.19649. On
the other side, the server is provided by Fonality3,
which is running Asterisk PBX 1.6.0.28-samy-r115.
The P.Os are placed on the client side. Tests are per-
formed using a prototype implementation of the for-

2http://www.zopier.com/softphone/
3http://www.fonality.com

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

140

Algorithm 1: Algorithm of online tester.
Input: open live capture on interface(INTERFACE NAME) //Using libpcap
Output: property verdicts report

1 thread init(report live status) //thread to report the live
2 for each packet on live capture do
3 last observed packet time get time(packet);
4 for each prototype on prototype packets do
5 property get prototype property(prototype);
6 if match properties of(prototype, packet) then
7 prototype list get prototype list(prototype);
8 for each prototype dependency on dependencies(prototype) do
9 matched dependency FALSE;

10 for each stored packet on get dependency prototype list(prototype dependency) do
11 if match properties dependency(prototype dependency, packet, stored packet) then
12 associate(packet, stored packet, property), matched dependency TRUE;
13 goto next dependency;
14 end
15 end
16 if !matched dependency then
17 goto next prototype
18 end
19 end
20 if prototype determines property(prototype) then
21 associations list get associations(packet) report property pass(property, packet, associations list)

delete from prototype lists(associations list)
22 end
23 else
24 push(prototype list, packet)
25 end
26 end
27 next prototype;
28 end
29 end

Figure 2: Environment for experiments.

mal approach above mentioned, using the algorithm
introduced in the previous section.

5.2 Tests Results

In our approach, the conformance and performance
requirement properties are formalized to formulas.
These formulas will be tested through the testers in
real-time. Simultaneously, not only ‘Pass’, ‘Fail’,

‘Time-Fail’ and ‘Inconclusive’ verdicts are returned,
but also Np;N f ;Nt f and Nin will be given to the tester,
which represent the accumulated number of ‘Pass’,
‘Fail’, ‘Time-Fail’ and ‘Inconclusive’ verdicts respec-
tively. We may write:

Np(f) = å[eval(f;q;r) = ‘>’]

N f (f) = å[eval(f;q;r) = ‘?’]

Nt f (f) = å[
eval(f;q;r) = ‘?’
termt =2 f; timeout 2 q

]

Nin(f) = å[eval(f;q;r) = ‘?’]

Properties: In order to formally design the proper-
ties to be passively tested online, we got inspired from
the TTCN-3 test suite (ETSI, 2004) and the RFC 3261
of SIP (Rosenberg et al., 2002). Several properties
relevant to session establishment are designed.

Conformance requirements f1;f2 (“Every IN-
VITE request must be responded”, “Every success-
ful INVITE request must be responded with a suc-
cess response”) and a performance requirement y1

An�Online�Passive�Testing�Approach�for�Communication�Protocols

141

Table 1: Online Testing result for Client1 and Client2.

f1 f2 y1
P.O Pass Fail Time-Fail Incon Pass Fail Time-Fail Incon Pass Fail Time-Fail Incon

Client1 50 0 0 0 43 0 7 0 645 240 0 0
Client2 36 0 0 0 34 0 2 0 473 6 0 0

(“The response time for each request should not ex-
ceed T1 = 8s”) are tested. They can be formalized as
the following formulas:

f1 =

�
8x(request(x)^ x:method = ‘INVITE’
!9y>x(nonProvisional(y)^ responds(y;x)))

f2 =

�
8x(request(x)^ x:method = ‘INVITE’
!9y>x(success(y)^ responds(y;x)))

y1 =

8<:8x(request(x)^ x:method! = ‘ACK’
!9y>x(nonProvisional(y)^ responds(y;x)
^withintime(y;x;T1)))

The two hours online testing results are illustrated
in Table 1. A number of ‘Fail’ and ‘Time-Fail’ ver-
dicts can be observed when testing f2 and y1. Let’s
have a look at the ‘Time-Fail’ verdicts in f2. They
indicate that during the testing, the tester can not de-
tect some successful responses to ‘INVITE’ requests
within the maximum response time. However, there is
no time constraint required in f2, we have to conclude
these verdicts as ‘Time-Fail’. Which means proba-
bly the server refused some ‘INVITE’ requests, the
responses are lost during the transmission or the re-
sponses will arrive later than the timeout time. Com-
bining the results of f1, we can know that it was due
to the first reason.

Similarly, we can observe some ‘Fail’ verdicts
when testing y1, they are caused by the same reason
that the tester can not find the target message within
the required time. On the contrary, there is a specific
time constraint required in y1, which is 8 seconds. It
shows some responses exceeded the required time 8s,
they exactly violated the requirement and we have to
conclude them as ‘Fail’.

These testing results successfully show that our
approach can detect both the usual and unusual faults.
Moreover, by using the verdicts obtained from these
properties. We can also test the performance issues
of session establishment in real-time, which can be
defined as:
� Session Attempt Number: Np(f1)

� Session Attempt Rate: Np(f1) / tslot

� Session Attempt Successful Rate: Np(f2) / Np(f1)

� Session establishment Number: Np(f2)

� Session establishment Rate: Np(f2) / tslot

� Session Packets Delay: Np(y1).

Figure 3 illustrates the testing results of Session At-
tempt Number, Rate and Successful Rate in each hour.
We can observe that in the 4th and 5th hour, the suc-
cessful attempt rates are zero while the attempts num-
bers/rates are not, which denotes that in those two pe-
riods, all the session attempts (‘INVITE’ requests)
were refused. And it returned to normal in the 6th
hour. In this way, we can have a clear view of the pro-
tocol performance during online testing. It has to be
noticed that when the tester receive an incoming trace,
it will apply the formalized requirements on the trace
and get the verdicts in a short time. During our exper-
iments, all the testing results for requirements without
time constraints are obtained in 1s, which proves the
efficiency of our approach.

6 PERSPECTIVES AND
CONCLUSION

This paper introduces a novel online approach to test
conformance and performance of network protocol
implementation. Our approach allows to define rela-
tions between messages and message data, and then to
use such relations in order to define the conformance
and performance properties that are evaluated on real
protocol traces. The evaluation of the property returns
a Pass, Fail, Time-Fail or Inconclusive result, derived
from the given trace.

The approach also includes an online testing
framework. To verify and test the approach, we de-
sign several SIP properties to be evaluated by our
approach. Our methodology has been implemented
into an environment which provides the real-time IMS
communications, and the results from testing several
properties online have been obtained successfully.

Furthermore, our approach can not only test re-
quirements and return relevant verdicts, but also it
can reflect current protocol performance status based
on these verdicts. We extended several performance
measuring indicators for SIP. As Figure 3 shows,
these indicators are used for testing the performance
of session establishment in SIP. The real time updated
results displayed in the screen can precisely reflect the
performance of the protocol in different time periods.

Consequently, extending more testers in a dis-
tributed environment based on the work (Che and

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

142

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Testing time slot

P
er

ce
n

ta
g

e
o

f
th

e
S

u
cc

es
sf

u
l A

tt
em

p
ts

Percentage of Successful Attempts

Rate
Number

80

64

48

32

16

0

Figure 3: Session Attempt Number, Rate and Successful Rate.

Maag, 2013) and building an online testing system
for all the network protocols would be the work we
will focus on in the future. In that case, the efficiency
and processing capacity of the system would be the
crucial point to handle, leading to an optimization of
our algorithms to severe situations.

REFERENCES

Bauer, A., Leucker, M., and Schallhart, C. (2011). Run-
time verification for ltl and tltl. ACM Transactions on
Software Engineering and Methodology, 20(4):14.

Cao, T.-D., Félix, P., Castanet, R., and Berrada, I. (2010).
Online testing framework for web services. In Third
International Conference on Software Testing, Verifi-
cation and Validation, pages 363–372.

Che, X., Lalanne, F., and Maag, S. (2012). A logic-based
passive testing approach for the validation of commu-
nicating protocols. In Proceedings of the 7th Interna-
tional Conference on Evaluation of Novel Approaches
to Software Engineering, Wroclaw, Poland, pages 53–
64.

Che, X. and Maag, S. (2013). A formal passive perfor-
mance testing approach for distributed communica-
tion systems. In ENASE 2013 - Proceedings of the
8th International Conference on Evaluation of Novel
Approaches to Software Engineering, Angers, France,
4-6 July, 2013, pages 74–84.

Dumitrescu, C., Raicu, I., Ripeanu, M., and Foster, I.
(2004). Diperf: An automated distributed perfor-
mance testing framework. In 5th International Work-
shop in Grid Computing, pages 289–296. IEEE Com-
puter Society.

Emden, M. V. and Kowalski, R. (1976). The semantics of
predicate logic as a programming language. Journal
of the ACM, pages 23(4):733–742.

ETSI (2004). Methods for testing and specification (mts);
conformance test specification for sip.

Hallé, S. and Villemaire, R. (2012). Runtime enforcement
of web service message contracts with data. IEEE
Transactions on Services Computing, 5(2):192–206.

Hofmann, R., Klar, R., Mohr, B., Quick, A., and Siegle, M.
(1994). Distributed performance monitoring: Meth-
ods, tools and applications. IEEE Transactions on
Parallel and Distributed Systems, 5:585–597.

Lalanne, F. and Maag, S. (2013). A formal data-centric
approach for passive testing of communication pro-
tocols. In IEEE / ACM Transactions on Networking,
volume 21, pages 788–801.

Larsen, K. G., Mikucionis, M., and Nielsen, B. (2004). On-
line testing of real-time systems using uppaal. In For-
mal Approaches to Software Testing, 4th International
Workshop, pages 79–94.

Lee, D. and Miller, R. (2006). Network protocol sys-
tem monitoring-a formal approach with passive test-
ing. IEEE/ACM Transactions on Networking, pages
14(2):424–437.

Nguyen, H. N., Poizat, P., and Zaı̈di, F. (2012). Online
verification of value-passing choreographies through
property-oriented passive testing. In 14th Interna-
tional IEEE Symposium on High-Assurance Systems
Engineering, pages 106–113.

Raimondi, F., Skene, J., and Emmerich, W. (2008). Efficient
online monitoring of web-service slas. In Proceedings
of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 170–
180.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
and Peterson, J. (2002). Sip: Session initiation proto-
col.

Veanes, M., Campbell, C., Schulte, W., and Tillmann, N.
(2005). Online testing with model programs. In Pro-
ceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT In-
ternational Symposium on Foundations of Software
Engineering, pages 273–282.

Wei, W., Suh, K., Wang, B., Gu, Y., Kurose, J. F., Towsley,
D. F., and Jaiswal, S. (2009). Passive online detec-
tion of 802.11 traffic using sequential hypothesis test-
ing with tcp ack-pairs. IEEE Transactions on Mobile
Computing, 8(3):398–412.

Yuen, C.-H. and Chan, S.-H. (2012). Scalable real-
time monitoring for distributed applications. IEEE
Transactions on Parallel and Distributed Systems,
23(12):2330 –2337.

An�Online�Passive�Testing�Approach�for�Communication�Protocols

143

