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Abstract: The manufacturing industry is faced with strong competition making the companies’ knowledge resources 
and their systematic management a critical success factor. Yet, existing concepts for the management of 
process knowledge in manufacturing are characterized by major shortcomings. Particularly, they are either 
exclusively based on structured knowledge, e. g., formal rules, or on unstructured knowledge, such as doc-
uments, and they focus on isolated aspects of manufacturing processes. To address these issues, we present 
the Manufacturing Knowledge Repository, a holistic repository that consolidates structured and unstruc-
tured process knowledge to facilitate knowledge management and process optimization in manufacturing. 
First, we define requirements, especially the types of knowledge to be handled, e. g., data mining models 
and text documents. On this basis, we develop a conceptual repository data model associating knowledge 
items and process components such as machines and process steps. Furthermore, we discuss implementation 
issues including storage architecture variants and finally present both an evaluation of the data model and a 
proof of concept based on a prototypical implementation in a case example. 

1 INTRODUCTION 

Today, manufacturing companies are exposed to 
intense competition due to globalization, high mar-
ket volatility and rapid technological changes (Mon-
auni and Foschiani, 2013). In addition, worldwide 
homogenization and dissemination of production 
technologies and materials diminish the competitive 
potential of tangible assets. Thus, knowledge, that is 
the intangible intellectual capital of a company, 
becomes a critical source for competitive advantages 
emphasizing the need for a systematic knowledge 
management (Goossenaerts et al., 2005). 

Existing knowledge management systems in 
manufacturing mainly focus on product knowledge 
and customer knowledge. For example, knowledge-
based engineering systems integrate computer aided 
design (CAD) data and additional product 
knowledge to enrich product models (Chapman and 
Pinfold, 2001). Yet, there are only rudimentary con-
cepts for the management of process knowledge in 
manufacturing. 

Existing approaches are characterized by three 
major shortcomings limiting process knowledge 
management and continuous process improvement: 

(i) they are either exclusively based on structured 
knowledge, e. g., formal rules, or they only deal with 
unstructured knowledge like documents; (ii) they 
make use of tailored and application-specific data-
bases to store knowledge items; (iii) they focus on 
isolated aspects of manufacturing processes, e. g., 
specific resources, or selected phases of the process 
lifecycle, e. g., process planning. This leads to an 
ineffective, costly and time consuming discovery, 
application and sharing of manufacturing knowledge 
(Economist Intelligence Unit, 2007). For example, 
production supervisors typically have to access dif-
ferent isolated IT systems and paper-based docu-
ments to find failure reports and improvement sug-
gestions in order to manually correlate them with 
additional process information like metrics. 

To address these issues, we present the Manufac-
turing Knowledge Repository (MKR), a universal 
holistic repository that consolidates structured and 
unstructured process knowledge to facilitate 
knowledge discovery, knowledge management and 
knowledge-based process optimization in manufac-
turing (see Figure 1). 

The remainder of this article is organized as fol-
lows: First, we structure related work with respect to 
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Figure 1: The Manufacturing Knowledge Repository. 

process knowledge repositories in Section 2. Next, 
we define contents and requirements for the MKR in 
Section 3. This provides the basis for the conceptual 
repository data model presented in Section 4. In 
Section 5, we focus on implementation issues and 
present a prototypical implementation. A qualitative 
evaluation of the MKR and a technical proof of con-
cept based on a case example are described in Sec-
tion 6. Finally, we conclude in Section 7 and high-
light future work. 

2 RELATED WORK: PROCESS 
KNOWLEDGE REPOSITORIES 

Process Knowledge repositories are databases for 
integrating, structuring and storing process 
knowledge (Davenport and Prusak, 2000). The latter 
comprises all types of insights related to processes. 
In this work, we focus on explicit knowledge in the 
sense of contextualized data connected by patterns 
and relations (Ackoff, 1989). We further subdivide 
explicit knowledge in structured knowledge having a 
predefined technical data structure, e. g., formal 
rules and metrics, and unstructured knowledge, e. g., 
photos and documents. 

With respect to related work, we distinguish be-
tween manufacturing-specific repositories for pro-
cess knowledge and concepts from the business 
process and workflow context. Manufacturing-
specific approaches can be found as part of various 
expert systems for process planning (Kiritsis, 1995), 
(Giovannini et al., 2012). They make use of formal 
rules and logics to support the generation of work 
plans. These kinds of repositories are typically based 
on structured knowledge and focus on process plan-
ning aspects. Besides process planning, there are 
only rudimentary repository approaches focusing on 
the other lifecycle phases, that is, process execution 
and process analysis. The tools presented in (Fischer 
et al., 2000) share a common knowledge repository 
for process analysis in manufacturing. It integrates 

structured knowledge for rule-based, case-based and 
model-based reasoning to identify root causes of 
production failures. In (Mazumdar et al., 2012), a 
manufacturing knowledge repository is presented. It 
integrates and annotates process-related documents, 
e. g., failure and performance reports, using manu-
facturing-specific ontologies to support semantic 
search capabilities for process execution and analy-
sis. All these approaches make use of application-
specific databases and are either exclusively based 
on structured or on unstructured knowledge. 

Regarding process knowledge repositories in the 
business process context, process repositories with 
semantic search capabilities, e. g., (Ma et al., 2007), 
can be seen as initial approaches. Most similar to the 
concept presented in this article is the work in (Nie-
dermann et al., 2011). The authors present a univer-
sal process knowledge repository that stores results 
of workflow analyses, especially metrics and data 
mining models. Yet, it focuses on structured 
knowledge and cannot simply be applied to manu-
facturing as it is based on workflow standards, espe-
cially the Business Process Execution Language. 

The MKR goes significantly beyond existing ap-
proaches by integrating various types of structured 
and unstructured process knowledge in a universal 
database to support different analytics- and 
knowledge-driven applications across the entire 
process lifecycle in manufacturing. 

3 REPOSITORY CONTENTS 
AND REQUIREMENTS 

The MKR integrates different kinds of process 
knowledge, called insights, by associating them with 
corresponding process components. Hence, the two 
core building blocks of the MKR’s content are a 
holistic process meta model as well as a catalogue of 
different types of insights. The main requirements 
for these building blocks are described in the follow-
ing and are used as a basis for the definition of the 
data model in Section 4. 

The holistic process meta model defines essential 
components of discrete manufacturing processes, 
e. g., process steps and resources, whereas it is inde-
pendent of a concrete industry in order to be univer-
sally applicable. It has to integrate both design-time 
and a run-time perspective, that is, aspects of pro-
cess planning and execution, to provide a holistic 
view. The design-time perspective comprises the 
process model defining, e. g., the types of resources 
needed, whereas the run-time perspective covers all 
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aspects of the execution of the model, e. g., individ-
ual employed resources or occurred failures. There-
by, both a process view referring to the flow of pro-
cess steps including the routing of materials as well 
a resource view referring to the detailed specifica-
tion and dependencies of resources like machines 
have to be combined. Moreover, changes of process 
models, that is, their evolution over time, have to be 
traceable in order to support process optimization 
purposes (Niedermann et al., 2011). It is important 
to remark, that there is no need for a highly detailed 
meta model like in computer aided planning sys-
tems. Instead, the meta model has to cover all major 
components of manufacturing processes to associate 
corresponding insights while remaining easy to un-
derstand for non-expert users in IT like production 
supervisors. Finally, it has to be able to be imple-
mented in a database environment in order to use it 
for repository storage. 

Regarding insights, a huge variety of knowledge-
relevant objects exists in manufacturing ranging 
from work instructions over failure reports to key 
performance indicators. Thus, we analyzed insights 
across the entire process life cycle from a technical 
point of view differentiating structured and unstruc-
tured insights. We observed the following types of 
structured insights: 

 Metrics, e. g., lead time, aggregating quantitative 
process attributes (Brown, 1996) 

 Data mining models, e. g., decision trees or cluster 
models, representing patterns and relationships of 
process attributes (Han et al., 2012) 

 Formal rules in terms of if-then relations, which 
can be used for rule-based reasoning (Giarratano 
and Riley, 2005) or as business rules (Morgan, 
2002) 

 Special process constructs, e. g., rework sequenc-
es, which refer to sets of process steps with certain 
business semantics (Niedermann et al., 2011) 

 Ontology concepts in terms of semantic annota-
tions using manufacturing-specific ontologies like 
MASON (Lemaignan et al., 2006) to enable rea-
soning and semantic search capabilities 

In addition, we identified the following types of 
unstructured insights: 

 Text referring to any kind of unstructured textual 
data, e. g., emails or reports 

 Images like photos, graphics or diagrams 

 Aud  io comprising any kind of sound recordings 

 Videos 

4 CONCEPTUAL REPOSITORY 
DATA MODEL 

The conceptual repository data model realizes the 
contents and requirements discussed in Section 3 
and comprises a holistic process meta model as well 
as an insight model. In the following, we represent 
both parts as class diagrams in the Unified Modeling 
Language (UML) and describe their association. 

4.1 Holistic Process Meta Model 

The basis of the holistic process meta model is the 
basic meta model described in (Gröger et al., 
2012a). The latter comprises a manufacturing pro-
cess meta model which takes a run-time perspective 
on manufacturing processes and is designed for the 
implementation in a data warehouse environment. 
We refine and extend this meta model with respect 
to design-time aspects in order to derive the holistic 
process meta model. To this end, we analyze exist-
ing process-oriented manufacturing meta models, 
especially (Erlach, 2011), (Zor et al., 2011), (Inter-
national Society of Automation, 2000), (Lemaignan 
et al., 2006). Figure 2 shows the main components 
of the resulting process meta model, which we de-
scribe in the following. For the sake of simplicity, 
we omit many additional classes of the model, e. g., 
for spatial aspects of process steps, and do not detail 
attributes. 

4.1.1 Design-time Aspects 

From a design-time point of view, that is, with re-
spect to process planning and design, a manufactur-
ing process in terms of a process model produces 
one or more types of products. A product can be 
described by features referring to informational 
aggregations of product characteristics, like geomet-
ric or functional aspects (Shah and Mäntylä, 1995). 
Features relevant for a certain process step are asso-
ciated with the latter to enable both feature-oriented 
analysis across different manufacturing processes as 
well as the association of feature-oriented insights, 
especially rules for knowledge-based process plan-
ning. 

A manufacturing process comprises several pro-
cess steps, that is, all steps necessary to produce the 
specified product. In order to analyze the evolution 
of a manufacturing process over time, different pro-
cess versions can be defined, which comprise indi-
vidual compositions of process steps. According to 
(Erlach, 2011), (Zor et al., 2011), we differentiate 
manufacturing     steps,      comprising     the    actual  
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Figure 2: Main components of the holistic process meta model. 

manufacturing and assembly of parts, testing steps, 
which refer to quality control activities in a process, 
transporting steps, covering the movement of parts 
between different steps, and warehousing steps, 
referring to stock-keeping. Process steps are further 
associated with three types of resource groups, 
namely operating resource groups comprising ma-
chine groups and productions aid groups, as well as 
employee groups. These groups define requirements 
for the actual resources selected during process exe-
cution and control, e. g., specific machines, tools and 
workers. Input material refers to products and parts 
as external input of process steps, e. g., for assembly 
operations. It defines necessary material properties 
and amounts as described in the work plan. 

Regarding the process flow, that is, the connec-
tion of process steps and the modeling of different 
paths, we exclusively focus on the flow of material 
as done in value stream design (Erlach, 2011). Thus, 
we omit additional control flow aspects for the sake 
of understandability. Moreover, we model the flow 
of material using material gateways and refine the 
concept in (Zor et al., 2011) as follows: Two process 
steps are always connected by a material gateway. 
The first and the last step of a process have no input 
gateway or no output gateway respectively. Moreo-
ver, we differentiate five types of gateways: The 
sequence gateway defines a simple sequential pass-
ing of material from one process step to the other. 

The route gateway represents a diversion point in 
the material flow, i. e., one out of several possible 
subsequent process steps has to be chosen according 
to a defined condition. As a counterpart, the select 
gateway refers to a selection of one out of several 
preceding process steps. The split gateway creates 
parallel flows of material with a condition defining 
how the material is split up. The join gateway again 
joins parallel material flows. 

4.1.2 Run-time Aspects 

The run-time perspective focuses on the execution of 
single instances of a manufacturing process which 
are initiated by a production order. The latter de-
fines the customer as well as various order details 
like batch size. Instantiation refers to process execu-
tion and control and comprises the detailed planning 
of resources and materials. That is, individual ma-
chines, production aids and employees are selected 
for process execution and are therefore associated to 
a process step instance which in turn belongs to a 
manufacturing process instance. Moreover, material 
consumption associates the actual batch of input 
material processed in a step instance. 

In addition, there are elements which are not 
modeled at design-time, especially failures, which 
may occur during process execution, and the con-
sumption  of  operational  material.  The latter refers 
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Figure 3: Main components of the insight model. 

to external input material which is consumed in a 
process step but does not become part of the product 
itself, e. g., oil or electricity. 

4.2 Insight Model 

Figure 3 shows the main components of the reposi-
tory’s insight model. In the following, we focus on 
metrics, data mining models and unstructured in-
sights as major types of insights in manufacturing. 

In general, an insight is associated with a creator 
referring to the employee who created the insight. 
This enables the integration of the MKR with exist-
ing yellow page systems for community-based 
knowledge management by linking the creator with 
its entry in the yellow page system. 

Metrics primarily comprise the actual value and 
the unit of measurement, e. g., seconds or kilos. 
Moreover, they are organized in general target di-
mensions of manufacturing, especially time, quality, 
flexibility and cost (Kaushish, 2010). For example, 
lead time and adherence to delivery dates are metrics 
belonging to the time dimension. The calculation 
defines the formula as well as the meaning of the 
metric itself. Besides, we differentiate two types of 
metrics: Target metrics define values in terms of 
thresholds to be achieved during process execution, 
e. g., the maximum lead time of a process, whereas 
measured metrics comprise the actual recorded val-
ue. Thereby, measured metrics are associated with 
one or more target metrics with the latter defining, 
e. g., maximum or minimum values. 

With respect to data mining models, we differen-
tiate six major types, namely regression models, 
classification models, association models, time se-
ries and sequences. For a detailed description, we 
refer to (Han et al., 2012). Each model is generated 
by a certain algorithm, e. g., a classification tree can 

be generated by the C4.5 algorithm, and algorithm-
specific parameters, e. g., whether tree pruning is 
activated, are stored as well. Moreover, the input 
data that is used as a source for the algorithm is 
specified using a predicate filter which is evaluated 
over the repository’s data. Further, the repository 
allows to store application results of data mining 
models, e. g., when a regression model is applied for 
predicting a metric. Yet, we assume this to be useful 
only in special cases, e. g., for compliance reasons. 
Unstructured insights have no predefined compo-
nents and are thus generally descripted by a title and 
a textual description. 

4.3 Insight Association 

In general, insights can be associated with all com-
ponents of the process meta model whereas one 
insight can be associated with multiple components 
and vice versa. In the following, we detail the asso-
ciation of metrics, data mining models and unstruc-
tured insights with respect to the major meta model 
components for a process-oriented browsing of in-
sights, namely processes, process steps and re-
sources (see Table 1). These associations are to be 
seen on a conceptual level independent of the im-
plementation, e. g., whether they may be enforced 
using application logic or database constraints. 

With respect to metrics, target metrics are solely 
associated with design-time components like the 
version of the manufacturing process and operating 
resource groups as they define values to be achieved. 
Measured metrics are generated during process exe-
cution, e. g., the actual lead time of a process in-
stance is measured. Thus, they are associated with 
corresponding run-time components. However, 
measured metrics  may  be  aggregated  over  several 
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Table 1: Association of insights with process meta model 
components. 

 
run-time components representing values on the 
design-time level as well, e. g., the average lead time 
of a selected manufacturing process. 

Data mining models describe patterns and rela-
tionships of a set of run-time elements, e. g., a clus-
tering of process instances of a selected manufactur-
ing process. Thus, they are solely associated with 
design-time elements. 

Unstructured insights are generally associated 
with both design-time and run-time components like 
certain machines or entire machine groups. Yet, with 
respect to processes and process steps, unstructured 
insights are solely associated with the corresponding 
design-time components in order to reuse them 
across all process instances and step instances. 

5 IMPLEMENTATION ISSUES 

In this section, we analyze the characteristics of the 
data in the MKR and discuss different storage archi-
tectures. Moreover, we present a prototypical im-
plementation of the MKR. 

5.1 Data Characteristics 

A storage-oriented analysis of the conceptual data 
model presented in Section 4 reveals several kinds 
of data that have to be stored. In the following, we 
characterize these different kinds of data as a basis 
for the development of a storage architecture for the 
MKR. Thereby, we focus on selected types of in-
sights, namely, metrics, data mining models and 
unstructured insights, as major types of insights in 
manufacturing process management. Thus, there are 
four kinds of data to be stored: 

 Data concerning the manufacturing process and 
metrics: This comprises data related to all compo-
nents of the process meta model as well as on cor-
responding metrics. Thus, the data are well struc-
tured and can be very large in volume, especially 
with respect to process instance data. Moreover, 
they have to be efficiently accessed by analytical 
applications, in particular data mining tools, in or-
der to generate data mining models. 

 Data concerning data mining models: These data 
have to allow for a universal representation of data 
mining models as well as associated parameters in 
order to exchange them with external data mining 
tools for model evaluation and application. 

 Data concerning unstructured insights: These data 
are semi-structured or unstructured and may com-
prise large volumes of multimedia data and text. 
The latter should be searchable whereas the former 
is primarily stored for manual exchange by the us-
er. 

 Data concerning associations: These data are 
structured and refer to the association of insights 
and components of the process meta model as out-
lined in Section 4.3. These data have to facilitate a 
flexible association, even if insights and meta 
model components are stored in different systems.  

5.2 Storage Architectures 

With respect to the above data characteristics, rela-
tional database technology constitutes the starting 
point of a storage architecture for the MKR to store 
data on processes and metrics in a multidimensional 
warehouse structure. This mature technology is suit-
able here because it handles huge amounts of struc-
tured data in a scalable and universally accessible 
way. 

Regarding data mining models, there are two ma-
jor references for their specification and exchange: 
The Predictive Model Markup Language (PMML) 
(Data Mining Group, 2013) is an XML-based format 
to specify data mining models in a semi-structured 
and vendor-independent way. Besides, the Common 
Warehouse Meta Model (CWM) (Poole et al., 2003) 
and its data mining package define a general meta 
model for data mining models. Both approaches 
define the structure of the actual mining model, e. g., 
a decision tree, as well as parameters used to gener-
ate it, e. g., pruning settings. Yet, in contrast to the 
CWM data mining model, PMML is supported by a 
wide range of commercial and open source data 
mining tools and thus represents the first choice to 
store data mining models in a semi-structured format 
in the MKR. 

Hence, semi- and unstructured data on unstruc-
tured insights and data mining models have to be 
stored and associated with structured data on pro-
cesses and metrics in the MKR. As mentioned, rela-
tional database technology is suitable to store these 
data on processes and metrics. Taking this into ac-
count, there are two major storage architecture vari-
ants for the MKR: 

x / ○ / - Insights fully/partially/not associated

Insights /
Meta Model Components

Target
Metrics

Measured
Metrics

Data 
Mining
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Un-
structured
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Run-Time Components - x - ○

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

44



 In the relational-only architecture, additional fea-
tures of relational database management systems 
are exploited to store semi- and unstructured data 
together with structured data on processes and 
metrics in the relational database. That is, PMML 
files are stored as XML data and binary large ob-
jects (BLOB) and character large objects (CLOB) 
are used to store unstructured insights. Associa-
tions are directly realized as foreign key relation-
ships between tuples representing insights and 
process components in the database. Moreover, 
full-text search capabilities of relational database 
management systems are employed to make use of 
text in unstructured insights like PDF documents. 

 In the extended architecture, semi- and unstruc-
tured data are stored separately from the relational 
database in a Content Management System (CMS) 
(Kampffmeyer, 2007). A CMS allows for the cen-
tral storage and management of content items, 
which are accessed by object identifiers. The latter 
are used to realize the association of insights and 
process components based on mapping tables. 
These tables combine primary keys of process 
components with object identifiers of correspond-
ing insights. 

For a comparison of these architecture variants, we 
refer to three major criteria: the handling of insights, 
the realization of associations between insights and 
process components as well as maintenance issues 
(see Table 2). 

In view of the handling of insights, the extended 
architecture profits from advanced functions of a 
CMS. Apart from simple full-text search capabilities 
as in the relational-only architecture, a CMS typical-
ly provides text recognition functions as well as 
versioning concepts for content items. Moreover, it 
allows for a workflow-oriented handling of content 
items and thus eases the reuse and sharing of in-
sights in workflow-based processes (Kampffmeyer, 
2007). 

Regarding the realization of associations be-
tween insights and process components, the relation-
al-only architecture allows for a simple implementa-
tion using foreign key constraints. In contrast, the 
extended architecture requires additional efforts to 
ensure consistency of associations, e. g., to make 
sure that all affected associations are deleted if a 
corresponding content item in the CMS is removed. 

With respect to maintenance issues, the relation-
al-only architecture reduces maintenance efforts as 
existing database procedures, e. g., for backup and 
recovery, can be seamlessly applied to data on in-
sights. In contrast, the extended architecture requires 
the maintenance of two separate storage systems. 

To conclude, we opt for the relational-only archi-
tecture to implement the MKR as it eases the associ-
ation of insights and process components and reduc-
es maintenance efforts. 

Table 2: Comparison of architecture variants. 

 

5.3 Prototypical Implementation 

Our prototypical implementation is based on the 
work of (Vetlugin, 2012) and is carried out as part of 
our Advanced Manufacturing Analytics platform for 
the data-driven optimization of manufacturing pro-
cesses. The platform comprises data mining use 
cases for continuous process improvement (Gröger 
et al., 2012b) and makes use of a manufacturing-
specific process warehouse, the Manufacturing 
Warehouse (Gröger et al., 2012a). 

The technical architecture of our prototype is 
based on the relational-only architecture discussed 
above and is shown in Figure 4. We implemented a 
simplified version of the MKR’s conceptual data 
model as a relational schema in an IBM DB2 data-
base. To this end, we extended the schema of the 
Manufacturing Warehouse with respect to the holis-
tic process meta model and selected insights. The 
schema is oriented towards a relational snowflake 
schema to realize a multidimensional structure of the 
holistic process meta model with minimum redun-
dancy in the dimension tables. The schema compris-
es process step instances as central facts with met-
rics like lead time of a process step. Process details, 
e. g., the process the step belongs to, as well as em-
ployed resources in a step are treated as dimensions. 
This structure enables a multidimensional analysis 
of process execution data in the MKR, e. g., using 
Online Analytical Processing (OLAP). 

Moreover, we defined an API implemented in 
Java which comprises two services: Navigation ena-
bles both browsing of the MKR’s contents, e. g., to 
view insights associated with a certain process step, 
and uploading of new contents, e. g., photos. Root 
cause analysis is a data mining use case described in 
(Gröger et al., 2012b) and focuses on the analysis of 
metric deviations using decision trees, e. g., for pro-
duction supervisors identifying influence factors for 
high lead times as shown in Figure 4.  

Relational-only 
Architecture

Extended 
Architecture

Handling of Insights - +

Realization of Associations + -

Maintenance + -
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Figure 4: Technical architecture of the prototype. 

Decision trees are stored as insights in the MKR 
whereas RapidMiner is used as an open source data 
mining tool to derive the decision trees. These API 
services can be accessed by applications using the 
MKR. 

6 EVALUATION 

In this section, we provide a qualitative evaluation of 
the MKR as well as a technical proof of concept. We 
first evaluate the holistic process meta model and the 
insight model including MKR’s support for analysis 
and insight generation. Next, we show that the MKR 
satisfies the whole range of process-oriented infor-
mation needs and thus enables a holistic process 
management. Finally, for a technical proof of con-
cept, we employ our prototype of the MKR in an 
exemplary case in the automotive industry. 

6.1 Evaluation of the Holistic Process 
Meta Model 

To evaluate the holistic process meta model (see 
Section 4.1), we analyze its universal applicability 
by showing that it covers all types of discrete manu-
facturing processes. In addition, we compare it with 
existing manufacturing meta models and show that it 
provides a sound basis for insight association and 
universal process representation in the MKR. 

6.1.1 Evaluation of Universal Applicability 

According to (Buzacott et al., 2013), there are three 
general types of processes in discrete manufacturing, 
namely mass manufacturing processes, series manu-
facturing processes and one-piece manufacturing 
processes (see Figure 5). These types differ in their 
scale of production, their organization and their 

market orientation. In the following, we briefly de-
scribe these types and analyze how the holistic pro-
cess meta model covers them. 

 

Figure 5: Types of discrete manufacturing processes. 

Mass manufacturing processes focus on the produc-
tion of large quantities of highly standardized prod-
ucts. The organization follows a flow shop produc-
tion concept with a high degree of automation. That 
is, workers are mainly in charge of controlling ma-
chines which are sequentially connected by auto-
mated transportation steps. Production is decoupled 
from demand by a make-to-stock approach. To rep-
resent a flow shop production, the holistic process 
meta models allows for the modelling of a flow of 
manufacturing steps and transportation steps con-
nected by sequence gateways. Moreover, various 
operating resources can be modeled to represent the 
high degree of automation. Besides, warehousing 
steps can be employed to represent make-to-stock 
aspects. Thus, the holistic process meta model sup-
ports the modelling of mass manufacturing process. 

One-piece manufacturing processes focus on the 
production of single customized products. These 
processes are organized according to a job shop 
production layout with a high degree of flexibility 
and only partial automation. There is a significant 
amount of manual work whereas functionally similar 
workplaces are grouped together in the factory. 
Routing between these workplaces is complex as it 
may vary for each product. One-piece manufacturing 
follows the make-to-order principle with no signifi-
cant stock keeping. The holistic process meta model 
allows for the representation of a job shop produc-
tion layout by modelling various material gateways 
to represent flexible routings between manufacturing 
steps and transportation steps. Moreover, a produc-
tion order models individual orders of customers 
whereas features allow to represent the customiza-
tion of the ordered product. Hence, one-piece manu-
facturing processes can be represented by the holis-
tic process meta model, as well. 

Series manufacturing processes focus on the 
production of different but related products in prede-
fined lot sizes and represent a hybrid form between 
one-piece manufacturing and mass manufacturing. 
These processes are based on a combination of flow 
shop production and job shop production depending 
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on the lot size. Thereby, a middle to high degree of 
automation and temporary stock keeping are typical. 
As stated above, the holistic process meta model 
allows to represent both flow shop production and 
job shop production as well as a combination using 
additional material gateways. Besides, production 
orders, products and features can be modelled to 
represent series information, e. g., the number of 
goods and the product variant to be produced. Thus, 
series manufacturing is covered by the holistic meta 
model, too. 

To sum up, the holistic process meta model sup-
ports the modelling of all general types of discrete 
manufacturing processes. Individual manufacturing 
processes in industry practice can be seen as derived 
or hybrid forms of these types (Buzacott et al., 2013) 
and are thus supported by the meta model, as well. 
This confirms the universal applicability of the ho-
listic process meta model and thus the generality of 
the MKR for discrete manufacturing. 

6.1.2 Comparison of Meta Models 

To evaluate the holistic process meta model with 
respect to existing process meta models in manufac-
turing, we did a qualitative comparison against the 
requirements defined in Section 3. For the compari-
son (see Table 3), we chose the ISA-95-1 process 
meta model (International Society of Automation, 
2000) as it represents a common standard imple-
mented in manufacturing execution systems. More-
over, we selected the Virtual Factory (VF) Data 
Model (Terkaj et al., 2012) as it integrates a wide 
range of industrial and scientific manufacturing meta 
models. In addition, we chose the value stream de-
sign (VSD) model (Erlach, 2011) because value 
stream design is a typical method used to document 
manufacturing processes. 

All these models are universally applicable for 
discrete manufacturing processes without focusing 
on specific branches or industries. Yet, only our 
holistic model integrates design-time aspects and 
run-time aspects, that is, information on process 
planning and process execution. We consider this an 
important point for a holistic knowledge manage-
ment because the combined analysis of process exe-
cution information, e. g., resulting from machine 
data or occurred failures, as well as process planning 
information enables the generation of novel insights 
(Kemper et al., 2013). For instance, a data-mining-
based root cause analysis of metric deviations as 
described in Section 5.3 can reveal new knowledge 
for process improvement. Neither the ISA-95-1 
model, nor the VF model nor the VSD model sup-

port the explicit modelling of process execution 
information. 

Table 3: Comparison of process meta models. 

 

Regarding the combination of a process view and a 
resource view, our meta model as well as the VSD 
model allow for the modelling of process flow as-
pects using gateways as well as basic resource in-
formation, e. g., on machines and production aids. 
However, detailed specifications of resources, e. g., 
regarding maintenance requirements, are not cov-
ered by these models. In contrast, the ISA-95-1 
model as well as the VF model provide an additional 
resource view with details on all types of resources. 

The tracking of the process evolution is fully 
supported by our meta model and the VF model. 
Both models include versioning concepts and keep 
track of the adaption of process models. This is im-
portant to support continuous knowledge-driven 
process improvement by reusing insights and evalu-
ating their improvement impact over time. The VSD 
model does not focus on tracking process adaptions 
and the ISA-95-1 model only supports versioning of 
selected parts of the model without tracking changes 
of the entire process model over time. 

The model simplicity refers to the number of el-
ements and the structure of the model with respect to 
the comprehensibility for the end user. We consider 
model simplicity an important factor as it reduces 
the barriers for the collection and reuse of insights 
by the user which stimulates knowledge manage-
ment. The VF model is comparatively complex as it 
integrates various meta models, e. g., on products, 
processes and resources, and comprises several ab-
straction layers. Similarly, the ISA-95-1 model 
comprises multiple generic definitions on processes 
and resources, e. g., abstract resource requirements 
are matched with actual resource capabilities. In 
contrast, the VSD model is designed for a simple 
modelling of manufacturing processes with a core 
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list of process elements. Our holistic meta model 
refines and extends these elements without referring 
to generic views or definitions. 

All in all, the qualitative comparison reveals that 
only the holistic process meta model fully supports 
the integration of design-time and run-time aspects 
and provides both model simplicity and support for 
process evolution. Although the resource view is 
only basically represented, a coarse-grained associa-
tion of resource-related insights is possible with the 
holistic process meta model. Hence, it provides a 
sound basis for insight association and universal 
process representation in the MKR. 

6.2 Evaluation of the Insight Model 
and MKR’s Analysis Support 

In the following, we evaluate the insight model (see 
Section 4.2) in combination with the MKR’s analy-
sis support and show that the MKR provides a com-
prehensive basis for the generation and storage of 
analysis results and insights of major data analytics 
systems (see Figure 6). 

According to (Kemper et al., 2010), there are 
four general types of data analytics for knowledge 
generation in business intelligence: free data explo-
ration, OLAP, reporting and model-based analytics. 
The analysis results of these systems represent in-
sights and thus have to be covered by the insight 
model to store them in the MKR. Moreover, the 
MKR as a whole should support the use of these 
data analytics for the generation of new insights. 

Free data exploration refers to the direct search 
and browsing of insights in the MKR by the user. 
There is no direct generation of new analysis results. 
Free data exploration rather provides the basis for 
further analytics by identifying needs for new anal-
yses, e. g., failure reports which require further root 
cause analyses. The MKR fully supports free data 
exploration by navigation features (see Section 5.3). 

OLAP comprises the multidimensional analysis 
of metric-oriented information (Pendse and Creeth, 
1995). Metrics represent analysis facts and dimen-
sions constitute views on these facts, e. g., analyzing 
the lead time of certain process steps. The MKR 
fully supports process-oriented OLAP analyses be-
cause (1) the insight model defines metrics and their 
relationships and (2) the MKR makes use of a multi-
dimensional warehouse structure with these metrics 
as facts and elements of the process meta model as 
dimensions (see Section 5.3). 

Reporting systems focus on the textual, graphical 
or diagram-oriented documentation of metric-
information in reports. Reports constitute semi-

structured or unstructured text documents and are 
thus covered as text insights in the insights model. 
Moreover, the multidimensional structure of the 
MKR with metrics as central facts supports the use 
of reporting systems, which are typically employed 
on multidimensional data warehouses. 

 

Figure 6: Types of data analytics and support by the MKR. 

Model-based analytics comprise data mining ap-
proaches (Han et al., 2012) and expert systems 
(Giarratano and Riley, 2005). The former refer to the 
broad range of data mining techniques and models, 
e. g., clustering and classification. The latter mainly 
comprise case-based, model-based and rule-based 
approaches. With respect to the insight model, the 
six major types of data mining models are covered 
explicitly and further types may be added flexibly by 
inheritance. Formal rules are supported by the in-
sight model, as well. In contrast, formal cases and 
formal models are not directly supported by the 
insight model due to their heterogeneity in different 
case-based und model-based applications. That is, 
they have to be represented as unstructured textual 
insights in order to incorporate them in the MKR. 
Considering the generation of data mining models, 
the MKR, with its multidimensional structure, fully 
supports the use of data mining tools like 
RapidMiner (see Section 5.3). Yet, the use of specif-
ic case-based, rule-based or model-based applica-
tions may require application-specific adaptions of 
the MKR’s data structure due to missing standards 
for expert systems. 

To sum up, the MKR supports both the genera-
tion and storage of analysis results from reporting 
and OLAP applications as well data mining systems 
and includes free data exploration. The key enablers 
are the insight model in combination with a multi-
dimensional structure based on the process meta 
model which comprises process model data and 
process execution data for analysis purposes. With 
respect to expert systems, formal rules, models and 
cases can be stored in the MKR. Yet, the use of the 
MKR as a data basis for expert systems to generate 
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new insights requires additional application-specific 
adaptions. 

6.3 Evaluation of the MKR for  
Knowledge Management 

On the basis of the above evaluation of the holistic 
process meta model and the insight model, we show 
that the realization of the models in the MKR ena-
bles a holistic process knowledge management by 
satisfying the whole range of process-oriented in-
formation needs in manufacturing. 

In our previous work (Gröger et al., 2013), we 
identified four general types of process-oriented 
information, namely process context, process per-
formance, process documentation and process com-
munication. In the following, we describe these 
information needs and analyze how the MKR satis-
fies them. Table 4 shows for each information need 
whether it is satisfied using insights or meta model 
components of the MKR. 

 Process context refers to the structure and the 
status of the overall process and its underlying re-
sources, e. g., machines, as well as the goods to 
be produced. The MKR’s process meta model 
comprises all information relevant for the process 
context: Process steps and material gateways rep-
resent the structure and employees and operating 
resources provide information on process re-
sources both from a design-time and a run-time 
point of view. Information on the product and its 
features is available, as well. 

 Process performance alludes to information about 
the effectiveness and efficiency of the process 
and its resources. All information relevant for 
process performance is provided by insights, es-
pecially metrics and data mining models, as well 
as information about material consumption in the 
meta model. 

 Process documentation refers to information to 
support the execution of a process, e. g., work in-
structions, as well as information for process im-
provement, especially improvement suggestions. 
Process documentation can be represented as spe-
cial kinds of unstructured insights which may 
comprise text, audio or video supported by the 
MKR. 

 Process communication covers information ex-
changed between employees participating in the 
process, especially text, video or audio messages. 
These can be treated as corresponding insights 
and are therefore supported by the MKR, too. 
 

Table 4: Information needs satisfied by the MKR. 

 

To conclude, the MKR satisfies the whole range of 
process-oriented information needs in manufacturing 
and thus enables a holistic knowledge management. 
The MKR consolidates knowledge across the entire 
process lifecycle and facilitates sharing amongst 
various target groups of users. Moreover, the MKR 
enables the cross-correlation of different types of 
knowledge like failure reports, metrics and data 
mining models to support the discovery of new in-
sights for process improvement. 

6.4 Case Example and Technical Proof 
of Concept 

The technical proof of concept is based on the appli-
cation of the prototype of the MKR (see Section 5.3) 
in an exemplary case in the automotive industry, that 
is, the mass production of steel springs for car mo-
tors as described in (Erlach, 2011). The manufactur-
ing process consists of several sequential steps for 
winding, tempering and shot peening of springs and 
involves various machines like winding machines. 

For our technical proof of concept, we modelled 
the manufacturing process according to the holistic 
process meta model whereas we used the typical 
model constructs to represent mass manufacturing 
processes as described in Section 6.1.1. On this ba-
sis, we identified attributes of resources and process 
steps, e. g., winding speed of winding machines, and 
generated corresponding process model and process 
execution data to populate the MKR with instance 
data. Thereby, we generated data on 100.000 execu-
tions of the manufacturing process and calculated 
metric values, e. g., for lead times and quality rates. 

With respect to insights, we did several root 
cause analyses on lead times using process execution 
data in the MKR and deduced corresponding deci-
sion trees as data mining models which were stored 
in the MKR. Moreover, we stored exemplary ma-
chine manuals, photos and reports as JPEG and PDF 
files representing unstructured insights in the MKR. 

Considering an application on top of the MKR, 
we implemented a knowledge-based process dash-
board on an Android tablet pc addressing both 
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workers on the factory shop floor and production 
supervisors (see Figure 4). The dashboard is based 
on our requirements analysis described in (Gröger et 
al., 2013) and represents an application using the 
MKR and its API to provide mobile access to differ-
ent kinds of process knowledge in different applica-
tion scenarios. For instance, workers can get infor-
mation on best practices and work instructions as 
well as upload photos and reports of manufacturing 
failures. Besides, production supervisors can corre-
late metrics and failure reports and execute root 
cause analyses. 

Based on our test system (Windows Server 2008 
R2, Core i7-2620M@2,7 GHz, 8 GB RAM) and 
data on 100.000 process instances, the MKR proved 
to provide acceptable system performance for inter-
active usage in typical application scenarios of the 
dashboard described in (Gröger et al., 2013). 

This technical proof of concept demonstrates the 
fundamental feasibility and applicability of the 
MKR combined with suitable applications like the 
dashboard. The MKR proved to provide the facilities 
for insight generation, storage and reuse based on 
data of a realistic manufacturing process. 

7 CONCLUSION 
AND FUTURE WORK 

In this article, we introduced the Manufacturing 
Knowledge Repository, a holistic repository facili-
tating process knowledge management in manufac-
turing. It consolidates structured and unstructured 
knowledge, e. g., metrics, data mining models and 
text documents, and can be used by various applica-
tions. We presented the conceptual data model in-
cluding a holistic process meta model and an insight 
model and discussed different storage architectures. 
We did a qualitative evaluation of the data models 
and presented a technical proof of concept based on 
a prototypical implementation in a case example. 

With respect to future work, our goal is to im-
plement an alternative storage architecture for the 
MKR and to investigate novel analytics on top of the 
MKR. That is, on the one hand, we are going to 
implement the extended architecture introduced in 
this article. This architecture seams promising to us 
as it exploits the functionality of a Content Man-
agement System for the workflow-based reuse and 
distribution of insights in business processes. On the 
other hand, we are going to examine novel analytics 
which combine structured and unstructured 
knowledge to generate new insights, e. g., combin-

ing data mining on process execution data and text 
analytics on unstructured text documents. 
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