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Abstract: Data quality is a key to success for all kinds of businesses that have information applications involved, such 
as data integration for data warehouses, text and web mining, information retrieval, search engine for web 
applications, etc. In such applications, matching strings is one of the popular tasks. There are a number of 
approximate string matching techniques available. However, there is still a problem that remains 
unanswered: for a given dataset, how to select an appropriate technique and a threshold value required by 
this technique for the purpose of string matching. To challenge this problem, this paper analyses and 
evaluates a set of popular token-based string matching techniques on several carefully designed different 
datasets. A thorough experimental comparison confirms the statement that there is no clear overall best 
technique. However, some techniques do perform significantly better in some cases. Some suggestions have 
been presented, which can be used as guidance for researchers and practitioners to select an appropriate 
string matching technique and a corresponding threshold value for a given dataset. 

1 INTRODUCTION 

Data quality is a key to success for all kinds of 
businesses that have information applications 
involved, such as data integration for data 
warehouse applications; text and web mining, 
information retrieval and search engines for web 
applications. When data need to be integrated from 
multiple sources, it always has a problem: how to 
identify data records that refer to equivalent entities, 
which is called a duplicate detection problem. The 
“approximate string matching problem” is generally 
used as a black-box function with some threshold 
parameter in the context of duplicate detection 
problem. In general, string matching deals with the 
problem of whether two strings refer to the same 
entity. 

String matching, also referred as record matching 
or record linkage in statistics community has been a 
persistent and well-known problem for decades 
(Elmagarmid et al., 2007). For a brief review of the 
topic of record linkage, see the work by Herzog e 
tal., (2010). To deal with string matching, there are 
mainly two types of matching techniques: character-
based and token-based techniques. Character-based 
similarity techniques are designed to handle well 
typographical errors. However, it is often the case 

that typographical conventions lead to 
rearrangement of words e.g., “John Smith” vs. 
“Smith, John”. In such cases, character-based 
techniques fail to capture the similarity of the 
entities. Token-based techniques are designed to 
compensate for this problem (Elmagarmid et al., 
2007). Therefore, generally speaking, character-
based similarity techniques are good for the single 
word problem, such as name matching while token-
based for the matching with more than one word. 
For instance, for e-commerce datasets used in 
(Köpcke et al., 2010), token-based techniques could 
be more appropriate, given the length of the fields. 
This paper will focus on popular token-based 
techniques. Although these techniques are designed 
for dealing with this kind of problems, since there is 
no clear overall best string matching technique for 
all kinds of datasets (Christen, 2006), a question still 
remains unanswered for researchers and 
practitioners: for a given dataset, how to select an 
appropriate technique and a threshold value required 
by this technique for the purpose of string matching. 
In past decade, several researchers have challenged 
this problem (Bilenko et al, 2003; Christen, 2006; 
Cohen, Ravikumar and Fienberg, 2003; 
Hassanzadeh et al., 2007; Peng et al., 2012). 
However, none of them have done such a 
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comprehensive analysis and comparison work that is 
done for token-based techniques in this paper. The 
contributions of this paper are to overview 12 
popular token-based string matching techniques, 
evaluate whether the following factors will have 
effect on the performance: the error rate in a dataset, 
the threshold value, the selected type of strings in a 
dataset, and the size of a dataset, by using sixty three 
carefully designed datasets. 

The rest of this paper is structured as follows. 
Related works are described in next section. Section 
3 introduces techniques that will be examined. The 
main contribution of this paper is presented in 
section 4 that describes the preparation of the 
datasets, the experiments, the analysis and 
comparisons. Finally, this paper is concluded and 
future work pointed out in section 5. 

2 RELATED WORK 

Bilenko et al (2003) and Cohen et al., (2003) 
evaluated and compared a set of existing string 
matching techniques, which include popular 
character-based techniques, token-based techniques 
and hybrid techniques. They claimed that the 
Monge-Elkan performed best on average and 
SoftTFIDF performed best overall. However, their 
works did not consider the effect of the error rate, 
the type of errors in a string, the token length in a 
string and the size of a dataset on the performance. 
Besides, regarding the threshold value used for 
matching, their work only mentioned that a suitable 
threshold value was chosen, but not mentioned how 
and whether or not this value was universal for all 
considered techniques. 

Peter Christen (2006) thoroughly discussed the 
characteristics of personal names and the potential 
sources of variations and errors in them, and also 
evaluated a number of commonly used name 
matching techniques, considering given names, 
surnames and full names separately, and proposed 
nine useful recommendations for technique selection 
when dealing with name matching problems.  
Particularly, the author pointed out the importance 
of choosing a suitable threshold value. It was argued 
that it was a difficult task to select a proper threshold 
value and even small changes of the threshold could 
result in dramatic drops in matching quality. 
However, his focus was on personal name matching 
techniques. Also, similar to Cohen et al’s work 
(2003), the author did not consider any effect of the 
error rate, the token length in a string and the size of 
a dataset on the performance. 

Hassanzadeh et al., (2007) presented an overview of 
several string matching techniques and thoroughly 
evaluated their accuracy on several datasets with 
different characteristics and common quality 
problems. Similar to this paper, the work was 
focused on token-based string matching techniques. 
The effect of types of errors and the amount of 
errors were both considered. Types of errors 
considered include edit errors, token swap and 
abbreviation replacement. Their experiment results 
showed that types of errors and the amount of errors 
both had significant effect on the performance. It 
was claimed that the threshold value used for the 
matching task would influence the individual 
performance of matching techniques. However the 
token length in a string and the size of datasets were 
not considered.  

Recently, Peng et al., (2012) presented an 
evaluation work on techniques for name matching. 
The work considered a variety of factors, such as the 
error rate, the size of a dataset, which might have 
effect on the performance of such techniques. Their 
preliminary experimental results confirmed that 
there is no overall clear best technique. The work 
claimed that the error rate in the dataset has effect on 
threshold values. However, they only considered 
character-based matching techniques. 

3 STRING MATCHING 
TECHNIQUES 

String matching that allows errors is also called 
approximate string matching. The problem, in 
general, is to “find a text where a text given pattern 
occurs, allowing a limited number of “errors” in the 
matches.” (Navarro, 2001) Each technique uses a 
different error model, which defines how different 
two strings are.  

In token-based similarities, two strings, s and t 
can be converted into two token sets, where each 
token is a word. A similarity function, Sim() is used 
to define whether strings s and t are similar or not, 
based on  a given threshold value. In this paper, 12 
token-based similarity techniques are considered. In 
the rest of this section, if there is no reference given, 
the description of algorithm’s formula follows the 
work in (Hassanzadeh et al., 2007). 

3.1 Notations 

Given two relations: R = {ri : 1 ≤ i ≤ N1} and S = {sj 
: 1 ≤ j ≤ N2}, where |R| = N1, |S| = N2, for a similarity 
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function  sim( ), a pair of records, (ri, sj) ∈ R×S is 
considered to be similar if sim((ri, sj) ≥ θ , where θ is 
a given threshold value.  

3.2 Edit Similarity or Levenshtein 

The Levenshtein distance (Navarro, 2001) is defined 
to be the minimum number of edit operations 
required to transform string s1 into s2. Edit 
operations are delete, insert, substitute and copy. It 
can be calculated by: 

ܵ݅݉௩ሺݏଵ, ଶሻݏ ൌ 1.0 െ
,ଵݏሺݐݏ݅݀ ଶሻݏ

max	ሺ|ݏଵ|, ଶ|ሻݏ|
 

where dist(s1, s2) refers to the actual Levenshtein 
distance function which returns a value of 0 if the 
strings are the same or a positive number of edits if 
they are different. The value of such a measure is 
between 0.0 and 1.0 where the bigger the value, the 
more similar between the two strings. 

3.3 GES 

The Gap Edit Similarity (GES) measure uses gap 
penalties.  (Chaudhuri et al., 2006). GES defines the 
similarity between two strings as a minimum cost 
required to convert s1 to s2 and is given by: 

ܵ݅݉ீ௦ሺݏଵ, ଶሻݏ ൌ 1 െmin	ሺ
,ଵݏሺܿݐ ଶሻݏ

ଵሻݏሺݐݓ
, 1.0ሻ 

where wt(s1) is the sum of weights of all tokens in s1 
and tc(s1, s2) is a sequence of the following 
transformation operations: 
 Token insertion: inserting a token t in s1 with 

cost w(t). cins where cins is the insertion factor 
constant and is in the range between 0 and 1. In 
our experiments, cins =1; 

 Token deletion: deleting a token t from s1 with 
cost w(t); 

 Token replacement: replacing a token t1 by t2 in 
s1 with cost (1- simLeven(t1, t2).w(t). 

3.4 Jaccard/Weighted Jaccard 

Jaccard similarity is the fraction of tokens in s1 and 
s2 that are present in both of the strings. Weighted 
Jaccard similariy is the weighted version of Jaccard 
similarity. The similarity measure for two strings, s1, 
s2 can be calculated by: 

ܵ݅݉ௐ.ௗሺݏଵ, ଶሻݏ ൌ
∑ ሻ௧∈௦భ∩௦మݐோሺݓ

∑ ሻ௧∈௦భ∪௦మݐோሺݓ
 

where wR(t)  is a function of weight that reflects the 
frequency of token t in relation R: 

ሻݐோሺݓ ൌ log	ሺ
݊ െ ݊௧  0.5
݊௧  0.5

ሻ 

where n is the number of tuples in the relation R and 
nt is the number of tuples in R containing the token t. 

3.5 TF-IDF 

TF-IDF, term frequency–inverse document 
frequency, is a similarity measure that is widely used 
in information retrieval community (Cohen, 
Ravikumar and Fienberg, 2003). The similarity 
measure for two strings, s1, s2 can be calculated by: 

்ܵ݅݉ிூிሺݏଵ, ଶሻݏ ൌ  ܸሺݓ, ଵሻݏ ∙ ܸሺݓ, ଶሻݏ
௪∈௦భ∩௦మ

 

together with: 

ܸᇱሺݓ, ሻݏ ൌ log	ሺܶܨ௪,௦  1ሻ ∙ log	ሺܨܦܫ௪ሻ 

and 

ܸሺݓ, ሻݏ ൌ ܸᇱሺݓ, ሻ/ඨݏ ܸᇱሺݓ, ሻଶݏ
௪ᇲ

 

where TFw, s is the frequency of token w in s, IDFw is 
the inverse of the fraction of names in the corpus 
that contains w. 

3.6 SoftTFIDF 

SoftTFIDF is a hybrid similarity measure by Cohen 
et al., (2003), in which similar tokens are considered 
as well as tokens in s1s2. The similarity measure 
for two strings, s1, s2 can be calculated by: 

ܵ݅݉ௌ௧்ிூிሺݏଵ, ଶሻݏ ൌ 

 ܸሺݓ, ଵሻݏ ∙ ܸሺݓ, ଶሻݏ ∙ ,ݓሺܦ ଶሻݏ
௪∈ைௌாሺఏ,௦భ,௦మሻ

 

where CLOSE(θ, s1, s2) is the set of tokens t1∈s1 
such that for some t2 s2 sim(s1, s2)>θ, where sim() is 
a secondary similarity function, and D(w, s2) = 
maxv∈s2sim(w, s2), for w∈CLOSE(θ, s1, s2).	 	 In the 
experiments, Jaro-Winkler similarity function is 
used as the secondary similarity function and θ = 
0.9. 

3.7 Cosine TF-IDF 

Cosine TF-IDF is a well-established technique used 
in Information Retrieval and uses vectors to analyse 
the strings and to calculate the similarity between 
the pattern and the string. The similarity is 
determined by the cosine of the angle between these 
vectors.  The formula is shown below for the 
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similarity, as well as the formula for how the vectors 
are assigned: 

ܵ݅݉௦ሺݏଵ, ଶሻݏ ൌ  ሻݐ௦భሺݓ ∙ ሻݐ௦మሺݓ
௧∈௦భ∩௦మ

 

where ݓ௦భ(t) and ݓ௦మሺݐሻ are normalized tf-idf 
weights for each common token in s1 and s2 
respectively.   The normalized tf-idf weight of token 
t in a given string s is defined as follows: 

ሻݐ௦ሺݓ ൌ
ሻݐ௦ᇱሺݓ

ඥ∑ ᇱሻଶ௧ᇲ∈௦ݐ௦ᇱሺݓ

, ሻݐ௦ᇱሺݓ ൌ ݐ ௦݂ሺݐሻ ∙ ݂݅݀ሺݐሻ 

where ݐ ௦݂ሺݐሻ is the term frequency of token t within 
string s and idf(t) is the inverse document frequency 
with respect to the entire relation R. 

3.8 BM25 

BM25 is an efficient string searching technique that 
is used as the foundation for many others.  The 
algorithm looks for instances of P (pattern) in S 
(text) by performing comparisons of characters at a 
range of different alignments. The similarity 
measure for two strings, s1, s2 can be calculated by: 

ܵ݅݉ெଶହሺݏଵ, ଶሻݏ ൌ  ௦భݓ
ᇱ ሺݐሻ ∙ ሻݐ௦మሺݓ

௧∈௦భ∩௦మ

 

where    

௦భݓ
ᇱ ሺݐሻ ൌ

ሺ݇ଶ  1ሻ ∙ ݐ ௦݂భሺݐሻ
݇ଶ  ݐ ௦݂భሺݐሻ

 

ሻݐ௦మሺݓ ൌ ோݓ
ሺଵሻሺݐሻ

ሺ݇ଵ  1ሻ ∙ ݐ ௦݂మሺݐሻ
݇ሺݏଶሻ  ݐ ௦݂మሺݐሻ

 

and 

ோݓ
ሺଵሻሺݐሻ ൌ log	ሺ

݊ െ ݊௧  0.5
݊௧  0.5

ሻ 

ሻݏሺܭ ൌ ݇ଵሺሺ1 െ ܾሻ  ܾ
|ݏ|

௦݃ݒܽ
ሻ 

where tfs(t) is the frequency of the token t in string s, 
|s| is the number of tokens in s, avgs is the average 
number of tokens per record in relation R, nt is the 
number of records containing the token t and k1, k2 
and b are a set of indpendent parameters, where k1∈ 
[1,2], k2  = 8 and b∈ [0.6, 0.75].  

3.9 Hidden Markov 

Hidden Markov Model (HMM) has a formula 
wherein a language model is given to each 
individual document.  HMM is a model that is 
assigned to actual strings whereby the probability of 
returning a particular string is measured against 

another string. The following formula shows the 
score for HMM used in this experiment: 

ܵ݅݉ுெெሺݏଵ, ଶሻݏ ൌෑሺܽܲሺܧܩ|ݐሻ  ܽଵܲሺݏ|ݐଶሻሻ
௧∈௦భ

 

where a0 and a1 = 1 - a0 are the transition states 
probabilities of the Markov model and P(t|GE) and 
P(t|s2) are determined by: 

ܲሺܧܩ|ݐሻ ൌ
∑ ௦∈ோݏ	݊݅	ݏݎܽ݁ܽ	ݐ	ݏ݁݉݅ݐ	݂	ݎܾ݁݉ݑ݊

∑ ∈ோ|ݏ|
 

ܲሺݏ|ݐଶሻ ൌ
ଶݏ	݊݅	ݏݎܽ݁ܽ	ݐ	ݏ݁݉݅ݐ	݂	ݎܾ݁݉ݑ݊

|ଶݏ|
 

3.10 WHIRL 

The similarity of two document vectors v


and w


 is 
usually interpreted as the cosine of the angle 
between v and w.  The value of SimWHIRL( v


, w


) is 
always between one and zero and is given by the 
following formula (Cohen, 2000): 

ܵ݅݉ௐுூோሺݒ,ሬሬሬԦ	ݓሬሬԦሻ ൌ
௧ሬሬሬԦݒ ∙ ௧ሬሬሬሬԦݓ

||Ԧݒ|| ∙ ||ሬሬԦݓ||
௧∈்

 

where v


 is related to the “importance” of the term t 

in the document represented by t and  is related 
to the relevance of term t in the document 

represented by t. is the length of vector  

and is the length of the vector  Two 

documents are similar when they share many 
“important” terms (Cohen, 2000). 

3.11 Affine Gap 

Some sequences are much more likely to have a big 
gap, rather than many small gaps. For example, a 
biological sequence is much more likely to have one 
big gap of length 10, due to a single insertion or 
deletion event, than it is to have 10 small gaps of 
length 1. Affine gap penalties use a gap opening 
penalty, o, and a gap extension penalty, e. A gap of 
length l is then given a penalty o + (l-1)e. So that 
gaps are discouraged, o is almost always negative. 
Because a few large gaps are better than many small 
gaps, e, though negative, is almost always less 
negative than o, so as to encourage gap extension, 
rather than gap introduction. 

In the Affine Gap Penalty model, a gap is given a 
weight Wg to “open gap” and another weight Ws to 
“extend the gap”.  The formula for the model is: 

்ܹ௧ ൌ ܹ  ݍ ௦ܹ 

v


w


w


|||| v


v


|||| w


.w
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where q is the length of the gap, Wg is the weight to 
“open the gap” and Ws is the weight to “extend the 
gap” with one more space (Vingron and Waterman, 
1994). 

3.12 Fellegi-Sunter 

Fellegi-Sunter makes comparison between recorded 
characteristics and values in two records and makes 
a decision based on whether or not the comparison 
pair make up the same object or event (Fellegi and 
Sunter, 1969). 

Decisions are made according to three types 
which will be referred to as A1 (a link), A2(a possible 
link) and A3(a non-link). When members of the 
comparison pair are unmatched then Fellegi-sunter 
equation calculates the score by determining the 
probability of the error occurring between the 
matched pair defined as: 

ߤ ൌݑሺߛሻܲሺܣଵ|ߛሻ
ఊ∈

 

ߣ ൌ݉ሺߛሻܲሺܣଷ|ߛሻ
ఊ∈

 

where u(γ) and m(γ) are probabilities of realizing 
and discovering a comparison vector. The 
summation is the total space P of all possible 
realizations. 

4 EXPERIMENTS AND 
EVALUATION 

In our experiments, we focus on the performance of 
the above 12 popular token-based string matching 
techniques. Datasets designed cover a wide range of 
characteristics, such as the level of “dirtiness”, the 
token length in a string, the size of datasets and the 
type of errors. It is expected that the experiment 
results should show that all these characteristics 
have significant effect on the performance and 
optimal threshold values. 

4.1 Datasets Preparation 

In the absence of common datasets for data cleaning, 
we prepare our data for experiments as follows. 

The datasets that are used are based on real 
Electoral Roll data. First, a one million record 
dataset was extracted, from which an address list 
was created, which includes House number, Street, 
City and County, Postcode.  This list contains 10000 

clean, non-duplicate addresses, with an ID 
associated to each of the records. 

Erroneous records were introduced by doing the 
following five operations manually to the address 
fields of records: inserting, deleting, substituting, 
replacing characters and swapping tokens. The 
replacing type of errors includes abbreviation errors, 
such as replacing St. with Street or vice versa.  The 
level of the dirtiness of a dataset is divided into three 
levels: Low, Medium and High. Static percentages 
are used as a guideline for such a classification: for 
low error datasets, the percentage was set to 20%; 
for medium, 50% and for high, 80%. 

The dataset sizes that were considered consisted 
of six sizes with 500, 1000, 2000, 4000, 8000 and 
10000 records respectively. The average record 
length was approximately 8.2 words per record.  The 
errors in the datasets were distributed in a uniform 
way. Experiments have also been run on datasets 
generated using different parameters. For each size, 
there were three datasets generated with mixed types 
of errors, having a different error rate associated. 
This contributes eighteen datasets with mixed type 
of errors introduced.  

In addition, datasets with single type of errors 
were also considered in our experiment. The 
insertion and deletion errors were incorporated 
solely into each dataset and the algorithms were 
measured against each other to see how they 
performed against each technique. With regard to 
how these error types were distributed amongst the 
data, the distribution went as follows: Insertion 
errors were performed on a single character per 
record that would correspond to a given percentage 
distribution rate dependent on the error rate being 
analyzed.  For example, for the low error dataset for 
1000 records, there were 20% of those records that 
had a single “insertion” error implemented.  So 200 
of those 1000 records had a character “added” that 
would simulate an error. There were 18 datasets 
incorporated with only insertion errors. 

Deletion followed a similar approach for each 
error rate and took a single character away from the 
number of records corresponding to the respective 
percentage error rate. There were 18 such datasets as 
well. 

Token lengths were measured for the 8000 size 
dataset with the “low”, “medium” and “high” error 
rates taken into consideration.  Three different token 
lengths were used, “Short”, “Medium” and “Long”. 
For the short tokens, the only fields considered for 
each record were for Street and City. Medium length 
considered County and the Long length size added 
PostCode which was the original size of the record. 
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The average length used for low was 2.1 tokens per 
record, medium was 5.6 and long was 8.2. Therefore 
in total there are sixty three datasets for the 
experiment. 

4.2 Measures 

A target string is a positive if it is returned by a 
technique; otherwise it is a negative. A positive is a 
true positive if the match does in fact denote the 
same entity; otherwise it is a false positive. A 
negative is a false negative if the un-match does in 
fact denote the same entity; otherwise it is a true 
negative. 

We evaluate the matching quality using the F-
measure (F) that is based on precision and recall: 

1ܨ ൌ
2 ൈ ܲ  ܴ
ܲ  ܴ

 

with P (precision) and R (recall) defined as: 

ܲ ൌ
|ݏ݁ݒ݅ݐ݅ݏ	݁ݑݎݐ|

ሺ|݁ݑݎݐ	ݏ݁ݒ݅ݐ݅ݏ|  ሻ|ݏ݁ݒ݅ݐ݅ݏ	݁ݏ݈݂ܽ|
 

ܴ ൌ
|ݏ݁ݒ݅ݐ݅ݏ	݁ݑݎݐ|

ሺ|݁ݑݎݐ	ݏ݁ݒ݅ݐ݅ݏ|  ሻ|ݏ݁ݒ݅ݐܽ݃݁݊	݁ݏ݈݂ܽ|
 

Clearly, a trade-off between recall and precision 
exists, if most targets are matched, recall will be 
high but precision will be low. Conversely if 
precision is high, recall will be low. F1-measure is a 
way of combining the recall and precision into a 
single measure of overall performance (Rijsbergen, 
1979). In our experiments, precision, recall and F1-
measure are measured against different value of 
similarity thresholds, θ. For the comparison of 
different techniques, the maximum F1-measure 
score across different thresholds is used. 

 

Figure 1: Optimum threshold value for different 
techniques on datasets with three different error rates. 

 

Figure 2: Maximum F1- score for different techniques on 
datasets of 8000 records with three different error rates. 

 

Figure 3: Maximum F1- score for different techniques on 
datasets of 8000 records with three different token length 
associated with medium error rates. 

 

Figure 4: Maximum F1- score for different techniques on 
datasets of 10000 records only having insertion errors with 
three different error rates. 

4.3 Results 

In this section, testing results on the sixty three 
carefully designed datasets are analysed and 
evaluated. Results show that in general, the size of a 
dataset is not significantly sensitive to the accuracy 
(the best F1-score) relative to the threshold values. 

4.3.1 Effect of Error Rate on Threshold 
Values 

Figure 1 shows the optimum threshold values for all 
12 techniques on datasets with three different error 
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rates. The results confirm that the level of “dirtiness” 
in a dataset has significant effect on threshold 
selection. From the figure, it says the higher the 
error rate in the dataset, the lower the threshold 
value is required in order to achieve the maximum 
F1-score, except the case for BM25. For example 
W/Jaccard achieves the maximum F1-score on 
datasets with low error rate at the threshold value of 
0.85, with medium and high error rate at threshold 
values of 0.57 and 0.47 respectively. However, 
BM25 achieves the maximum F1-score on datasets 
with high error rate at the threshold value of 0.60, 
but with medium error rate at the threshold value of 
0.59. 

4.3.2 Effect of Error Rate on Performance 

Experiment results show that the “dirtiness” of a 
dataset has great effect on the overall performance. 
As an example, Figure 2 shows the maximum F1-
scores for the 12 different techniques on datasets of 
size 8000 with three different error rate associated. It 
shows that for datasets with low error rate 
associated, HMM, BM25 and Cosine TF-IDF are the 
best three performers among the 12 algorithms, 
while Affine Gap, WHIRL and SoftTFIDF are the 
worst performers.  For datasets with medium and 
high error rate associated, Affine Gap joined HMM 
and BM25 as the top three performers, while Cosine 
TF-IDF drops out of the best 5. This shows that 
Affine Gap is suitable for datasets with higher level 
of “dirtiness”, and Cosine TF-IDF is suitable for 
datasets with lower level of “dirtiness”. In general, 
the performance decreases along with the increase of 
the “dirtiness” in a dataset, except technique, Affine 
Gap, which has higher maximum F1-score on 
datasets with medium error rate associated than on 
datasets with low error rate associated. 

4.3.3 Effect of Size of Datasets on 
Performance 

Our experiment results show that the size of datasets 
does not have significant effect on maximum F1-
score values, given optimum threshold values. 

4.3.4 Effect of Length of Strings on 
Threshold Values 

Figure 3 shows the maximum F1- score for different 
techniques on datasets of 8000 records with three 
different token lengths associated with medium error 
rates. It says in general, performance decreases 
along with the increase of lengths, except Cosine 
TF-IDF, where the performance on long length 

datasets is slightly better than that on medium 
length. From results for different techniques on 
datasets with medium length and long length tokens 
respectively, associated with three different error 
rate, it can be seen that BM25, HMM, cosine TF-
IDF and W/Jaccard performed better than others, 
and Affine Gap, WHIRL and SoftTFIDF performed 
badly when the token length is long, However, the 
performance of Affine Gap, WHIRL and SoftTFIDF 
increased significantly when the token length is 
medium. 

4.3.5 Effect of Type of Errors on 
Performance 

Figure 4 shows the maximum F- score for different 
techniques on datasets of 10000 records only having 
insertion errors with three different error rates. For 
datasets with low error rate associated, W/Jaccard, 
GES and Edit Similarity are the best three 
performers, while Fellegi-Sunter, Cosine TF-IDF 
and BM25 perform worse than the rest. The 
performance of BM25 increases along with the 
increase of the level of “dirtiness” in datasets, while 
the performance of GES and Edit Similarity 
decreases along with the increase of the level of 
“dirtiness” in datasets. It is noted that BM25 is 
among the best three performers in most of cases 
when the error types in datasets are mixed. See 
section 4.3.2. 

4.3.6 Effect of Timing 

Results also show, when the error rate is low, 
Affine, GES, Felligi-Sunter and Edit Similarity cost 
less time among the twelve algorithms whereas 
SoftTFIDF costs the most time. The pattern is 
similar when the error rate is medium. However, 
SoftTFIDF costs the least time when the error rate is 
high. HMM, TF-IDF and WHIRL also cost less time 
than the rest when the error rate is high. Our 
experiment results agree that smaller datasets cost 
less time, and the time used increases when the error 
rate increases. In particular, time used on datasets 
with high error rate associated is significantly more 
than that on datasets with low or medium error rate 
associated. 

4 CONCLUSIONS AND FUTURE 
WORK 

This paper has analysed and evaluated twelve 
popular token-based name string matching 
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techniques. A comprehensive comparison of the 
twelve techniques has been done based on a series of 
experiments on 63 carefully designed datasets with 
different characteristics, such as the rate of errors, the 
type of error, the number, the length of tokens in a 
string, and the size of a dataset. The comparison 
results confirmed the statement that there is no clear 
best technique. The characteristics considered all 
have significant effect on performance of these 
techniques, except the size of a dataset. In general, 
HMM and BM25 perform better than others, 
especially on smaller sized datasets, but consume 
much more time. Cosine TF-IDF and TF-IDF are 
better on larger datasets with a higher error rate 
associated. Results also show that techniques that 
perform well on datasets incorporated with mixed 
type of errors do not secure a similar performance on 
datasets incorporated with a single type of errors. For 
example, BM25 didn’t perform well on datasets with 
low error rate, incorporated only with insertion 
errors. Similarly, HMM didn’t perform well on 
datasets with low error rate, incorporated with only 
deletion errors. The token length also has an effect on 
the performance. For example, some techniques, 
such as Affine Gap, WHIRL and SoftTFIDF 
performed much better when the token length is 
medium than that of the token length when it is long. 

Regarding the threshold value, the results show 
that the level of “dirtiness” in a dataset has 
significant effect on threshold selection. In general, 
the higher the error rate in the dataset, the lower the 
threshold value is required in order to achieve the 
maximum F1-score. 

The work introduces a number of further 
investigations, including: 1) to do more experiments 
on datasets with more characteristics, such as the 
number of tokens in strings etc.; 2) to do further 
analysis in order to evaluate whether there is a 
method to select a threshold value for any of the 
matching techniques on a given dataset. 
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