
Enhance OpenStack Access Control via Policy Enforcement Based
on XACML

Hao Wei, Joaquin Salvachua Rodriguez and Antonio Tapiador
Departamento de Ingenierı́a de Sistemas Telemáticos, Universidad Politécnica de Madrid, Madrid, Spain

Keywords: Cloud Computing, Security, Authorization, XACML, Access Control, OpenStack.

Abstract: The cloud computing is driving the future of internet computation, and evolutes the concepts from software to
infrastructure. OpenStack is one of promising open-sourced cloud computing platforms. The active developer
community and worldwide partners make OpenStack as a booming cloud ecosystem. In OpenStack, it supports
JSON file based access control for user authorization. In this paper, we introduce a more powerful and complex
access control method, XACML access control mechanism in OpenStack. XACML is an approved OASIS
standard for access control language, with the capability of handling all major access control models. It has
numerous advantages for nowadays cloud computing environment, include fine-grained authorization policies
and implementation independence. This paper puts forward a XACML access control solution in OpenStack,
which has Policy Enforcement Point (PEP) embedded in OpenStack cloud service and a XACML engine
server with policy storage database. Our implementation allows OpenStack users to choose XACML as an
access control method of OpenStack and facilitate the management work on policies.

1 INTRODUCTION

Cloud computing is an emerging computing paradigm
today. Many people see it as the future generation
of utility computing. The concept of “Cloud” ex-
tends from Internet of Service, includes Web Ser-
vice, Service-Oriented Architecture (SOA), and Util-
ity Computing like Grid, Virtual Organizations, also
from visualization and outsourcing (Schubert and Jef-
fery, 2012). It’s the solution to the challenges of mod-
ern IT requirements: high performance, accessibility,
scalability and availability, etc.

The term Cloud Computing denotes the services
of infrastructure, platform and software. Rapidly, it
changed the way people used to think and act. Now
businesses and users could just pay for the services
they need, instead of buying software or purchasing
servers, data centers.

In the era of cloud computing, the system protec-
tion of cloud is a critical issue. Data security and re-
source security, those two issues raised serious con-
cerns both from users and cloud service providers.
Users concern that the privacy and confidentiality
of the data stored in the cloud, while cloud service
providers concern that the safety of the resources
which are opened to the public.

Access control is a classic method utilized to con-

strain the activity of users. This authorization deter-
mines that if a legitimate user could execute an action
on certain resources. In area like cloud computing,
XACML is an operational access control method and
has proven ability in distributed environment(Lorch
et al., 2003). It supports fine- and coarse-grained au-
thorization policies, allows an interchangeable policy
format.

What follows is that discussion of OpenStack ar-
chitecture and some of OpenStack components. In
the section following, the contemporary mechanism
of access control in OpenStack is discussed. The in-
troduction of XACML is in the section IV. Then in
the next section we presented our design to imple-
ment XACML access control in OpenStack. In the
end, the implementation of a prototype and two exper-
iments which validate the feasibility of our proposal
and show the ability of XACML.

2 OpenStack AND ITS
ARCHITECTURE

OpenStack is an open-sourced cloud operating sys-
tem, it enables the users to provide the computing,
storage and networking resource pool through a sim-

283Wei H., Salvachua Rodriguez J. and Tapiador A..
Enhance OpenStack Access Control via Policy Enforcement Based on XACML.
DOI: 10.5220/0004893802830289
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 283-289
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: OpenStack conceptual architecture (OpenStack,
2013b).

ple web service(OpenStack, 2013b). With increas-
ingly popularity and active developer community, it
becomes the one of the projects of Infrastructure As
A Service (IAAS) with great potential.

Among many open-sourced clouds, like Eucalyp-
tus, OpenNebula, OpenStack has good scalability to
handle massive resource. While, Eucalyptus scala-
bility is limited and the source code of some mod-
ules is closed (Sefraoui et al., 2012) and OpenNeb-
ula is aimed to build up private cloud with a few
cloud machines(Mahjoub et al., 2011). Further more,
the better compatibility of OpenStack with support-
ing of most virtualization solutions, like KVM, Hy-
perV, LXC, etc. makes it popular and promising in
the cloud solution market(Wen et al., 2012).

2.1 OpenStack Components

OpenStack is collective of several projects as showed
in Figure 1 they are different aspects of cloud com-
puting. Nova is the main part of OpenStack system.
It hosts and manages VM instances. With provided
API, Nova has good compatbility with Amazon Web
Services (AWS).(Beloglazov et al., 2012).

Glance is the name of OpenStack Image Service,
which provides retrieval, storage and meta-data as-
signment for images running on OpenStack cloud.
This service supports multiple VM image formats,
such as Raw, AMI, VHD, etc.

Neutron Networking Service (former name Quan-
tum) offers Network As A Service (NAAS). It has
APIs to manage networks, build rich networking
topologies and configure advanced network policies.

Swift and Cinder both provide storage services.
Swift is OpenStack Object Store project and offers
highly scalable and durable multi-tenant object stor-
age service for large amounts of unstructured data.

While Cinder is the block storage service, with which
user could manage volumes.

Keystone is the identity service in OpenStack,
it includes user management and service catalog of
available services with their API endpoints.

Horizon is dashboard for whole OpenStack plat-
form; Ceilometer is the infrastructure of measuring
and collecting data; Heat aims to create a human and
machine accessible service for managing entire life
cycle of infrastructure and applications.

3 ACCESS CONTROL IN
OpenStack

Each of OpenStack cloud service has its access con-
trol module. The modules use different ways to val-
idate access privilege, except Swift has no policy
check. The similarities among these modules are :
1) JSON is the format of access control policy files;
2) the phase of policy check is before the execution
of API from each cloud service; 3) The policy engine
only returns True or False, indicate “allow” or “disal-
low”.

Generally Nova, Neutron, Glance and Keystone
share the same policy engine. It is the most popular
and typical engine in OpenStack. Though Keystone’s
policy engine is slightly different from others. Its pol-
icy engine has an Enforcer class. And also not like
other services API to check the whole access privi-
lege, Keystone policy check only validates whether
the user has an administrator role.

While Cinder has another type of policy check en-
gine. The algorithm simply validates rule, role and
remote target information with policy file in Cinder.
The imaginable reason is that operations on volumes
could also be controlled by Novas policy check.

3.1 Nova Access Control: Algorithm
and Engine

We take Nova’s policy engine as an example. This
engine is mainly combined by different checks.They
validate requests against policies and give the result.
The checks are logic checks, like False check, True
check, Not check, And check and Or check; and some
other checks, like Rule check, Role check, Http check
and Generic check. Rule check checks if request
matches policy rule. Role check is to see if user role
information matches policy rule. Http check validates
the availability of a remote server.

The process is that when the cloud service starts,
policy engine loads the JSON policy file, and parses

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

284



the rules in policy file into different check objects
as introduced above. These objects are stored in
cache. The operation on cloud service executes
through APIs. Before an API takes any action, it
sends a request to the policy engine to check the ac-
cess privilege and receives the result. As part of the
request, a context object which contains user informa-
tion, project information and the action is also sent.

3.2 Nova Policy Logic

In OpenStack, policy is composed by lines of rules.
Each rule contains a string of resource and action,
followed by a rule check. Policy engine looks for
the resource and action string, then perform the re-
quest validation against rule check. The rule check
uses name-value pairs, “and” and “or” logics. The
rule check has three kinds of checks. First two are:
1) “@” or an empty rule means accept all the access;
2) “!” means reject all the access. The third one is
the most common check. It can be expressed in two
forms: a list of lists, or a policy language string. For
the list of lists expression, the innermost lists combine
with “and” logic, and then with “or” logic. The pol-
icy language is similar with list of lists, but with one
more logic of “not” operator(OpenStack, 2013a).

3.3 Problem Area

In the time of cloud, open and sharing, users’ data,
even their infrastructure are shifting from private,
self-owned to public, third party stored. Information
security and protection are never more vital than now.
OpenStack provides a basic functioned access control
method, it can be easy to handle some requirements
of authorization. However, there are still some issues
we found that needs improvements on.

1. Flexibility of access control. OpenStacks
JSON based access control module still cannot com-
pare with XACML access control, which has a so-
phisticated logic of policy validation. OpenStack’s
access control policy language faces a lot of limita-
tions when compared with XACML language. Spe-
cially, XACML version 3 brings more useful features
and combining algorithms.

2. Modification of policy file. If an administra-
tor wants to modify the access privileges for users, he
has to, at first, change the policy file and then restart
the cloud services to reload the policy files in order to
make the effect. Because when cloud service starts,
they load the policy files in the cache, even the pol-
icy file is changed, the policy in cache is still the
same. However, the policy engine provides a method
to reload the policy file, but could not find that there

is a mechanism to call this method. This brings the
trouble that every time policy file changes, the service
will have to restart. That could further affect stability
of cloud services.

3. Policy files management. Each service has its
specific policy file in the installation folder. It is a
challenge for admin to universally manage the access
privileges. Like explained, if an administrator makes
adjustments to the access privileges for a user role,
then he needs to visit each services installation folder,
modify the policy files and restart all the services.
That brings extra workload, and difficulty with the
management of OpenStack access control policies.

4. Security issue of policy files in OpenStack.
Keystone, Nova and all other cloud services simply
put access control files into one JSON file, which is
stored in the installation folder. They are susceptible
to all the users who can visit this folder. This con-
stitutes a security issue and brings risks to the access
control module.

4 ACCESS CONTROL WITH
XACML

XACML, eXtensible Access Control Markup Lan-
guage, an XML implemented access control lan-
guage specified by Organization for the Advancement
of Structured Information Standards (OASIS)(Erik,
2012). It is the one of most popular and widely used
access control standard, and OASIS XACML Techni-
cal Committee includes member from Oracle, IBM,
Cisco, etc.

The advantages of XACML are, firstly, its sim-
plicity and strength which make it suitable for numer-
ous environments. Specially, its independence from
implementation could be utilized in cloud comput-
ing and cloud federation; Secondly, XACML’s RBAC
profile well supports RBAC function and due to the
large and well-adopted XML ecosystem, XACML is
the one of the best RBAC and policy based autho-
rization method; Moreover, compared with IBM’s
Enterprise Privacy Authorization Language (EPAL),
XACML has more features on complex enterprise
policies and is better standardized and implemented
(Anderson, 2005).

This standard defines both policy language and
request/response language. They express the access
control policies, the queries and the answers of the
queries. In the policies, XACML specifies three main
parts, such as PolicySet, Policy, Rule. PolicySet is the
root of other PolicySets or Policies, and Policy could
contain multiple Rules. One Rule in policy is the min-
imum unit of policy check, could return results: per-

Enhance�OpenStack�Access�Control�via�Policy�Enforcement�Based�on�XACML

285



Figure 2: XACML data flow diagram.

Table 1: Abstraction of XACML 3.0 Components.

mit, deny, not applicable or interminate. In both Pol-
icy and Rule, a target is a match condition which de-
termine whether the request is applicable to the pol-
icy or rule. While combination algorithms in Poli-
cySet and Policy weigh the results from Policies and
Rules, and then give the final result. Along with Obli-
gation expressions and Advice expressions, therefore
XACML could be able to implement complex logic
to access control policies.

A general XACML data flow model is: an
XACML access request is sent to Policy Enforce-
ment Point (PEP). Then the PEP sends request to Pol-
icy Decision Point (PDP). PDP evaluates the request
against policy, and returns the response to PEP. We
can see the flow from Figure 2.

To get an overview of XACML logic, the seman-
tic of XACML v3 specification could almost be for-
malized to multi-valued logic approach, like Belnap
logic(Belnap Jr, 1977) and D-algebra(Ni et al., 2009).
Generally, the Table 1 (Ramli et al., 2013) describes
the syntax of XACML v3.

5 XACML IN OpenStack

Implementing XACML is to apply XACML ac-
cess control to OpenStack and as an alternative to
the native JSON based access control. The design
of XACML access control solution in OpenStack
doesn’t only apply the XACML standard to Open-
Stack and extend the access control ability, but also

facilitates the management work and improves the se-
curity on policies. This design bases on existing ar-
chitecture and native access control design concepts
of OpenStack. Meanwhile it tries to leave some space
for future requirement.

The following section discusses the design con-
sideration, the solution and use of XACML in Open-
Stack. This design is for OpenStack, Grizzly release,
the seventh stable release at the time of this research.

5.1 Design Consideration

The cloud services already have a simple access con-
trol. Based on several experiments on Nova, we have
verified that there is a data package contains user cre-
dential information like user name, token, user role,
action name etc. Therefore all the information a PEP
needs is already existing in OpenStack. For the secu-
rity reason of not exposing the credential information
and the architecture of OpenStack cloud service, the
PEP should build inside the cloud service in order to
safely obtain the data package.

Furthermore, we have investigated several
XACML implementations. Balana is an XACML
v3 well-supported open source software with
Java(WSO2, 2012). It developed from widely
adopted Sun XACML implementation, which only
has supports for XACML v2. Additionally Open-
Stack is implemented with Python. So to address
the problem of languages and also to decouple the
XACML access control module to other OpenStack
modules. The access control module should be
designed as a service. Inside XACML access control
module, we also selected an open sourced native
XML database, eXist-db(Meier, 2003), as policy
storage.

5.2 Use XACML in OpenStack

As discussed above, XACML has more potent abil-
ity to handle complex access control requirement. In-
tegrated with XACML in OpenStack could provide
more comprehensive authorization functions. Basi-
cally, access control in Grizzly release only does the
user role match to each of the resource. For exam-
ple, we query all the network instance, the action is
“get all”, the resource is “network”. So the access
control will look for a rule of “network:get all” in the
policy, and check whether the user role of user who
wants to execute this action can match with the user
role specified in that rule. However, besides this plain
access check, XACML could implement a much more
complex policy. This will be discussed in experiment
section.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

286



Figure 3: XACML access control in OpenStack.

This design of XACML access control module
also centralized all the policies in separate cloud ser-
vices into one place. Through eXist-db database,
administrator could manage policies for the whole
OpenStack platform. More importantly, this modifi-
cation of policies could be made on the fly, it will take
effect without restarting the cloud service.

In addition, Store the policy files in database also
improves the security level of access control of Open-
Stack. It could not be easily accessed, considering
that before the policy file is just in the installation
folder.

5.3 XACML Access Control as a Service

For design considerations mentioned above, in our
solution, XACML access control server is detached
from OpenStack. Therefore, the server is as a uni-
versal authorization interface which could accept re-
quests from all the cloud services.

The interaction is showed in Figure 3. When a
user calls a cloud service API, the API needs to check
the authorization of the user at first. The API connects
to the XACML access control server and sends the au-
thorization request. The server receives and validates
the request, then constructs a response and sends it
back. When the API gets the response, it will validate
the response. If the response is positive, the API will
execute the action user requests and returns the result
to the user. Otherwise it will reject user’s request. The
detailed prototype architecture is discussed in follow-
ing section.

6 PROTOTYPE
IMPLEMENTATION

We implemented a prototype on Nova. However, the
same architecture could also apply to other cloud ser-
vices.

XACML access control in OpenStack involves
two parts: PEP part is in Nova, it abstracts neces-

Figure 4: Prototype architecture for XACML access control
in OpenStack.

sary data and constructs XACML request then sends
to PDP in XACML server; all other parts of XACML
access control are organized in the server.

Therefore each of OpenStack cloud service has
one PEP connect to XACML access control server.
All the policies are universally managed and stored in
XML database.

As Figure 4 shows, the policy enforce is as an in-
terface, gets data package from cloud service API and
returns result of access control check; request gen-
eration component constructs XACML request from
given data which is from cloud service API; the
XACML client component is responsible to config-
ure the client, connect to XACML server and listen to
the response from server. The policy enforce checks
the result, and returns it to cloud service API.

In XACML standard, it defines several results for
the response of evaluation, however, here we process
these result only into True or False, and only the case
of “Allow” will be considered as True, other cases are
all False.

On server, XACML server starts, PDP and other
parts of XACML initiate and be ready to receive re-
quest. When server receives the XACML request
from the client and passes it to PDP; PDP evaluates
the request and returns the response; the response
will be processed in order to provide a suitable result
to server; in the last, server sends back the result to
client.

6.1 Two Experiments

We also designed two sets of experiments to
demonstrate the functionality and advantages of this
XACML access control module. Experiment One is
designed to test that the entire prototype we developed

Enhance�OpenStack�Access�Control�via�Policy�Enforcement�Based�on�XACML

287



Table 2: Policy of Experiment One.

Table 3: Result of Experiment One.

is functional, could be utilized to do the access control
check and is capable of handling various results. Ex-
periment Two illustrates the advantages of expressive-
ness of XACML. In modern enterprise access control
scenarios, XACML could be more suitable and have
more features than OpenStack’s native access control
module. Experiment Two uses the benefits of power-
ful XACML policy language to handle the complex
access control cases, in which the original module is
limited.

6.1.1 Experiment One

We took a network control in Nova as an example. We
utilize Experiment One to verify the proposed design
and prototype.

We defined a policy that defines if user role is “ad-
min”, he could do “create” or “get all” actions on re-
source “network”. There are totally 12 possible com-
binations to test. However, we only prepared 5 dif-
ferent requests, which are sufficient for covering the
major route of policy check and getting all kinds of re-
sults. The policy is showed as Table 2. The requests
are showed as Table 3.

6.1.2 Experiment Two

Experiment Two has two scenarios as examples to see
how XACML access control could satisfy the com-
plex requirement in contemporary days, while Open-
Stack’s access control is not able to handle these sit-
uations. The first scenario introduces the data type of
time into the policy, in order to add a time constraint
to access control. The second one utilizes string func-
tion in XACML policy language to achieve the con-
ditional authorization. Because of the solo user role
check mechanism, the original access control could
not deal with any of these scenarios. These two sce-
narios are:

Table 4: Policy of Experiment Two: Scenario 1.

Table 5: Policy of Experiment Two: Scenario 2.

1) Due to maintenance, on date “1st, September,
2013” user with user role “Member” could not do
“create” or “delete” action on resource “network”;

2) Users with user role “Manager” and its name
contains “@company.com” could do “create” action
on the resource “network”. The scenario 1 is inspired
by (Evered and Bögeholz, 2004).

Both of the policy file structures are showed on
Table 4 and Table 5.

7 CONCLUSIONS AND FUTURE
WORK

To improve the security, OpenStack uses JSON file
based Role Based Access Control (RBAC). For each
combination of resource and action, it defines a condi-
tion in order to establish whether a user could perform
this action or not. However, due to the logic of access
control check in OpenStack, the current mechanism
has its limits to meet the requirement of modern cloud
computing system. Also it exposes some security is-
sues, like policy file security, the difficulty of policy
file management and the variety of policy engines in
different cloud services.

In this paper, we introduce XACML access con-
trol in OpenStack. In each cloud service of Open-
Stack, an XACML PEP is embedded in authorization
part and responsible for generating, sending requests
and receiving the responses from XACML server. An
independent XACML server will process requests and
manage policies, it contains a PDP and a policy stor-
age database. As a result, user is able to switch from
OpenStack native access control to XACML access
control. The prototype of our design is successfully
implemented and is able to work on OpenStack Griz-
zly release.

This research presented here enables the possibil-
ity of future work. Based on this work, the very first

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

288



objective would be to provide the solution of building
the identity and access control federation. In the fu-
ture, we aim to design a hybrid cloud solution with
good scalability and security with OpenStack plat-
form. That means for a private cloud it is easy to ac-
quire public cloud resource to form hybrid cloud, and
also easy to withdraw from hybrid cloud back to pri-
vate cloud without scalability and security problems.

ACKNOWLEDGEMENTS

This work developed in collaboration with the Project
Fi-ware, funded by the 7th EU R & D Framework
Programme (subsidy agreement number 285248).

REFERENCES

Anderson, A. (2005). A comparison of two privacy policy
languages: Epal and xacml.

Belnap Jr, N. D. (1977). A useful four-valued logic. In
Modern uses of multiple-valued logic, pages 5–37.
Springer.

Beloglazov, A., Piraghaj, S. F., Alrokayan, M., and Buyya,
R. (2012). Deploying openstack on centos using
the kvm hypervisor and glusterfs distributed file sys-
tem. Technical report, Technical Report CLOUDS-
TR-2012-3, Cloud Computing and Distributed Sys-
tems Laboratory, The University of Melbourne.

Erik, R. (2012). Extensible access control markup
language (xacml) version 3.0. http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-cs02-
en.html.

Evered, M. and Bögeholz, S. (2004). A case study in
access control requirements for a health information
system. In Proceedings of the second workshop on
Australasian information security, Data Mining and
Web Intelligence, and Software Internationalisation-
Volume 32, pages 53–61. Australian Computer Soci-
ety, Inc.

Lorch, M., Proctor, S., Lepro, R., Kafura, D., and Shah,
S. (2003). First experiences using xacml for access
control in distributed systems. In Proceedings of the
2003 ACM workshop on XML security, pages 25–37.
ACM.

Mahjoub, M., Mdhaffar, A., Halima, R. B., and Jmaiel,
M. (2011). A comparative study of the current cloud
computing technologies and offers. In Network Cloud
Computing and Applications (NCCA), 2011 First In-
ternational Symposium on, pages 131–134. IEEE.

Meier, W. (2003). exist: An open source native xml
database. In Web, Web-Services, and Database Sys-
tems, pages 169–183. Springer.

Ni, Q., Bertino, E., and Lobo, J. (2009). D-algebra for com-
posing access control policy decisions. In Proceedings
of the 4th International Symposium on Information,

Computer, and Communications Security, pages 298–
309. ACM.

OpenStack (2013a). The nova.openstack.common.
policy module. http://docs.openstack.org/develo-
per/nova/api/nova.openstack.common.policy.html.

OpenStack (2013b). Openstack: The open source cloud op-
erating system. http://www.openstack.org/software/.

Ramli, C. D. P. K., Nielson, H. R., and Nielson, F. (2013).
The logic of xacml. Science of Computer Program-
ming.

Schubert, L. and Jeffery, K. (2012). Advances in clouds.
Technical report, European Union, Tech. Rep.

Sefraoui, O., Aissaoui, M., and Eleuldj, M. (2012). Open-
stack: toward an open-source solution for cloud com-
puting. International Journal of Computer Applica-
tions, 55(3):38–42.

Wen, X., Gu, G., Li, Q., Gao, Y., and Zhang, X. (2012).
Comparison of open-source cloud management plat-
forms: Openstack and opennebula. In Fuzzy Systems
and Knowledge Discovery (FSKD), 2012 9th Interna-
tional Conference on, pages 2457–2461. IEEE.

WSO2 (2012). Balana xacml for authorization.
http://xacmlinfo.org/category/balana/.

Enhance�OpenStack�Access�Control�via�Policy�Enforcement�Based�on�XACML

289


