
Application-Mimes
An Approach for Quantitative Comparison of SQL - and NoSQL-databases

Martin Kammerer and Jens Nimis
University of Applied Sciences Karlsruhe, Faculty of Management Science and Engineering,

Moltkestr. 30, 76133 Karlsruhe, Germany

Keywords: Information System Evaluation, Benchmarking, Database Systems, SQL, NoSQL.

Abstract: Due to the rise of NoSQL systems over the last years, the world of commercially applicable database
systems has become much larger and heterogeneous than it was ever before. But the opportunities that are
associated with the upcoming systems have also introduced a new decision problem that occurs in the
information system design process. Once, benchmarking has helped to identify the proper database product
among the de facto standard SQL systems. Nowadays, functional and non-functional properties of database
systems and their implication on application development are so divergent that not all systems that come
into account for realisation of a specific application can be covered by the same benchmark. In this paper we
present an approach for experimental comparative information system evaluation that allows for well-
grounded selection among diverging database systems. It is based on the concept of so-called application-
mimes, i.e. functionally restricted implementations that focus exclusively on the information systems’
interaction with data management and try to mimic the target systems behaviour in this respect as realistic
as possible.

1 INTRODUCTION

The prime of modern, non-relational databases, aka.
NoSQL databases (Redmond and Wilson, 2012;
Mohan, 2013), and the rise of rethought relational
databases, aka. NewSQL databases (Stonebraker,
2012), in its aftermath have lead to an enormous
growth of information systems’ design space.
Resulting is a non-trivial decision problem on how
to realize data management of future information
systems with heavy influence on their system
architecture and hence on their performance.
 There are cases, where it seems to be easy to
select the best-suited data management solution, as
the indication by the information system to be built
is rather extreme and distinct. If one tries to build a
traditional single-tenant accounting system, it is
reasonable to choose a SQL database for its strength
and maturity in the OLTP area. For a new facebook
NoSQL databases might be a more appropriate
choice, as scalability is major concern. But which
data management system fits best in not-so-clear
application scenarios? Obviously, a systematic
approach is needed to support the depicted decision
problem.

 Like to be shown in the second section,
traditional database benchmarking merely regards
aspects like throughput and response time, but
nowadays there are a lot more dimensions in which
the data management component candidates under
examination for the respective information system
can differ: functional properties (determined by data
model, data access, etc.), and non-functional
properties (consistency model, scalability,
robustness, maintainability, TCO, etc.). The
parameters covered by traditional benchmarks are
most often found in the second category and – from
a different point of view – could also be termed as
qualities of service (QoS).
 As an example, relational databases usually offer
the very expressive query language SQL, which
coins their pseudo-synonymic label. In contrast,
NoSQL databases frequently offer reduced
programming interfaces and leave more complex
querying tasks to the application (layer). On the
other hand, some of them include additional system
components like Web-servers that in general are not
subsumed in SQL databases.
 The most considerable difference between SQL
and NoSQL, however, is the consistency model.

256 Kammerer M. and Nimis J..
Application-Mimes - An Approach for Quantitative Comparison of SQL - and NoSQL-databases.
DOI: 10.5220/0004896702560263
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 256-263
ISBN: 978-989-758-027-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

While SQL databases very often implement the
ACID model (Haerder and Reuter, 1983) with its
extensive isolation and recovery guarantees, many
NoSQL systems restrict themselves to the BASE
model (Terry et al., 1994) that reduce guarantees in
favour of scalability.
 As a consequence, when it comes to information
system architecture and database selection decisions,
it is not suitable to define a workload and run a
traditional benchmark – sometimes it is not even
possible, because available benchmarks are not
general enough to measure all available, reasonable
candidate data management systems. In this paper,
we propose a more comprehensive approach based
on the comparative experimental evaluation of data
management systems using simplified prototypical
information system implementations, which mime
the characteristics of the later application. Our
universal approach can be used for comparisons of
any types of database systems: NoSQL vs. SQL,
NoSQL family A vs. NoSQL family B or NoSQL
system A vs. NoSQL system B both from the same
family.

Outline. Section 2 gives an overview on the
respective state of the art in database and
information system evaluation and thereby also
focusses the addressed problem. In Section 3 we
propose the approach of comparative experimental
information system evaluation. Our experiences with
the approach result from four comparative studies
between pairs SQL- and NoSQL-based information
systems that we have conducted. We take one of
these studies as comprehensive example to illustrate
the approach in Section 4 and thereby also give
guidance for potential adopters. The other studies
are summarized in Section 5 for a critical discussion,
while Section 6 concludes the paper and gives an
outlook on on-going and forthcoming research
activities.

2 RELATED WORK

There is a variety of existing traditional database
benchmarks with different approaches, but none of
them is applicable for an extensive comparison of
SQL- and NoSQL-database systems. These
benchmarks can roughly be divided into two
benchmark types: Type one only measures basic
database performance metrics, like throughput
and/or response time. Benchmarks of type two
simulate a comprehensive realistic use case and
therefore have their specific metrics.

 The most common database benchmarks are
provided by TPC (Transaction Processing
Performance Council, 2013). For example, the TPC-
C benchmark (Transaction Processing Performance
Council, 2013b) simulates a complete business
activity, where simulated terminal operators execute
transactions against a database. The measured metric
is the number of New-Order transactions executed
per minute. However, this benchmark per definition
needs the respective tables, such that it is not
applicable to most NoSQL-databases. On the other
hand, like shown by Thanopoulou et al. (2012), the
TPC-benchmarks are up- and down-scalable, and
have a specific, well-defined workload, which
results in an apples-to-apples comparison on real use
cases.
 With the rise of NoSQL-databases, new
benchmarking concepts were needed. To close this
gap Yahoo! Cloud Serving Benchmark (YCSB)
(Cooper et al., 2010) has been introduced. The main
focus of the YCSB benchmark is to provide a
reasonable comparison between scalable databases,
independent of specific data models or business use
cases. To accomplish this, the benchmark consists of
two tiers: Tier 1 - Performance and Tier 2 - Scaling.
The workloads of the performance-tier are very
simple and just execute heavy CRUD operations.
There are no specific database management system
requirements concerning the ability for JOIN
queries. With the scalability-tier YCSB measures
scaleup and elastic-speedup (DeWitt, 1993)
behaviour of clustered database systems. They
describe the performance impact of a database-
cluster as the number of machines increase. The
results of the YCSB benchmark can give a first
advice for choosing a well-suited database.
 However, experiences with complex information
systems (Doppelhammer, et al., 1997) have shown
that isolated benchmarking is not sufficient for
elaborate database selection and current research on
database evaluation primarily focuses on qualitative
(Hecht and Jablonski, 2011) or conceptual
comparisons (Bernstein and Das, 2013) in the
NoSQL field.

3 PROPOSED APPROACH

In this section we present a hands-on approach for
experimental comparative information system
evaluation. The core of the approach is to create,
test, and compare multiple simplified prototypical
versions of the target information system – so-called
application-mimes. The approach’s primary focus is

Application-Mimes�-�An�Approach�for�Quantitative�Comparison�of�SQL�-�and�NoSQL-databases

257

to qualify its users to conduct extensive and sound
comparisons between different database systems
within their later application scenario.

3.1 Developing Application-mimes

An application-mime is a piece of software, which
imitates the typical behaviour of a target application
scenario for evaluation purposes. Therefore it has
the same functional and non-functional requirements
as the scenario sets, but can have very differing
realizations. In particular, we use multiple
realizations of an application-mime – with specific
focus on performance impact of data management –
to allow for extensive comparisons between SQL-
and NoSQL-database systems.

3.1.1 Specifying Functional and
Non-functional Requirements

The first step for developing an application-mime is
to specify the requirements of the target application
scenario. Therefore it is necessary to convert its use
cases into functional and non-functional
requirements.
 The functions can be described as UML Use
Case Diagrams (Object Management Group, 2013),
where it is important to get an idea of what is the
main usage of the application and what processes are
essential for serving its users.
 On the other hand it is important to record
explicitly the non-functional requirements of the
application scenario. Examples could be consistent
datasets, horizontal scalability, or security
requirements, but also the use of a specific
programming language or other issues of a more
organizational nature.
 Amongst all requirements, it is important to
identify disqualifying criteria, as they are the major
source for selection of candidate database systems
that should be considered more closely in the
evaluation process. Qualitative database
comparisons like in Hecht and Jablonski (2011) can
be used to facilitate this task.
 The results of this first step are general and
applicable to all realizations of application-mimes.

3.1.2 Focusing the Application-mime

In general an application-mime simulates specific
application behaviours, but we want to use it for
evaluating purposes on data management. Therefore
we try to give it a focus on the database system. As a
consequence, we first take a look on the different
selected database systems, and for each of them try

to map the requirements of the application-mime to
their matching functional and non-functional
abilities and properties.
 Some common database functions, like joining
tables, could be missing in NoSQL databases,
resulting in a need for additional software routines in
the application to fill this gap. This is one reason
why comparing SQL- and NoSQL-databases on a
basic CRUD-level is misleading.
 On the other hand, one can take rather
unexpected functions into consideration as some
NoSQL-databases could have surprising helpful
features compared to their SQL predecessors. When
these features fit into the application-mime they
should be used for a “fair” and useful comparison.

3.1.3 Integrating the Evaluation Layer

The evaluation layer is the part of the simplified
prototypical system that is responsible for measuring
the performance impact of the focused part of the
application-mime. For its implementation, first, it is
important to determine, which use cases of the target
application scenario should be simulated. Derived
from the result, it is clear, which processes have to
be measured, and how a respective index can be
calculated.
 The second step is to decide how the use case
simulation will be implemented. For this task, there
exist a number of specific frameworks, which could
be used, like JMeter from Apache Foundation
(Erinle, 2013).
 The evaluation layer implementation at the end
has to provide a generally applicable tool, e.g. a set
of parameterized JMeter instances, which should be
reused in all realizations of the application-mime to
allow for a reasonable comparison. It prepares and
triggers the application scenario’s events and
measures and assesses the respective actions.

3.1.4 Completing the Application-Mime

The big picture of the complete application-mime
should have started to become clear in the course of
the database mapping and evaluation layer
integration steps. However, some parts, which glue
together data management and evaluation layer, are
probably still missing.
 The missing functions are bundled in the
application-layer, which mimes the application-
behaviour towards the focused part – in this case the
database system. To identify the missing functions
one has to consider, which functions are carried out
by the database system (and which not) and how the
evaluation system works and is interfaced. As a

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

258

result the absent functions are identified and their
respective building blocks complete the application-
mime architecture.
 As a consequence of the functional differences
between the candidate database systems, it is
inevitable to repeat this step for each of them.

3.1.5 Programming Application-mime
Versions

The application layer is used by the evaluation layer,
which tries to put the whole system under heavy
load during test runs. Therefore, it is important to
achieve good horizontal scalability of the application
layer, as there could be multiple isolated application
layer instances, which are jointly using the database
system.
 Another point to concern is best-effort
implementation of all functions in the application
layer independent of the respective candidate
system. The differing built-in functionality of the
database systems and the interdependence between
their functional and non-functional properties can
lead to a complete corruption of the comparisons’
results, if the application layer is not implemented
optimally with respect to the candidate system. As a
consequence, all available features must be fully
exploited and used in the intended fashion.

Figure 1 shows the application-mime
architecture, which results from the steps above.

Figure 1: Application-mime architecture.

3.2 Testbed Setup

Testbed setup is strongly influenced by the planned
deployment environment of the application scenario.
To make the results of the comparison as realistic as
possible it would be optimal to use the later
deployment environment itself – or at least to use a
comparable testbed, for which similar financial
and/or technical restrictions apply.
 If this is not realistic, it is a minimum
requirement to run the tests for each application-
mime realization on identical or at least on similar
hardware. It has to be noted that similarity in this
case could also be measured in financial terms as,
e.g. in some application scenarios relational
databases preform best on one centralized machine
while NoSQL has its best results on a decentralized
cluster of equal costs. This consideration is not only
true for database system and application layer but
also for evaluation layer to assure that the generated
workload is identical for all test runs.
 As the testbed most probably is a distributed
system, also network and other infrastructure
components must be chosen deliberately. Otherwise,
bottlenecks especially between evaluation and
application layer could occur and lead to distorted
results. One way to prevent these bottlenecks is to
build test servers, which integrate evaluation layer
and parts of the application layer on the same node.
This reduces network traffic between them and can
increase the load on the focused evaluation part.
 From our experience, we advise not to
underestimate the requirements of a significant
evaluation layer. Modern database systems are
extremely powerful, and it needs a fair amount of
hardware on evaluation layer side to push them to
their limits, i.e. into the area of interesting and
relevant evaluation results.

3.3 Workload Design and Execution

The workload to be executed by the application-
mimes during evaluation is derived from the
application scenario’s use cases and thereby is
affected in a number of properties.
 For example, the database systems under
evaluation need an initial content against which the
operations of the mimes’ application layers can be
conducted. This content needs sufficient volume and
complexity to provide a challenge for the database
systems with respect to the planned number and
frequency of requests issued by the processes of the
evaluation layer.

Application-Mimes�-�An�Approach�for�Quantitative�Comparison�of�SQL�-�and�NoSQL-databases

259

 The number of simulation processes itself is
determined by the amount of available hardware in
total and by the ratio it is dedicated to the mime’s
database, evaluation and application layer. As the
impact of each process on the application mime’s
performance can be varying for different use cases
and parameterizations of the application scenario,
finding the proper ratio between evaluation and
application layer hardware can be a difficult task.
 The results of the operations and also their QoS-
parameters are measured within the evaluation layer,
which as a consequence needs the capability to log
and export them in an interpretable way. It is
recommended to use external generic tools for
analysis and visualisation of results to keep the
application-mimes as lean as possible and reduce
development efforts.

4 ILLUSTRATION BY EXAMPLE

To illustrate the approach introduced in the last
section, we give an example for its use in a specific
application scenario, i.e. a project relationship
management system.

4.1 Application-Mime

We imagine that we would have to build such a
system for a mid-size company. The system should
be able to manage projects and their associated
resources, especially project staff, from project
acquisition over execution to its accomplishment.
Most phases of the project follow predefined or
project-specific processes and occurring data are
manifold and closely interrelated, ranging from
address records and status messages to documents
like contracts or bills.

As our company has a large number of
simultaneously running projects and their staffs have
to work with the system on a day-by-day basis, the
system must have low latency for good user
acceptance. Hence, we have to develop an efficient
information system and make appropriate well-
informed choices for the system’s components.

4.1.1 Requirements

The depicted application scenario implies a number
of use cases with relevance to data management. The
system has to provide a comprehensive view on the
company’s projects from different angles: project
staff needs a personal perspective to identify project
status and upcoming tasks, project management

needs an overview with insights into led projects,
and upper management requires an enterprise
perspective with aggregate information over all
projects.

Examined in more detail, project management
must be enabled to start new projects, define specific
processes and their related (digital or personal)
resources, identify and assign free resources, track
progress and costs, and close projects after their
completion. Staff and project management should be
able to define personal profiles with individual
competencies and experiences as a basis for staffing
of new projects. Figure 2 shows the project
relationship management system’s functionality as
UML Use Case Diagram.

Figure 2: Functional specification of application scenario.

On a lower level, these use cases lead to a number of
functional requirements with influence on data
management. Persistent entities for projects,
processes, employees and information objects with
the respective properties have to be provided as well
as numerous types of relationships between them
that can establish and change over time. In general,
we estimate that read operations appear up to ten
times more often than write operations.

Along with functional requirements, also non-
functional requirements can be derived from the use
cases. Most important, the project management
system has to be regarded mission critical, and thus
must have high availability. This can be supported
by redundancy through distributed replication.
Concurrent access by different users accounts for a
multiuser client/server approach. As allocation of
resources is an important functionality and double
bookings have to be avoided, transactional
consistency on data level would facilitate application
programming.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

260

Our target system only manages project
meta-data, i.e. not the created project results, and is
restricted to internal company users. Thus, data
volume and number of users are moderately high,
especially as compared to modern public web
applications that gave birth to NoSQL data
management. Without loss of generality, to follow
company standards, Java is chosen as programming
language for client as well as server.

As no disqualifying criteria can be identified
among these requirements, the choice of candidates
is not restricted to certain database systems or
families.

4.1.2 Focus

The main goal of experimental comparative
information system evaluation is the identification of
the best suited data management system for a
specific application scenario. Thus, we have to
identify reasonable candidates (or candidate
families) to compete with each other.
 As mentioned before, the application scenario
under investigation has heterogeneous data
interrelated closely in many different ways. It should
be possible to access data by navigation and also by
searching via descriptive expressions. The need for
transactional consistency under distribution and the
read/write-ratio assumed (10:1) will also influence
database performance.
 The first candidate we select for evaluation is
MySQL (Schwartz et al., 2012) as it is a mature and
universal relational database that provides powerful
descriptive querying capabilities. It is also subject to
a number of similar examinations in related papers.
Second candidate is the Neo4J NoSQL-database
(Robinson et al. 2013) as it is popular amongst the
family of graph database systems. Such a database
system naturally matches the network character of
data and allows for easy navigation access. Based on
personal preferences any other candidates of the
same database types could qualify.

To restrict evaluation effort we concentrate
on these two, quite disparate, candidates, and have to
build the two respective application-mimes. In case
of doubt on the selection of the database candidates,
or if it would have shown during evaluation that
none of the candidates suits the requirements in
acceptable quality, the comparison easily could have
been extended to additional database systems and
their mimes, following the above pattern.

4.1.3 Evaluation Layer

The evaluation layer is responsible for driving the

experiments. In the example application-mimes
graphical user interfaces and user interactions are
replaced by Apache JMeter instances that also
record the results of the triggered operations. JMeter
itself makes use of application layer functions that
do not implement the fully-fledged application logic
but provide a restricted logic that makes reasonable
database calls according to the respective application
programming interface. The application layer
functions also unify the database calls’ results into
an easily processable form for the (virtual) real
application logic.

4.1.4 Completion

An example functionality that must be realized
during completion of the MySQL-application-mime
is support for navigation data access. Navigation in
the relational version of our project relationship
management system means joining tables.
Unfortunately, joins over multiple distributed tables
within a MySQL-cluster are a very inefficient
operation, which could result in a decisive drawback
during comparison, if it is used in a naïve way.

However, for a fair comparison it is mandatory
to use all candidate databases in the best way
possible. For the case of MySQL and distributed
joins this means that the respective tables to join
have to be read completely and un-joined by
application function’s database calls and matching
of keys and foreign-keys happens in the application
logic itself. “Fair” implementations of application-
based joining use read operations on tables pre-
ordered by their keys and foreign keys respectively
to increase processing- and memory-efficiency.

4.1.5 Programming Versions

Besides making best-effort use of the candidate
database systems’ capabilities as described above,
choosing the proper programming interface is
another important concern. In the case of the
MySQL-application-mime we use the standard java-
mysql-connector and the Neo4J-cluster is accessed
via its REST-API. An additional performance
optimization for Neo4J is to send write operations
directly to the master node of the cluster and to
distribute read operations equally amongst all nodes
(i.e. master and slaves).

4.2 Testbed

As testbed for both application-mimes a cluster
existing of 16 simply equipped HP Microservers has
been used, i.e. MySQL and Neo4J both have been

Application-Mimes�-�An�Approach�for�Quantitative�Comparison�of�SQL�-�and�NoSQL-databases

261

set up as clusters with their according dedicated
management nodes (MySQL Config-Server and
Master-Node resp.). A considerable portion of the
testbed’s hardware has been used for JMeter
instances in order to avoid that they become the
system’s bottleneck with significant influence on the
comparison’s results.

To underline or refute the comparison’s findings,
it could be worthwhile to execute the MySQL-
application-mime on a centralized system, as, like
already mentioned, some operations degrade in
distributed settings. For a fair comparison between
centralized MySQL- and decentralized Neo4J-
results the original costs of both hardware variants
should be the same (i.e. in this case roughly 5000
EUR in early 2013).

4.3 Execution

For each application-mime a large number of test
runs have been conducted and their results have
been compared pairwise and in aggregation. Input
parameters under variation have been derived from
the application scenario, like e.g. number of projects,
number of members/documents per project, number
of concurrent users, etc..
 The main output parameters that have been
recorded and analysed are throughput and response
time. As this paper is focussed on the comparison
method and not on the specific comparison itself, the
results are not discussed in detail at this point.
However, for the specific application scenario, it has
shown that the graph database outperformed the
relational database for all parameter settings. This
can be attributed to the high interrelation degree of
the project data.

5 CRITICAL DISCUSSION

The presented comparison method has been
developed in a research project running over the past
two years, which had the goal to provide a guideline
for reasonable selection of data management
solutions for a given application scenario. Special
attention was given to application scenarios where
both, SQL- and NoSQL-databases, qualify as data
management component. During the course of the
project we have conducted a number of SQL vs.
NoSQL comparisons, where another three have
followed the above approach as traditional
benchmarks were not appropriate for the reasons
described in Section 2.

The first of the additional application scenarios is

a social analytics scenario where data from different
social media sources are gathered and analysed, e.g.
for marketing purposes. Like in all other scenarios,
MySQL has been chosen as relational database, and
as aggregation operations are of major importance in
data analysis, HBase Wide Column Store was
selected as its competitor. (See Redmond and
Wilson, 2012, for HBase and all other NoSQL-
databases mentioned in this section.)

In the second scenario, a system for intra-
organisational product tracking should be
investigated. Like it is common in modern
manufactories, products and precursors are observed
by means of labels (e.g. RFID) and sensors. From a
data management point-of-view, the scenario is
characterized by a very low read/write-ratio, i.e. that
position actualisations occur far more often than user
searches. This time, the REDIS key/value-store was
the NoSQL-variant to compete against MySQL.

As last comparison an online product data
catalogue was the scenario under inspection. The
target system should enable manufacturers to
publish product specifications, descriptions and
manuals online and consumers to rate and comment
on the products. As all product-related information
in this scenario can be interpreted as linked semi-
structured objects, the MongoDB document store
seemed as reasonable alternative to MySQL.

For all three application scenarios the respective
MySQL- and NoSQL-application-mimes were built,
i.e. six mimes in total, and compared pairwise. All
comparisons led to significant and interpretable
results, were in one case the SQL-variant was
preferable for most parameter settings and in the
other cases, the NoSQL-databases were superior.
We believe that these results are strong evidence for
successful selection of data management
components in the discussed scenarios and currently
do not see obstacles for transfer to other scenarios.

However, it is undisputable that implementation
of application-mimes for experimental comparison
introduce a substantial effort into information
systems’ component selection and architectural
design process. This investment is partially
reimbursed, when it comes to system’s
implementation, as this step will benefit from the
experiences made during application-mime
development.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented an approach for

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

262

experimental comparative information system
evaluation based on application-mimes that restrict
the target systems application functionality to
database-relevant operations. This allows for
reasonable and well-grounded selection among
modern database systems, where traditional
benchmarks fail due to the systems’ and applications
heterogeneity. The price for this support is the
necessity to build a specific application-mime for
each target application scenario and candidate
database system to be evaluated, and the costs to
build such a mime depend on the applications extent
and complexity.
 In future, we will investigate on two aspects to
advance our approach. First we would like to offer a
better support for the non-trivial step of candidate
selection. Currently, this is only supported by the
identification of disqualifying criteria among the
application scenarios requirements. As shown in our
example, many candidates can qualify, if no such
criteria are identifiable. A positive list to propose
candidates based on application scenarios’
requirements and database system properties would
be preferable.
 The extension of this idea is also the motivation
for the second question to work on: how could
experiences from the experiments be distilled into a
more abstract conceptual approach, which allows for
decision making based on matching application
requirements to database system properties without
or with less specific experimentation.

ACKNOWLEDGEMENTS

The work presented in this paper has been partially
funded as project within the Karl-Steinbuch research
program of the Baden-Württemberg foundation
coordinated by mfg Medien- und Filmgesellschaft,
Stuttgart, Germany.

REFERENCES

Bernstein, Ph. A., Das, S., 2013. Rethinking eventual
consistency. In SIGMOD '13, ACM SIGMOD
International Conference on Management of Data.
ACM.

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R.,
Sears, R., et al, 2010. Benchmarking cloud serving
systems with YCSB. In: SoCC’10, 1st ACM
symposium on Cloud computing, ACM.

DeWitt, D.J., 1993. The Wisconsin Benchmark: Past,
present and future. In J. Gray, editor, The Benchmark
Handbook. Morgan Kaufmann.

Doppelhammer, J., Höppler, Th., Kemper, A., Kossmann.
D., 1997. Database performance in the real world:
TPC-D and SAP R/3. In SIGMOD '97, ACM
SIGMOD international conference on Management of
data, ACM.

Erinle, B., 2013. Performance Testing with JMeter 2.9,
Packt Publishing, Birmingham

Haerder, Th., Reuter, A., 1983. Principles of transaction-
oriented database recovery. ACM Comput. Surv. 15, 4,
ACM.

Hecht, R., Jablonski, S., 2011. NoSQL evaluation: A use
case oriented survey. In CSC’11, Int’l Conference on
Cloud and Service Computing, IEEE.

Mohan, C., 2013. History repeats itself: sensible and
NonsenSQL aspects of the NoSQL hoopla. In EDBT
'13, 16th International Conference on Extending
Database Technology. ACM.

Object Management Group, 2013. UML Resource Page
http://www.uml.org (last visited: 2013-09-17)

Redmond, E., Wilson, J.R., 2012. Seven databases in
seven weeks: a guide to modern databases and the
NoSQL movement. Pragmatic Bookshelf, Dallas.

Robinson, I., Webber, J., Eifrem, E., 2013. Graph
Databases. O'Reilly, Sebastopol.

Schwartz, B., Zaitsev, P., Tkachenko, V., 2012. MySQL
High Performance. O'Reilly, Sebastopol.

Stonebraker, M., 2012. New opportunities for New SQL.
Commun. ACM 55, 11. ACM.

Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M.J.,
Theimer, M.M., Welch, B.B., 1994. Session
guarantees for weakly consistent replicated data. In
PDIS’94, 3rd Int’l Conference on Parallel and
Distributed Information Systems, IEEE.

Thanopoulou, A., Carreira, P., Galhardas, H., 2012.
Benchmarking with TPC-H on Off-the-Shelf
Hardware: An Experiments Report. In ICEIS'2012,
14th Int'l Conference on Enterprise Information
Systems, SCITEPRESS.

Transaction Processing Performance Council, 2013.
About TPC. http://www.tpc.org/information/about/
abouttpc.asp (last visited: 2013-09-16)

Transaction Processing Performance Council, 2013b.
Introduction to TPC-C. http://www.tpc.org/tpcc/
default.asp (last visited: 2013-09-16)

Application-Mimes�-�An�Approach�for�Quantitative�Comparison�of�SQL�-�and�NoSQL-databases

263

