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Abstract: Recovering the architecture of existing software systems remains a challenge and an active research field in 
software engineering. In this paper, we propose an approach to recover the layered architecture of object 
oriented software systems. To do so, our approach first recovers clusters corresponding to the various re-
sponsibilities of the system; the challenge in this context is to find the appropriate level of granularity of 
these responsibilities. Then the recovered clusters are assigned to layers using an optimization algorithm 
that exploits the principles of the layering architectural style. The approach was validated on five Java open 
source systems. 

1 INTRODUCTION 

Software architecture is commonly defined as a set 
of components and connectors (i.e., interactions 
between components) that satisfy a set of functional 
requirements and quality attributes (Shaw and Gar-
lan, 1996); (Bass et al., 2003). It is an abstract repre-
sentation that encompasses many complementary 
static, runtime and allocation views of a software 
system (Buschmann et al., 1996). Software architec-
tures are built by applying architectural styles which 
describe families of systems (Shaw and Garlan, 
1996). Examples of common architectural styles are 
the layered, pipes and filters, client-server and ser-
vice-oriented styles; each of these styles has its own 
vocabulary and constraints and promotes some spe-
cific quality attributes. 

To appropriately support the evolution of an ex-
isting software system, we need to understand its 
architecture. However the as-built architecture is 
often insufficiently documented (Stoermer et al., 
2003). Moreover, this architecture has often deviated 
from the initial design because of the changes un-
dergone by the system. Hence, a software architec-
ture recovery process is required to reconstruct and 
document its architecture. The reconstructed archi-
tecture enables to understand the system, to restruc-
ture it as needed, and to constrain its future evolu-
tion. In the context of this paper, we are interested in 

recovering layered architectures of object oriented 
systems. 

Several approaches were proposed to support the 
recovery of layered architectures (e.g., (Laval et al., 
2012); (Hassan and Holt, 2002); (Sarkar et al., 
2009); (Andreopoulos et al., 2007) and (Scanniello 
et al., 2010)). Most of these approaches propose 
some heuristics to cluster elements of the system 
under analysis into layers. For example, in both 
(Sarkar et al., 2009) and (Laval et al., 2012), heuris-
tics to resolve cyclic dependencies are proposed, 
while (Scanniello et al., 2010); (Laval et al., 2012) 
and (Andreopoulos et al., 2007) propose heuristics 
that exploit the number of fan-out and fan-in de-
pendencies of a module to assign it to the lowest or 
highest-level layer. However, these heuristics may 
result in architectures that are too permissive with 
layering violations. 

In this paper, we propose an approach to recover 
the layered architecture of object oriented systems. 
In particular, the approach first attempts to cluster 
the packages of the system under analysis to build 
the system’s responsibilities. The challenge, in this 
context, is to find the appropriate level of granularity 
of the clusters. The resulting responsibility clusters 
are then assigned to layers so as to minimize the 
violations to the layered style principles. To do so, 
we propose a set of layers dependency metrics and 
we use these metrics to formalize the layering of 
responsibility clusters as an optimization problem. 
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The contribution of this paper is threefold: 1) a 
clustering algorithm that aggregates software pack-
ages in order to recover the responsibilities of the 
system at a given granularity; 2) a layering recovery 
process that builds layers from the aggregated pack-
ages; and 3) the assessment of our approach using 
five Java open-source systems. 

The remainder of this paper is organized as fol-
lows. Section 2 states the problem inherent to the 
layering recovery techniques. Section 3 describes 
our layering recovery approach. In section 4, we 
describe the results of an experiment of our ap-
proach on five systems. We discuss related works in 
section 5 and we conclude in section 6. 

2 PROBLEM STATEMENT 

The layered style was described in many reference 
books and papers (e.g., (Shaw and Garlan, 1996); 
(Buschmann et al., 1996); (Clements et al., 2003) 
and (Eeles, 2002)). It is a technique for decomposing 
a software system into groups of subtasks where 
each group of subtasks is at a particular level of 
abstraction (Buschmann et al., 1996). In other 
words, a layered architecture is an organized hierar-
chy where each layer is providing services to the 
layer above it and serves as a client to the layer be-
low (Shaw and Garlan, 1996). The OSI reference 
model (Zimmermann, 1980) is one of the most 
known layered systems. In OSI, a layer uses services 
provided by lower layers and adds value to them to 
provide services needed by higher layers.  

In an ideal layered architecture, a layer may only 
use services of the next lower layer. This is referred 
to as strict layering in (Buschmann et al., 1996) and 
as closed layering in (Szyperski, 1998). This strict 
ordering relation is often violated in practice; i.e., 
very often, layered systems allow a layer to use ser-
vices provided by any lower layer. Not restricting 
the dependence of a layer to its lower adjacent layer 
is considered as a regular feature in the open layer-
ing (Szyperski, 1998) and the relaxed layering 
(Buschmann et al., 1996). However, it is considered 
as a violation named a skip-call violation in (Sarkar 
et al., 2009) and layer bridging in (Clements et al., 
2003). Exceptionally, a layer may need to rely on a 
service offered by an upper layer. These dependen-
cies are called back-calls in (Sarkar et al., 2009) and 
are discussed in (Clements et al., 2003) under the 
name “upward usage”. However, the quality attrib-
utes promoted by the layered style (e.g., reuse, port-
ability, maintainability, understandability, and ex-
changeability) are no longer supported when layers 

are allowed to use services of higher layers without 
restriction (Clements et al., 2003). Therefore, the 
structure of a layered architecture must be a directed 
acyclic graph or at least a directed graph with very 
few cycles connecting layers. 

Many approaches have been proposed to recover 
the software architecture. Most of them rely on clus-
tering, which is a common used technique to recon-
struct architecture (e.g., (Tzerpos and Holt, 2000); 
(Mitchell et al., 2001); (Maqbool and Babri, 2007); 
(Lung et al., 2004)). However, these approaches 
target specific languages and systems and do not use 
a standard representation of the data of the system 
under analysis. As a consequence, resulting tools do 
not interoperate with each other (Ulrich and New-
comb, 2010). Besides, most of the layering recovery 
approaches attempt to recover the layered architec-
ture by relying on heuristics to resolve cyclic de-
pendencies (e.g., (Sarkar et al., 2009) and (Laval et 
al., 2012)) or to layer modules according to the 
number of their fan-in and fan-out dependencies 
(e.g., (Scanniello et al., 2010); (Laval et al., 2012) 
and (Andreopoulos et al., 2007)). However, these 
heuristics are not based on layering principles and 
may result in architectures that are too permissive 
with layering violations. 

To tackle these issues, we proposed in (Boaye-
Belle et al., 2013) a platform and language inde-
pendent approach which exploits the layering prin-
ciples to reconstruct the layered architecture of ob-
ject oriented software systems. For this purpose, we 
extracted two layering principles from the layered 
style: the responsibility principle and the abstraction 
principle. The responsibility principle states that 
each layer of the system must be assigned a given 
responsibility (Eeles, 2002); (Buschmann et al., 
1996), so that the topmost layer corresponds to the 
overall function of the system as perceived by the 
final user and the responsibilities of the lower layers 
contribute to those of the higher layers (Buschmann 
et al., 1996). The abstraction principle states that the 
layers of a system must be ordered according to the 
abstraction criterion that rules the flow of communi-
cation between packages of the system. In (Boaye-
Belle et al., 2013), we relied on existing decomposi-
tion of object oriented systems into packages that we 
assumed as being designed according to the respon-
sibility principle and we used the abstraction princi-
ple to specify a set of constraints on the layering of 
these packages. These constraints were used to 
translate the layering recovery process into an opti-
mization problem that we solved using a heuristic 
search algorithm. Experimentations with this ap-
proach yielded encouraging results. 
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However, relying on existing decomposition of 
systems into packages raised some issues when re-
covering the layers. In fact, when we flatten the 
packages hierarchy, two children packages that are 
nested within the same parent package might be 
assigned to different layers during the recovery pro-
cess, ending for instance in two consecutive layers. 
Such an assignment may be wrong depending on the 
granularity of the parent package’s responsibility. 
The nesting of child packages into the same parent 
package indicates that they contribute to the same 
general responsibility, and, depending on its granu-
larity, this responsibility may belong to one layer or 
may spam several layers. This problem, also encoun-
tered by other layering recovery approaches (e.g., 
(Laval et al., 2012); (Hautus, 2002)), is illustrated by 
Figure 1. In the latter, layers 3, 2, and 1, are respon-
sible of the system's visualization, logic, and data, 
respectively. The packages view1.package1 and 
view1.package2 are part of the package view1 which 
contributes to layer 3’s responsibility. However, in 
Figure 1, these two packages were assigned to con-
secutive layers to promote adjacent relationships 
between layers (i.e., to promote reuse). 

 

Figure 1: An example of packages' assignment to layers. 

To address this issue, each group of packages be-
longing to the same layer's responsibility should be 
clustered and assigned to the same level of abstrac-
tion (i.e., layer). In Figure 1, it would allow cluster-
ing view1.package1 and view1.package2 into a sin-
gle cluster that would have been assigned to layer 3. 
Notice that when the responsibility of a layer is 
complex, it is refined into finer responsibilities in 
order to handle its complexity and ease its compre-
hensibility. Each resulting finer responsibility can in 
turn be recursively refined until basic responsibili-
ties are obtained. The refinement of a layer's respon-
sibility can then lead to different granularities of 
responsibilities, i.e. to responsibilities with various 
degrees of complexity. Depending on its granularity, 
each responsibility can be implemented by a number 
of packages. Hence, to assign the responsibili-
ties/packages to the right layers, packages should be 
clustered at the appropriate level of granularity. In 
fact, if the granularity of the responsibilities is set to 

a coarse level, the clustering process will produce 
very few clusters with too many packages (Tzerpos 
and Holt, 2000). This may lead to a very small num-
ber of layers and the resulting architecture will be 
close to a monolithic one. If the responsibilities' 
granularity is too fine, then the clustering process 
will generate many clusters including hardly more 
than one package. Assigning clusters to layers, in 
this case, raises the same issues as discussed above 
and illustrated by Figure 1. Therefore, tackling the 
issue of clustering the packages at the appropriate 
level of granularity will enable recovering the as-
built layered architecture of object oriented systems. 

3 OVERVIEW OF THE 
PROPOSED APPROACH 

To recover the layering organization of a system, we 
follow the three-step approach illustrated by Figure 
2. The first step consists in retrieving the facts from 
the system under analysis. To extract the system's 
facts, we analyze its source code and generate plat-
form independent models that are compliant with the 
Knowledge Discovery Metamodel (KDM). The 
latter was introduced by the OMG (OMG Specifica-
tions, 2013) as a standard representation of legacy 
systems. The KDM defines a meta-model for repre-
senting—at various levels of abstraction—all aspects 
of existing legacy systems. This meta-model pro-
vides a common interchange format to ensure in-
teroperability between tools. In our context, we 
parse the KDM models that we generated from the 
source code, to retrieve packages and their relation-
ships. Dependencies between two packages are de-
rived from the dependencies between their respec-
tive classes (i.e., class references, inheritance, meth-
od invocation and parameters). 

Once the system’s facts are extracted, we iterate 
over steps 2 and 3 to recover the layering architec-
ture of the system. The second step of our approach 
aims at clustering packages to build the responsibili-
ties of the system at a given granularity. To do so, 
we build a responsibility tree of the system using its 
packages’ namespaces and we define the granularity 
of a given responsibility as the number of nodes that 
have to be traversed from the root of the responsibil-
ity tree to the node corresponding to that responsibil-
ity (i.e., the level of the package representing the 
responsibility in the tree). Depending on the targeted 
granularity, clusters of packages are built from sub-
trees of nodes corresponding to that granularity. Step 
2 is described in details in subsections 3.1 and 3.2. 
In the third step of our approach, clusters obtained in  
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Figure 2: Overview of the proposed approach. 

the second step are assigned to layers so as to mini-
mize the layers’ dependencies that violate the lay-
ered architecture (e.g., skip-calls and back-calls) and 
maximize dependencies between adjacent layers that 
we call adjacent dependencies. To do so, we intro-
duce a number of dependency metrics that are de-
rived from the abstraction principle introduced in 
(Boaye-Belle et al., 2013). We use these metrics to 
formalize the layering of clusters of packages as an 
optimization problem that we solve using a search-
based algorithm. Step 3 is described in details in 
subsections 3.3 and 3.4. 

At the first iteration of steps 2 and 3, the granu-
larity of the responsibilities is set to 2. At each itera-
tion, the granularity of the responsibilities is in-
creased until it reaches the maximum value (i.e., the 
height of the responsibilities tree minus one). The 
layering solution obtained after each iteration is 
evaluated and it is kept as the best layering solution 
if its evaluation gives better results than the best 
solution found at the previous iteration. A layering 
solution is evaluated using a manual decomposition 
of the system and a ratio computed as the number of 
adjacent dependencies over the sum of all the de-
pendencies in the solution. We rely on this ratio to 
compare two layering solutions instead of the abso-
lute number of adjacent dependencies since the 
number of these dependencies varies depending on 
the granularity of responsibilities. 

3.1 Building the Responsibilities 
Hierarchy 

Some clustering techniques were proposed to create 
subsystems that enable managing and understanding 
the analyzed system (e.g., (Müller et al., 1993); 
(Hassan and Holt, 2002); (Bowman and Holt, 1998) 
and (Tzerpos and Holt, 1996)). These techniques 
rely for instance on a system's documentation, on the 

development team structure, on the directory struc-
ture of a system, and on the naming conventions 
followed when naming a system's parts. The use of 
naming information to aggregate packages into sub-
systems is the most common technique used by 
these approaches (e.g., (Müller et al., 1993) and 
(Hassan and Holt, 2002)). In fact, during the naming 
of packages, the developers usually name each 
package meaningfully, and they generally rely on 
the package's functionality to do so. A package’s 
name gives a hint about its role in the system (Clem-
ents et al., 2003). Therefore, the so-obtained naming 
information usually gives some clues about the re-
sponsibilities of a system's packages. Of course, 
naming information can only be useful if the devel-
opers of the system have followed naming conven-
tions (Müller et al., 1993). 

All programming languages (e.g., SmallTalk, 
C++ and Java) provide mechanisms to support vari-
ous kinds of namespaces (e.g., records, dictionaries, 
objects) (Achermann and Nierstrasz, 2000) allowing 
to name software entities. A namespace is a se-
quence of key-words that map labels to values 
(Achermann and Nierstrasz, 2000) and identifies a 
software entity (e.g., package). Packages that con-
tribute to the same responsibility usually have 
namespaces beginning with the same subset of key-
words. In our context, we rely on namespaces to 
reconstitute the hierarchy of a system's responsibili-
ties. This hierarchy can be seen as a responsibilities 
tree that is built so that its root node is the subset of 
key-words that appears at the beginning of each 
package. The root node represents the overall func-
tionality of the system. The other nodes of the tree 
are recursively built so that each path from the root 
to a leaf describes the namespace of a package. Con-
cretely, intermediate nodes of the tree correspond to 
responsibilities/packages with finer granularity than 
the root node (i.e., responsibilities that have been 
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refined), while the leaves of the tree correspond to 
the elementary responsibilities. To get from the root 
to the nodes located at a given granularity of respon-
sibilities G, we need to cross (G-1) nodes. 

Let us consider JHotDraw 7.0.6, a framework 
developed with Java and whose packages' 
namespaces are listed in table 1. Figure 3 shows the 
responsibilities tree obtained using the key-words in 
the packages namespaces of JHotDraw 7.0.6. The 
value of the granularity of the root of the tree, which 
is the sequence “org.jhotdraw”, is 1. Each path from 
the root to a leaf corresponds to a package whose 
namespace begins with “org.jhotdraw”. Packages 
whose namespaces do not begin with the sequence 
“org.jhotdraw” (e.g., “nanoxml” and 
“net.n3.nanoxml”) are not included in the tree. 

 

Figure 3: an example of the Responsibilities tree. 

3.2 A Responsibilities-based Clustering 
Algorithm 

In order to build responsibilities-based clusters, we 
rely on the responsibilities tree of the system built 
using packages namespaces as explained above. We 
traverse the responsibilities tree to select each sub-
tree rooted by a node located at a specified granu-

larity of responsibility. The packages whose 
namespaces define paths to leaves located in a se-
lected sub-tree are put together in a cluster. Each of 
the resulting clusters comprises packages contrib-
uting to the same granularity of responsibilities. The 
algorithm describing this clustering process is illus-
trated by Figure 4. This algorithm takes as input the 
set of packages of the analyzed system and the tar-
geted granularity of responsibilities at a given itera-
tion. As discussed above, we iterate over all possible 
levels of granularities in our approach. The algo-
rithm returns the set of clusters of responsibilities 
corresponding to the given granularity. 

Table 1: JHotDraw Packages Namespaces. 

No Packages namespaces Granularity 

1 nanoxml - 

2 net.n3.nanoxml - 

3 org.jhotdraw.app.* 3 

4 org.jhotdraw.app.action 3 

5 org.jhotdraw.beans 2 

6 org.jhotdraw.draw.* 3 

7 org.jhotdraw.draw.action 3 

8 org.jhotdraw.geom 2 

9 org.jhotdraw.gui.* 3 

10 org.jhotdraw.gui.datatransfer 3 

11 org.jhotdraw.gui.event 3 

12 org.jhotdraw.io 2 

13 org.jhotdraw.samples.draw 3 

14 org.jhotdraw.samples.net.* 4 

15 org.jhotdraw.samples.net.figures 4 

16 org.jhotdraw.samples.pert.* 4 

17 org.jhotdraw.samples.pert.figures 4 

18 org.jhotdraw.samples.svg.* 4 

19 org.jhotdraw.samples.svg.action 4 

20 org.jhotdraw.samples.svg.figures 4 

21 org.jhotdraw.undo 2 

22 org.jhotdraw.util.* 3 

23 org.jhotdraw.util.prefs 3 

24 org.jhotdraw.xml 2 
 

The algorithm starts by determining the smallest 
non-empty namespace common to the majority of 
packages (line 1). Each package whose namespace 
do not begin with the smallest namespace is re-
moved from the set of packages and put in a single-
ton cluster (lines 2 to 8). The latter is added to the 
set of clusters (line 8). The algorithm then builds the 
responsibilities tree from the set of remaining pack-
ages, considering the smallest common namespace 
as the root of the tree (line 11). The tree nodes are 
then recursively computed so that each path from the 
root to a leaf describes the namespace of a package. 
During the tree's construction, granularity values are 
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assigned to tree nodes, the root node having the 
granularity value of 1. We then consider all nodes 
whose granularity of responsibility is equal to the 
input granularity of responsibilities (lines 12 to 13). 
For each of these nodes, we build a cluster contain-
ing all the packages whose namespaces correspond 
to leaves in the sub-tree rooted by the considered 
node (line 14). The clustered packages are at the 
same time removed from the remaining set of pack-
ages. Each resulting cluster is added to the set of 
clusters (line 15). Finally, the packages remaining in 
the set of packages are put in singleton clusters that 
are in turn added to the set of clusters (lines 18 to 
22). 

 

Figure 4: A high level view of the clustering algorithm. 

3.3 The Layering of Responsibilities as 
an Optimization Problem 

We rely on the abstraction principle introduced in 
(Boaye-Belle et al., 2013) to assign levels to the 
clusters obtained from the responsibilities clustering 
step. In fact, our analysis of the layered style led us 
to retain two properties that we need to comply with 
when assigning clusters to layers:  

1) The Layer abstraction uniformity property: clus-
ters assigned to the same layer must be at the 
same abstraction level. The level of abstraction 
of a component often refers to its conceptual dis-
tance from the “physical” components of the sys-
tem (Buschmann et al., 1996), i.e. hardware, da-
tabase, files and network. 

2) Incremental layer dependency property: a cluster 
assigned to a layer (j) must only rely on services 
of the layer below (j-1). As discussed in the 
problem statement, this property is the one that is 
mostly violated, either through back-call or skip-
call dependencies between layers. Our analysis 
of the various descriptions of the layered style 
and several open source projects led us to con-
clude that this property should be stated in a way 
that allows—to some extent—the skip-call and 
back call violations. Hence, we relaxed this 
property to “clusters of layer j-1 are mainly 
geared towards offering services to clusters of 
layer j”. This means that in the event when there 
is some skip-call and back-call dependencies be-
tween layers, the number of these dependencies 
must be insignificant compared to the number of 
downward dependencies between adjacent lay-
ers. 

To ensure compliance with the first property, the 
clusters of the same layer should be at the same 
distance from the “physical” or lowest layer clusters. 
However, the existence of back-call and skip-call 
dependencies introduces a discrepancy between the 
clusters' distances, even when they belong to the 
same layer. Hence, compliance with our first proper-
ty derives largely from compliance with our second 
property which we will formalize using a set of met-
rics and constraints related to the dependencies be-
tween layers. These constraints will enable to trans-
late the layering problem into an optimization prob-
lem. 

We define the index of use of a layer j by a layer 
i as the number of dependencies directed from layer 
i to layer j. This index is obtained by summing the 
weights of the dependencies directed from each 
cluster of layer i to each cluster of layer j. The de-
pendency between two clusters derives from the 
dependencies between their respective packages. In 
what follows, this index is labeled as: 
 AdjacencyUse(i,j) when j = i-1. Adjacen-

cyUse(i,j) denotes the number of dependencies 
directed from layer i to its adjacent lower layer j. 

 SkipUse(i,j) when j < i-1. SkipUse(i,j) is the 
number of skip-call dependencies directed from 
layer i to layer j. 

 BackUse(i,j) when i < j. BackUse(i,j) is the 
number of back-call dependencies directed from 
layer i to layer j.  

 IntraUse(i) when i = j. IntraUse(i) is the number 
of the dependencies inside layer i. 

Figure 5 illustrates the calculation of the layer de-
pendency metrics for a system made of three layers 
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where all dependencies have the same weight (i.e., a 
weight of 1). In accordance with the incremental 
layer dependency property, we want to minimize the 
number of skip-call and back-call dependencies. 
This means that, apart from the upper layer adjacent 
to layer j, we must minimize the index of use relat-
ing other layers to layer j. However, skip-calls are 
often used for performance reasons and should be 
more tolerated than the back-calls which lead to a 
poorly structured system. These restrictions are for-
malized by the following constraint:  

For all i, j, k | j<i and k<j-1, BackUse(j,i) ≤ 
SkipUse(j,k) ≤ AdjacencyUse(j, j-1) 

(1)

Constraint (1) may be certainly satisfied when the 
number of the layers of the system is very small (i.e., 
when layers are merged). However, dependencies 
between clusters of the same layer are not recom-
mended unless otherwise stated (Bourquin and  Kel-
ler, 2007) or when some concerns as portability need 
to be addressed (Clements et al., 2003). Hence, we 
subjoined to constraint (1) the following constraint 
that limits the number of intra-dependencies of a 
layer:  

IntraUse(j) ≤ AdjacencyUse(j, j-1) (2)

The layer dependency metrics and constraints intro-
duced so far will be used to guide the process of 
assigning the clusters of a given system to a set of 
layers while rewarding the adjacency between layers 
and keeping their intra-dependencies quite low and 
minimizing the skip-calls and back-calls. For this 
purpose, we define the individual layering cost 
(ILC) of a given layer i of the system as follows: 

ILC(i)ൌ α	AdjacencyUseሺi, i െ 1ሻ ൅
β	IntraUseሺiሻ ൅ γ∑ SkipUseሺi, jሻଵ

௝ୀ௜ିଶ ൅
	δ∑ BackUseሺi, jሻே

௝ୀ௜ାଵ  
(3)

Where α, β, γ and δ are respectively the penalties 
adjoined to the adjacent dependencies, the intra-
dependencies, the skip-call dependencies and the 
back-call dependencies. For instance, in Figure 5, 
ILC(3) = 2α + γ, as the third layer has two adjacent 
dependencies and one skip-calls. 

In order to penalize the undesired dependencies 
and satisfy the two constraints defined before, the 
penalty α must be lower than the other penalties. The 
global layering cost LC of assigning the clusters of a 
system to a set of n layers is then computed by 
summing the individual layering cost for each layer i 
of the system: 

LC ൌ ∑ ILCሺiሻ௡
௜ୀଵ  (4)

The lower LC is, the better the assignment of clus-
ters to layers is. Attempting to reconstruct a layered 
architecture while minimizing its LC, is a problem 
that can be solved by adapting a search-based algo-
rithm to reduce the search space. 

 

Figure 5: Example of the calculation of the layer metrics 
and the individual layering costs. 

3.4 An Algorithm to Assign 
Responsibilities to Layers 

In order to build the optimal layering of software 
systems, we choose to adapt the steepest ascent hill-
climbing technique (Mitchell et al., 2001) using our 
LC (Eq. 4) as a fitness function. We focused on the 
hill-climbing algorithm because it performs well in 
the context of large systems and it has been success-
fully used in several approaches. The algorithm 
works in an iterative way. It starts by an initial parti-
tion of the system’s modules into a set of clusters; 
usually a randomly generated partition as in (Mitch-
ell et al., 2001). Modules are then moved between 
clusters to improve the partition according to some 
criterion. This criterion is based on maximizing or 
minimizing a fitness function. 

Figure 6 shows a high-level view of our adapta-
tion of this technique to the layering problem. It 
starts with an initial partition consisting of a set of n 
layers comprising the clusters resulting from the 
clustering step. The uppermost layer is constituted 
by the clusters having no incident dependencies; the 
lowermost layer of this partition contains the clusters 
having no outgoing dependencies; and the remaining 
clusters are randomly assigned to intermediate lay-
ers. The so-called initial system is then considered as 
the current solution of the algorithm (line 1). In the 
following iterations (lines 3 to 20), all the neighbor-
ing solutions are created (line 6) and evaluated using 
their cost (line 8). A neighbor solution is computed 
by moving a single cluster from a layer A to a layer 
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B of the current solution, provided these two layers 
are different. In order to compute the cost of each 
neighbor, we set the values of α, β, γ and δ prior to 
the application of the algorithm. The neighbor hav-
ing the lowest value of LC is considered as the best 
neighbor of the iteration (lines 9 to 12) and accepted 
as the current solution if its cost is lower than the 
one of the current solution (lines 14 to 17). The algo-
rithm stops if the current solution cannot be im-
proved anymore (lines 18 and 19). 

 

Figure 6: A high level view of our layering algorithm. 

4 VALIDATION 

The validation of our approach aimed at addressing 
the two following questions: i) What is the correct 
granularity of responsibility to consider when clus-
tering packages of a given system? This question is 
meant to investigate the appropriate granularity of 
responsibility that will help addressing the issues 
raised in section 2. ii) What are the values of penal-
ties (α, β, γ and δ) that generate software layers that 
correspond to the as-built architecture? The user 
might try many combinations values before finding 
the ones that best fit the analyzed system. Hence, our 
goal through the second question is to reduce the set 
of penalties’ values that the user could consider 
when applying our layering recovery algorithm. 

To validate our approach, we implemented a tool 
within the EclipseTM environment. This tool is made 

of three modules. The first one is a fact extractor 
built atop of the MoDisco open source tool which 
enables to generate a KDM representation of the 
system under analysis. The KDM representation is 
then used by our extractor to retrieve the system’s 
packages and the dependencies between them. The 
second module implements the clustering algorithm 
to generate clusters from the extracted packages 
according to the second step of our approach. In 
particular, this module builds a module dependency 
graph where nodes are clusters of packages and 
edges are dependencies between the clusters which 
are inferred from the dependencies between packag-
es. The module dependency graph enables the crea-
tion of an initial partition (i.e., initial layering solu-
tion) that is the input of the third module of our tool. 
This third module implements our layering algo-
rithm. 

4.1 Experiment 

To assess our approach and answer the two research 
questions discussed above, we conducted experi-
ments on five software projects. Some characteris-
tics of these projects are summarized in table 2. We 
choose these projects because they are open-source 
systems that are known to be layered systems. Table 
3 shows the results of executing the approach on 
these projects using three different setups. We indi-
cate for each setup the values of the penalties that 
were used when applying the layering algorithm. 
During these experiments, we set the adjacency 
penalty (α) to 0 for all these setups; we reward 
downward adjacent dependencies. Table 3 shows for 
each setup, the best ratio (computed as the number 
of adjacent dependencies over the sum of all the 
dependencies in the solution as discussed in section 
3) found for all the iterations of the approach on a 
system and the corresponding granularity of respon-
sibilities. 

Layered solutions obtained during the experi-
ment and that correspond to the as-built architectures 
of the analyzed systems are in grayed cells in table 
3. Interestingly, we can notice that setup 2 is the one 
that yields the best results in terms of the ratio of 
adjacent dependencies. The explanation lies in the 
fact that since the clustering step has already re-
solved some cyclic dependencies, a quite high value 
of the back-call penalty δ (e.g., δ =4) is sufficient to 
resolve the remaining cyclic dependencies. In this 
regard, having the intra-dependencies penalty β 
higher than the skip-calls penalty γ in setup 2, avoids 
putting the remaining cyclic dependencies in the 
same layer at the expense of the adjacent dependen-
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cies. This answers our second research question 
regarding the set of values of penalties (α, β, γ and δ) 
that generate software layers that correspond to the 
as-built architecture. 

Table 2: Projects statistics. 

Project 
Numb. of 

files 
LOC 

Numb. of 
packages 

Package 
dependencies 

JFreeChart 
1.0.14 

596 209711 37 225 

JHotDraw 
7.0.6 

310 51 801 24 89 

JUnit 4.10 162 10 402 28 107 
Rhino 1.7 237 132634 15 23 
JEdit 4.3 488 138046 28 154 

 

Setting the back-call penalty δ to a very high 
value as in setup 3, will ensure assigning to the same 
layer the majority of the clusters involved in cyclic 
dependencies. Hence, we expected setup 3 to be 
more appropriate for systems where the number of 
cyclic dependency remains very high in spite of the 
clustering step. For instance, JEdit 4.3 has a very 
high number of cyclic dependencies and we ex-
pected that setup 3 would yield the best results for 

that system. However, the best ratio found for JEdit 
4.3 corresponds to setup 2. This discrepancy can be 
explained by the fact that JEdit 4.3 has some omni-
present packages which bias the recovery process. 
Among these omnipresent packages is the package 
with the namespace org.gjt.sp.jedit.* which uses 
many packages and is in turn used by many other 
packages. 

Regarding the first research question, we ob-
served that the majority of the best ratios of desired 
dependencies (i.e., the ratios of adjacent dependen-
cies over the sum of all the dependencies in the solu-
tion) are obtained when the granularity of responsi-
bilities is assigned a value of 3. In fact, when the 
granularity of the responsibilities is too coarse (e.g., 
granularity=1 or 2), the clustering step results in 
very few clusters (e.g., 2 clusters in the case of Rhi-
no 1.7, JFreeChart 1.0.14 and jEdit 4.3) and the 
layering step in a too small number of layers (i.e., 
one to two layers). Furthermore, experimentations 
also showed that the more the level of responsibili-
ties considered for clustering is far from the root's 
one (e.g., granularity =5), the more the ratios of 
desired dependencies decrease. 

Table 3: Layering results. 

 Rhino JHotD. JUnit JEdit JFree. 

Setup 1: 
α =0, β =1, 
 γ = 2, δ = 4 

Ratio 77% 85.55% 67.32 % 51.78% 53% 

Granularity 3 2 3 4 3 

Setup 2: 
α =0, β =2,  
γ = 1, δ = 4 

Ratio 84% 84.98% 67.32 % 64.00% 59% 

Granularity 3 2 3 4 3 

Setup 3: 
α =0, β =2,  
γ = 1, δ = 8 

Ratio 77% 84.98% 67.32 % 60.08% 55.41% 

Granularity 3 2 3 3 3 

 
Figure 7: The layering results of JHotDraw 7.0.6. 
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This is due to the fact that the majority of the gener-
ated clusters are singletons (i.e., they contain one 
package), which weakens and sometimes nullifies 
the impact of the clustering process on the layering 
recovery. 

In case of JHotDraw 7.0.6, the best layering so-
lution is obtained using setup 1 and for a granularity 
of responsibilities of value 2. This solution is illus-
trated by figure 7 and it is pretty close to the one that 
was built through a manual decomposition of the 
source code. JHotDraw constitutes an “exception” as 
it was designed as an example of a well-designed 
framework. It contains less cyclic dependencies than 
the other projects and its analysis yields the best 
desired ratio for all setups when compared to the 
ratios of the other projects. Another interesting fact 
that came to our attention is that in the case of JUnit 
4.10, a granularity of responsibilities equals to 3 
produces the best and an identical layering organiza-
tion for each of the 3 setups. This indicates that for 
this system, the clustering step led to a stabilization 
of the layering results. 

4.2 Threats to Validity 

To validate our approach, we performed our prelim-
inary experiments on open-source systems that were 
known to be layered systems. And since it was diffi-
cult to find experts to decompose these systems, we 
manually verified the experimentation results. Nev-
ertheless, as future work, we need to carry out exper-
iments on industrial legacy systems to assess the 
usefulness of our approach and generalize the re-
sults. Besides, the object-oriented systems we ana-
lyzed were all developed in Java. However, using 
the KDM standard to represent them makes our 
approach language and platform-independent and 
therefore applicable to other types of systems. An-
other issue that could hinder the applicability of our 
approach is its dependence on the MoDisco tool’s 
robustness and scalability. Using other tools to gen-
erate the KDM representations of the analyzed sys-
tems will help addressing this threat. 

5 RELATED WORKS 

Many approaches have focused on the architectural 
reconstruction and they mostly rely on clustering 
techniques. Various clustering-based approaches are 
discussed in (Maqbool and Babri, 2007) and (Shtern 
and Tzerpos, 2012). Most of these approaches aim at 
finding a clustering of the system that optimizes the 
modularity of resulting packages (e.g., (Lung et al., 

2004), (El Boussaidi et al., 2012)). Our work is more 
related to the approaches proposed to recover or 
analyze layered architectures (e.g., (Sarkar et al., 
2009); (Lague et al., 1998); (Laval et al., 2012); 
(Scanniello et al., 2010); (Müller et al., 1993); 
(Tzerpos and Holt, 1996)). 

Laval et al., (2012) proposed an approach, called 
oZone, which removes undesired cyclic dependen-
cies prior to the decomposition of a system into lay-
ers. For this purpose, they rely on two heuristics to 
resolve dependencies that belong to cycles and im-
pede the finding of layers of a system. These de-
pendencies are tagged by the proposed algorithm 
and they are ignored when building layers of the 
system. In (Sarkar et al., 2009), the authors proposed 
3 layering principles (skip-call, back-call and cyclic 
dependency) and a set of metrics that measure the 
violation of these principles. Although these princi-
ples are focused on detecting violations, they are 
related to the layer abstraction uniformity and in-
cremental layer dependency properties as defined in 
this paper. Nevertheless, unlike both (Laval et al., 
2012) and (Sarkar et al., 2009), we address the layer-
ing recovery process without relying on any heuris-
tic to resolve the cyclic dependencies problem.  

Scanniello et al., (2010) proposed a semi-
automatic approach aiming at recovering software 
layers. In their approach, the uppermost layer com-
prises the classes that rely on many other classes, 
while the lowermost layer is made of the classes that 
are used by many other classes. The middle layer 
comprises in turn the remaining classes. In both 
(Laval et al., 2012) and (Scanniello et al., 2010), it is 
assumed that a module that does not have fan-out-
dependencies belongs to the lowest-level layer and 
conversely a module that does not have fan-in de-
pendencies belongs to the highest-level layer. How-
ever, when a module represents a common subtask 
exclusive to packages of a middle-level layer, this 
module will not have any fan-out dependency but 
still belongs to this middle-level layer. Likewise, a 
module that starts some specific service of a middle-
layer may not have any fan-independency but still 
belongs to this middle-level layer. 

Lague et al., (1998) developed a framework for 
analyzing layered systems to evaluate the coherence 
between the description of the architecture given in 
design documents and the actual source code's struc-
ture. Their framework relies on a set of questions for 
evaluating the properties of a layered system and a 
set of metrics that help answering these questions. 
This empirical study has shown that strict layering is 
not enforced in layered systems as skip-calls are 
made extensively however there are no back-calls. 
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Though the framework does not support the recov-
ery of the layered architecture, its results helped us 
adjust our skip-call cost parameter compared to the 
intra and back-call cost parameters. 

Tzerpos and Holt (1996) propose a “hybrid” pro-
cess to reconstruct software architectures. This pro-
cess is based on various steps including: selecting 
the domain model; retrieving the facts from the 
source code and from the files' names; clustering the 
facts into subsystems based on naming conventions, 
directory structure or automatic clustering tech-
niques; creating successive structural diagrams that 
are refined by the developers. Müller et al., (1993) 
propose an approach aiming at supporting users in 
discovering, restructuring and analyzing subsystem 
structures using a reverse engineering tool. The pro-
posed process involves the identification of the lay-
ered subsystem structures. The layered structure is 
obtained through the clustering of system's packages 
into building blocks using composition operations 
among which the composition by name. Similarly to 
(Tzerpos and Holt, 1996) and (Müller et al., 1993), 
our layering recovery process involves a naming-
based clustering step. However, our clustering step 
is focused on the recovery of the layers' responsibili-
ties while theirs targets the ease of the system's man-
ageability and understandability. Besides, in 
(Tzerpos and Holt, 1996) and (Müller et al., 1993) 
the maintainer has to intervene in most of the recov-
ery process's steps, while in our approach the main-
tainer only needs to validate the layering results. 

6 CONCLUSION AND FUTURE 
WORK 

In this paper, we proposed an approach that aims at 
recovering the layered architecture of object oriented 
systems. This approach attempts to cluster the pack-
ages of the system under analysis to build clusters of 
the system’s responsibilities. The resulting clusters 
are then assigned to layers so as to minimize the 
layers’ dependencies that violate the layered archi-
tecture and maximize dependencies between adja-
cent layers. To do so, we introduced a set of layers 
dependency metrics and we used these metrics to 
formalize the layering of clusters of packages as an 
optimization problem. The challenge in this context 
is to find the appropriate granularity to consider 
when clustering responsibilities. 

We applied the approach on five open-source 
systems and we manually assessed the resulting 
layered architectures. The results were very promis-

ing as illustrated in section 4. Our approach has two 
main advantages: 1) it does not rely on heuristics to 
resolve cyclic dependencies and 2) it is language and 
platform independent as it relies on the KDM speci-
fication standard. Moreover, it supports the interac-
tion with users and domain experts to refine the 
layering results. 

While we continue to refine the principles and 
metrics of our approach, we need to perform more 
experiments and analyses to properly tune the penal-
ties used by our layering algorithm. In this context, 
we intend to conduct experiments on industrial sys-
tems and get the feedback from these systems' ex-
perts in order to validate the resulting layered archi-
tectures and assess the usefulness of our approach. 
In the short term, we plan to apply the approach on 
larger open source systems (e.g., Mozilla and Ant) 
and to compare our results with other approaches. 
We also envision improving our fact extractor in 
order to get a richer and more accurate representa-
tion of the analyzed systems.  

REFERENCES 

Ulrich, W., Newcomb, P., 2010. Information systems 
transformation: Architecture-Driven Modernization 
Case Studies.OMG Press. 

Shaw, M., Garlan, D., 1996, Software Architecture: Per-
spectives on an Emerging Discipline. Prentice Hall. 

Stoermer, C., O'Brien, L., Verhoef, C., 2003. Moving 
Towards Quality Attribute Driven Software Architec-
ture Reconstruction. In WCRE, (Vol. 3, p. 46). 

OMG Specifications: http://www.omg.org/ [accessed in 
March 2013]  

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., 
Ivers, J., & Little, R., 2003. Documenting Software 
Architectures: Views and Beyond. Addison-Wesley. 

Bass, L., Clements, P., Kazman, R., 2003. Software Archi-
tecture in Practice. Addison-Wesley. 

Tzerpos, V., Holt, R.C., 2000. ACDC: An Algorithm for 
Comprehension-Driven Clustering. In WCRE. 

Mitchell, B., Traverso, M., Mancoridis, S., 2001. An ar-
chitecture for distributing the computation of software 
clustering algorithms. In Software Architecture, 
2001.Proceedings.Working IEEE/IFIP Conference 
on (pp. 181-190).IEEE. 

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., 
Stal, M., 1996. Pattern-Oriented Software Architec-
ture: A System of Patterns. John Wiley & Sons. 

Maqbool, O., Babri, H.A., 2007. Hierarchical Clustering 
for Software Architecture Recovery. TSE, vol.33, 
no.11, pp.759-780. 

Lung, C-H., Zaman M., Nandi, A., 2004. Applications of 
Clustering Techniques to Software Partitioning, Re-
covery and Restructuring. JSS, vol. 73, pp. 227–244.  

Shtern, M., Tzerpos, V., 2012. Clustering Methodologies 

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

88



 

for Software Engineering. Advances in Software Engi-
neering. 

Zimmermann, H., 1980. OSI Reference Model--The ISO 
Model of Architecture for Open Systems Interconnec-
tion. IEEE Transactions on Communications, vol.28, 
no.4, pp.425-432. 

Szyperski, C., 1998. Component Software. Addison Wes-
ley.  

Eeles, P., 2002. Layering Strategies. Rational Software 
White Paper, TP 199.  

Sarkar, S., G. Maskeri, S. Ramachandran, 2009. Discovery 
of architectural layers and measurement of layering 
violations in source code. JSS, Vol. 82 (11), pp. 1891-
1905.  

El Boussaidi, G.,  Boaye-Belle, A., Vaucher, S., Mili, H., 
2012. Reconstructing Architectural Views from Lega-
cy Systems. In WCRE, 2012, pp. 345-354. 

Bourquin, F., Keller, R.K, 2007. High-impact Refactoring 
Based on Architecture Violations. In CSMR '07, pp. 
149-158. 

Lague, B., LeDuc, C., Le Bon, A., Merlo, E.,Dagenais, 
M., 1998. An analysis framework for understanding 
layered software architectures. In IWPC, pp. 37-44 

Laval, J., Anquetil, N., Bhatti, M.U., Ducasse, S., 2012. 
OZONE: Layer Identification in the presence of Cy-
clic Dependencies. Science of Computer Program-
ming. 

Scanniello, G., D'Amico, A., D'Amico, C., D'Amico, T, 
2010. Architectural layer recovery for software system 
understanding and evolution. SPE vol. 40(10), pp. 
897-916. 

Hautus, E., 2002. Improving Java software through pack-
age structure analysis.In International Conference on 
Software Engineering and Applications. 

Müller, H. A., Orgun, M. A.,  Tilley, S.R.,  Uhl, J.S., 
1993. A reverse engineering approach to subsystem-
structure identification. Journal of Software Mainte-
nance: Research and Practice ;5(4):181–204. 

Hassan, A. E., Holt, R. C, 2002. Architecture recovery of 
web applications. ICSE, pp. 349-359 

Tzerpos, V., Holt, R. C., 1996. A Hybrid process for re-
covering software architecture. In Proceedings of the 
1996 conference of the Centre for Advanced Studies 
on Collaborative research (p. 38). IBM Press. 1996.  

Achermann, F., Nierstrasz, O., 2000. Explicit Namespac-
es. In Modular Programming Languages (pp. 77-89). 
Springer Berlin Heidelberg. 2000. 

Boaye-Belle, A., El Boussaidi, G., Desrosiers, C., Mili, H., 
2013. The Layered Architecture revisited: Is it an Op-
timization Problem?. In SEKE. 

Andreopoulos, B., An, A., Tzerpos, V., Wang, X., 2007. 
Clustering large software systems at multiple layers. 
Information & Software Technology 49(3): 244-254. 

Recovering�Software�Layers�from�Object�Oriented�Systems

89


