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Abstract: An implicit assumption in the study of operant conditioning and reinforcement learning is that behavior is 
stochastic, in that it depends on the probability that an outcome follows a response and on how the presence 
or absence of the output affects the frequency of the response. In this paper we argue that classical 
probability is not the right tool to represent uncertainty operant conditioning and propose an interpretation 
of behavioral states in terms of quantum probability instead. 

1 INTRODUCTION 

Operant conditioning, how animals learn the relation 
between their behavior (responses) and its 
consequences (outcomes) is explained in reference 
to two dimensions, namely, whether the outcome 
follows the response and whether the frequency of 
the response increases or decreases subsequently 
(Skinner, 1938). If the outcome follows the 
response, the relation is positive; and negative if it 
does not. If the frequency of the response increases, 
we call it reinforcement; if it decreases, punishment. 
Thus, as illustrated in Fig. 1, there are four 
fundamental conditioning procedures:  
 Positive reinforcement: The response is 

followed by an outcome that is appetitive, 
increasing the response frequency. For instance, 
food follows pressing a lever. 

 Negative reinforcement: The response is not 
followed by the outcome, increasing the 
response frequency. For instance, pressing the 
lever removes an aversive output such as a loud 
noise. 

 Positive punishment: The response is followed 
by the outcome, decreasing the response 
frequency. For instance, pressing a lever is 
followed by an electric shock. 

 Negative punishment: The response is not 
followed by the outcome, decreasing the 
response frequency. For instance, removing ad 
libitum food when pressing the lever. 

 

Figure 1: Operant conditioning procedures. 

This interpretation of associative learning has 
been borrowed in Artificial Intelligence, in particular 
in modeling reinforcement learning, where an agent 
learns by interacting with its environment in the 
form rewards (Sutton and Barto, 1998). In 
reinforcement learning, positive and negative 
outputs are defined as scalar rewards. It is assumed 
that those behaviors that are predicted to obtain 
higher accumulative reward will be elicited more 
frequently. One of the main issues in modeling 
operant conditioning and reinforcement learning is 
to represent the inherent uncertainty animals and 
software agents face accurately. In this paper we 
present a formalization of uncertainty in terms of 
quantum probabilities, which solve some issues that 
arise with classical and Bayesian probabilities 
typically associated with operant conditioning and 
reinforcement learning. 
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2 BASIS VECTORS AND 
BEHAVIORAL STATE 

In quantum probability theory a vector space 
(technically, a Hilbert space) represents all possible 
outcomes for questions we could ask about a system. 
A basis is a set of linearly independent vectors that, 
in linear combination, can represent every vector in 
the vector space. They represent the coordinate 
system and correspond to elementary observations. 
Put it another way, the intersection of all subspaces 
containing the basis vectors, that is, their linear span, 
constitutes the vector space. A vector represents the 
state of the system, given by the superposition of the 
basis vectors according to their coefficients (Hughes, 
1989; Isham, 1989). Historically, quantum 
probability has been applied to physical systems but 
the same analysis can refer to other types of systems, 
including animals and software agents. At the end of 
the day, animals are behavior systems –sets of 
behaviors that are organized around biological 
functions and goals, e.g., feeding (Timberlake and 
Silva, 1995), defense (Fanselow, 1994), or sex 
(Domjan, 1994). Software agents, on the other hand, 
are formally defined as systems that (learn to) act in 
virtual environments. Not surprisingly, 
reinforcement learning in software agents has taken 
concepts and methods from operant conditioning 
theory. In turn, the former, software learning agents, 
can be understood as computational models of the 
latter, operant conditioning.  

We define two basis vectors according to the 
dichotomies reinforcement vs. punishment and 
positive vs. negative in Fig. 1. The former, that we 
call Frequency, takes values ranging from a 
maximum number of responses per unit time 
(Reinforcement) to the absence of response 
(Punishment); the latter, that we call Applies, takes 
values from “the response always applies the 
outcome” (Positive) to “the response always 
removes the outcome” (Negative). The values in 
between indicate various response frequencies, that 
is, probabilities that the animal responds, and 
various probabilities that the outcome follows the 
response, respectively.  

The relation of the two bases is undetermined, in 
the sense that even in the simplest reinforcement 
schedules (fixed/variable ratio/interval schedules) 
we cannot observe with certainty how the response 
affects the outcome and how the outcome affects the 
frequency of responding at the same time. This 
uncertainty is aggravated in more complex 
compound schedules.  

The problem is thus how to determine the

 behavioral state of an animal given this uncertainty. 
Several models have been proposed to explain 
patterns of operant behavior, some of which use 
probabilities (see (Staddon and Cerutti, 2003) for a 
recent survey). We argue that the inherent 
uncertainty in operant conditioning cannot be 
represented using classical probability (Kolmogorov, 
1933), and that we need quantum probability 
instead. 

The behavioral state of the animal is represented 
using the state vector, a unit length vector, denoted 
as |Ψ in bra-ket notation. We need to find out which 
linear combination of the basis vectors results in a 
given behavioral state and with which probability. 
We start with a single question in Fig. 2, about 
whether the response applies the outcome. In this 
case |Positive and |Negative are the basis states, so 
we can write |Ψ = a|Positive + b|Negative, where 
“a” and “b” are amplitudes (coefficients) that reflect 
the components of the state vector along the 
different basis vectors. The answer to the question is 
certain when the state vector |Ψ exactly coincides 
with one basis vector. For instance if “the response 
always applies the outcome”, then |Ψ = |Positive. 
In such case the probability of Positive is 1. Since 
the basis vectors are orthogonal, that is, since they 
represent mutually exclusive answers, we know that 
“the response removes the outcome” with 0 
probability, corresponding to a 0 projection to the 
subspace for Negative.  

 

Figure 2: State space with the Applies subspace 
(corresponding to the question whether response applies 
outcome) and Positive-Negative basis vectors. The blue 
vertical line represents the projection of  |Ψ on |Positive.  

To determine the probability of Positive we use a 
projector, PPositive, which takes the vector |Ψ and 
lays it down on the subspace spanned by |Positive, 
that is, PPositive|Ψ = a|Positive. Then, the probability 
that the response applies the outcome is equal to the 
squared length of the projection, ||PPositive|Ψ||2. The 
same applies to the probability associated with 
b|Negative.  
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3 COMPATIBILITY 

In operant conditioning we are interested in two 
questions, whether the response applies the outcome, 
and whether the response frequency increases, each 
with two possible answers: Positive and Negative to 
the question “Applies”, and Reinforcement and 
Punishment to “Frequency”. Crucially for our 
analysis, these questions are incompatible. For 
compatible questions, we can specify a joint 
probability function for all combinations of answers, 
and in such cases the predictions of classical 
probability and quantum probability theories are the 
same. By contrast, for incompatible questions, it is 
impossible to determine the answers concurrently. 
Being certain about the answer of one question 
induces an indeterminate state regarding the answers 
of other, incompatible questions. This is the case in 
operant conditioning: We cannot observe at the same 
time whether an outcome follows from a response 
and whether the response follows from the outcome, 
that is, whether the response frequency increases. 
Classical probability does not apply to incompatible 
questions. 

 

Figure 3: State space including the Frequency subspace 
with the Reinforcement (increases)-Punishment 
(decreases) basis vectors. 

Mathematically, incompatibility means that 
subspaces exist at non-orthogonal angles to each 
other, as in the sub-spaces in Fig. 3. Hence, since 
certainty about a possible answer means that the 
state vector is contained within the subspace for the 
answer, if we are certain that Applies holds, then the 
state vector is aligned with the Positive subspace –in 
which case, we can immediately see that we have to 
be somewhat uncertain about Frequency.  

We use two joint probability cases, namely, the 
conjunction fallacy and the commutative property, to 
illustrate how quantum probability is applied to our 
operant conditioning vector space and how results 
differ from a classical treatment. 

Suppose that we ask first about frequency and 
then whether the response applies the outcome, and 
that we denote the answer to the first question as Fr 
(a value between Reinforcement and Punishment) 
and the answer to the second question as Ap (a value 
between Positive and Negative). In quantum 
probability theory, a conjunction of incompatible 
questions involves projecting first to a subspace 
corresponding to an answer for the first question 
and, second, to a subspace for the second question 
(Busemeyer, Pothos, Franco, and Trueblood, 2011). 
The magnitude of a projection depends on the angle 
between the corresponding subspaces. When the 
angle between subspaces is large a lot of probability 
amplitude is lost between successive projections. As 
can be seen in Fig. 3, this can result in 

||PAp|Ψ||2 < ||PApPFr|Ψ||2 , 

that is, the direct projection to the Applies 
subspace (blue line) is less than the projection to the 
Applies subspace via the Frequency one (green line). 
In classical terms, we have a situation whereby 

Prob(Ap) < Prob(Ap & Fr), 

which is impossible in classical probability 
theory: The probability of two events occurring 
together is always less than or equal to the 
probability of either one occurring alone. The 
opposite, assuming that specific conditions are more 
probable than a single general one, is the well-
known conjunction fallacy.  

The second case that illustrates that operant 
conditioning may be governed by quantum 
probabilities, refers to the effect of the order of the 
observations. Consider the comparison between first 
asking about Fr and then about Ap versus first 
asking about Ap and then about Fr. By virtue of the 
commutative property, in classical probability theory 
the order of conjunction does not alter the result, 
hence 

Prob(Fr & Ap) = Prob(Ap & Fr). 

However, in quantum probability theory PAPB  
PBPA, and thus, the conjunction of incompatible 
questions fails commutativity. We see that 

Prob(Fr & Ap) = ||PApPFr|Ψ||2 
is larger than 

Prob(Ap & Fr) = ||PFrPAp|Ψ||2 

because in the second case we project from |Ψ 
to |Ap, losing a lot of amplitude (their relative angle 
is large), and then from |Ap to |Fr we lose even 
more amplitude. 

In general, the smaller the angle between the 
subspaces for two incompatible questions the greater 
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the relation between the answers. We lose little 
amplitude by sequentially projecting the state vector 
from one subspace to the other. That means that 
accepting one answer makes the other very likely –
or, in classical terms, that they are highly correlated.  

4 CONCLUSIONS 

In this short paper we argue that quantum 
probability might be a useful tool in representing 
inherent uncertainty in observing (measuring) 
behavioral states in operant conditioning and, by 
extension, in reinforcement learning. Such states are 
defined as the superposition of incompatible basis 
vectors and thus cannot be represented using 
classical probability –which axioms don’t apply. Our 
approach, that borrows ideas from recent proposals 
to use quantum probability in categorization (Pothos 
& Busemeyer, 2009), addresses long-lasting calls to 
formalize operant conditioning in a rigorous way 
(e.g., Killeen, 1992). We have kept the formal 
aspects of quantum probability to a minimum and 
focused on illustrating with a simple example how 
quantum probability principles can be used in 
operant conditioning and why. 
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