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Abstract: The paper describes the development of a mobile solution based on smartphones and sensors for the early 
recognition of stress. The solution is based on real-time capture and analysis of vital data such as heart rate 
variability as well as activity and contextual data such as location and time of day. Individual recognition 
patterns for stress are derived from combining vital and contextual data by using subjective stress assess-
ments via mood maps as additional input during an initial learning phase. The reliability of stress alerts and 
therapeutic impact will be tested in a clinic specialised on the treatment of alcoholics since stress tends to 
cause craving and therefore trigger relapses. 

1 INTRODUCTION 

Stress is the body’s normal response to a real or 
implied threat. In small doses, stress can help us 
perform under pressure, make us stay focused, ener-
getic and alert. However, if stress symptoms persist, 
it starts causing major damage to our health, produc-
tivity, relationships and quality of life. Chronic 
stress can cause hypertension, suppress the immune 
system, increase the risk of heart attack and stroke, 
and make people more vulnerable to anxiety, addic-
tive behaviour and depression (e.g. Legendre and 
Harris, 2006; Ornish, 1990). Excessive and pro-
longed stress may also cause burnout, which is a 
state of emotional, mental and physical exhaustion.  

We cannot completely eliminate stress from our 
lives, but we can learn how to cope with it by con-
trolling stress-inducing situations and physiological 
reactions. This, however, requires that we are aware 
of the fact that we are stressed at a particular mo-
ment, by certain events or by encounters with specif-
ic persons. The timely recognition of stress is there-
fore a major goal of the SmartCoping project. 

The app being developed facilitates the continu-
ous monitoring of a user’s stress level and gives a 
warning when it exceeds a previously defined 
threshold. The user can then either choose the exit 
strategy by withdrawing from a stressful situation or 

apply relaxation techniques derived from muscle 
relaxation, meditation practice or mindfulness train-
ing.  The effect of these exercises is visualised – and 
thus reinforced – by means of biofeedback. 

The SmartCoping app addresses two scenarios: 
1. The Prevention of Chronic Stress: The target 

group consists of individuals who are or feel 
threatened by stress or aficionados of the Quanti-
fied Self movement who are interested in meas-
uring and documenting their vital as well as con-
textual data so as to increase their self-awareness 
and long-term health (Swan, 2012). 

2. Therapeutic and Rehabilitation Support for con-
ditions caused by Stress: Here the target group 
are in- or outpatients or patients who continue to 
need support after treatment in avoiding stress, 
e.g. patients after alcohol detoxification, burn-out 
patients, or patients suffering from depression. In 
this scenario the therapist or nurse may have ac-
cess to the data if the patient agrees. 

In the following section we briefly discuss the 
challenges we face in this endeavour as well as the 
innovative aspects of our project. Section 3 de-
scribes the mobile solution under development in-
cluding its technological implementation. Finally, 
we outline the current state of the project and discuss 
how we will measure its impact. 
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2 CHALLENGES 
AND INNOVATIVE ASPECTS 

There is a plethora of health-related apps on the 
market including apps for coping with stress, such as 
the Stress Tracker from AboveStress Inc., one of the 
most downloaded apps which also offers progressive 
muscle relaxation and guided imagery exercises.  
Another well-known example is the iStress app from 
PsiApps Inc. which apart from stress warnings en-
courages the users to record their negative emotions 
and thoughts. Whereas some apps try to determine 
the individual stress level by asking a series of ques-
tions, the more innovative apps use the sensors inte-
grated in many of today’s smartphones as well as 
external sensors to recognise and display stress 
symptoms and monitor them over time.  A very 
interesting approach was pursued by the Mobile 
Heart Health Project driven by Intel researchers.  
They used a wireless ECG to detect changes in stress 
levels as measured by heart rate variability (HRV) 
and to trigger mobile therapies such as breathing 
techniques (Morris and Guilak, 2009). So-called 
“mood maps” adapted from clinical scales were used 
for subjective assessment to correlate HRV meas-
urements with self-perception. In the end, the HRV 
measurement was discontinued because of the chal-
lenges posed by the continuous capturing of sensor 
data in everyday life and the focus shifted to the use 
of mood maps.  

Stress is also a topic in several large-scale pro-
jects funded by the EU, namely Interstress, Monar-
ca, Optimi and Psyche (for an overview see Riva et 
al., 2011). These projects tend to have a mainly 
therapeutic focus and aim at developing personal 
health systems for people with mental problems or 
disorders where stress plays a role. Some of the 
projects capture contextual data such as physical 
activity and location in a continuous way – as is the 
case in SmartCoping. However, vital data such as 
ECG are captured at certain pre-defined intervals 
using stationary equipment, which makes stress 
alerts triggered by stressful situations – a major goal 
in the SmartCoping project – impossible. 

For reliable stress alerts the display of stress 
symptoms (such as HRV and accelerated heart rate) 
alone does not suffice. For an app that warns its 
users against imminent stress, much more complex 
logic is required that goes well beyond the apps 
currently available on the market. 

In short, SmartCoping will go beyond existing 
stress apps by the following innovative features:  

Interpreting vital data in context: It has been 
shown (e.g. Clifford, 2007 or Ritter, 2009) that due 

to artefacts it is very difficult to interpret vital data 
gathered in real-life settings as opposed to laboratory 
settings. This also applies to HRV, even when one 
uses a chest strap, which yields more accurate meas-
urements than a bracelet or smart watch. For this 
reason, we also take into account contextual infor-
mation such as location, activity and the user’s sub-
jective stress experience. 

Automatic user adaptation: A major challenge is 
posed by the fact that HRV stress measures vary 
greatly between individuals depending on age, 
health status and other factors. Therefore, each sub-
ject’s baseline and stress threshold has to be estab-
lished so the stress warnings can be adapted to each 
individual. 

Subjective stress assessment: Studies have 
shown (e.g. Mandryk and Atkins, 2007) that stress 
as experienced by a subject largely coincides with 
normalised physiological measurements. This is why 
in the adaptation/learning phase the user is prompted 
to rate his or her own emotional state, so the system 
can continually calibrate its threshold values in ac-
cordance with the user’s response. 

Therapeutic effectiveness: Since the app is to be 
used for therapeutic purposes evidence for its effica-
cy is required. The user testing in the final phase of 
the project, which will be conducted in cooperation 
with a clinic, is expected to provide the proof of 
concept for our approach. 

3 METHODOLOGICAL  
APPROACH AND ITS  
IMPLEMENTATION 

In the following sub-sections we discuss the various 
concepts, parameters, and models that form the un-
derpinning of SmartCoping. 

3.1 Physiological Indicators for Stress 

Heart rate variability (HRV) is considered a reliable 
indicator for stress (e.g. Delaney and Brodie, 2000). 
Increased stress reduces the fluctuation in beat-to-
beat intervals, whereas decreased stress increases 
fluctuation. 

For measuring HRV we require a wireless ECG 
sensor, which operates continuously and provides a 
high-quality ECG signal to capture the minute 
changes in beat-to-beat intervals measured in milli-
seconds. At present, these requirements are only 
fulfilled by chest straps. Whilst the wearing of a 
chest strap may be perfectly acceptable for fitness or 
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training purposes, bracelets or smart watches would 
be much more convenient and unobtrusive for con-
tinuous measuring as needed for the SmartCoping 
app. Currently, certain new devices are in the pipe-
line that are more comfortable to wear than a chest 
strap, but still have an adequate degree of accuracy.  

HRV is calculated based on the ECG signal from 
an ECG sensor and transmitted via Bluetooth 4.0. 
The sensor either transmits a signal for each heart 
beat or provides the time between two heart beats. 
Every minute, the app calculates the variations be-
tween two heart beats over a time-window of four 
minutes. We use different algorithms for calculating 
HRV, three time-based, one frequency-based: 
‐ SDNN: standard deviation of RR intervals in the 

current time frame; 
‐ RMSSD: root mean square difference of succes-

sive RR intervals in the time frame; 
‐ PNN50: percentage of pairs of adjacent RR in-

tervals differing by more than 50 ms in a time 
frame (Bilchick and Berger, 2006); 

‐ LF and HF: low and high frequency spectral 
powers (Fagard et al. 1998); 

‐ LF/HF: ratio between LF and HF, indicating the 
balance between the sympathic and parasym-
pathic nervous system.  

 
Figure 1: Current Visualisation of HRV values. 

The HRV values obtained are aggregated to provide 
an overall measurement of the stress level on a scale 
from 0 to 10 (see Figure 1).   

The current version of the app allows the inspec-
tion of the HRV values underlying the computed 
stress level. Figure 2 gives an example of how the 
HRV history is visualised, in this case for the metric 

PNN50. At the bottom of the figure, all the HRV 
metrics are listed. By selecting a metric the corre-
sponding history curve is displayed. The user can 
also select individual “drops” that indicate the ag-
gregate measurements computed at pre-defined 
intervals. They give information concerning the date 
when the data were captured as well as average 
(straight line), minimum and maximum values (dot-
ted lines) along the timeline. In Figure 2 the green 
drop has been selected. By pinching in or out, the 
user can change the granularity of time: single val-
ues, hourly, daily, weekly, monthly and yearly. Fi-
nally, the arrows in the upper left-hand and right-
hand corner allow scrolling to the left and right 
along the time line, respectively. 

 

Figure 2: HRV History. 

The curve depicted in Figure 2 illustrates the effect 
of a user’s sports activity on HRV. During the time 
covered by the red drops that precede the green one, 
the user had finished his work and had some physi-
cal exercise. Afterwards, relaxation set in so that the 
HRV went up (the green drop). When returning to 
work, the HRV dropped again. 

3.2 Interpretation of Physiological 
Data 

Even with more sophisticated and accurate sensors, 
measuring HRV will be affected by artefacts caused 
by body movements. Therefore on the one hand we 
have to integrate artefact detection and compensa-
tion into the app, on the other hand we cannot just 
rely on HRV, but also include contextual infor-
mation. Together, vital and contextual data will 
serve as the basis for recognising stress patterns that 
are more reliable. At the moment, contextual data 
comprise information about: 
‐ Physical Activity measured by an accelerometer 

integrated in the smartphone (or in the ECG sen-
sor), 

‐ Location, which is measured by the GPS receiver 
in people’s phones. The GPS coordinates, howev-
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er, are only useful when associated with locations 
relevant to the individual users such as their house, 
flat or work place. By assigning particular labels to 
the relevant coordinates, these can be used in the 
history view of stress warnings and help users 
make sense of the data, e.g. to find out where 
stress is particularly high. 

‐ Change of Location: Moving from one location to 
another may be an important indicator for stress 
and will therefore be included in the recognition of 
stress patterns. 

‐ Time of Day: Exposure or experience of stress may 
vary substantially during the course of day, which 
is why it is also included as a variable in the 
recognition patterns for stress. 

There are other contextual data that might be rel-
evant such as people’s communication patterns, i.e. 
incoming and outgoing calls, e-mails or text mes-
sages as logged on their smartphones or even a se-
mantic analysis of their content. However, these 
cannot be taken into account for technical reasons, 
e.g. they cannot be accessed under iOS, and they 
would raise data protection and privacy issues. 

3.3 Determining Individual 
Recognition Patterns for Stress 

As mentioned before, stress measures vary greatly 
across individuals, which has been shown time and 
again both in lab and real-life settings. According to 
Morris and Guilak (2009), for instance, colleagues 
of similar age, physical fitness, profession, and per-
sonality style differed dramatically in their HRV 
baseline and threshold values. Therefore the 
SmartCoping app includes an adaptive component to 
identify the personal baseline and threshold values. 
Combined with contextual information a learning 
component determines user-specific stress patterns 
(see Figure 3). To this end, the mobile phone app 
queries the user during the learning phase at regular 
intervals about his or her personal experience of 
stress. Using this user feedback the system learns 
recognition patterns for stress by employing a super-
vised learning approach. 

A major challenge is posed by the very heteroge-
neous nature of the input data which include numer-
ic values for HRV and the number of steps, time 
values for the time of day as well as nominal values 
for both location and change of location. Besides, 
we are dealing with time series data where the time 
intervals to be examined are not defined a priori but 
have to be determined by the learning algorithm. For 
this purpose, we are using a special kind of neural 
network (BINN) developed by our project partner  

ai-one (Reimer at al., 2011), which has already been 
successfully applied to learning recognition patterns 
on time series data, e.g. for forecasting price devel-
opments on the stock exchange. The BINN is quite 
different to existing neural nets: 
‐ It is biologically inspired, i.e. consists of neurons 

with dendrites to which the synapses from other 
neurons are connected, and an axon which ends in 
synapses on other neurons. 

‐ Stimulation is via spikes, i.e. binary signals, which 
either fire or do not.  

‐ Connections between neurons get strengthened 
when being traversed. 

‐ Depending on the existence or absence of stimuli 
neurons are created or destroyed and connections 
reinforced or inhibited. 

‐ In particular, there is no need for a predefined 
topology or a similarity function. 

The learning process happens primarily during 
the initial phase of app usage and is gradually 
phased out once the patterns cease to show any ma-
jor changes despite additional input. User response 
regarding the subjective assessment of stress level is 
prompted at previously defined intervals and when-
ever the app assumes the occurrence of stress based 
on the patterns learned up to that point.  Besides, 
users are free to provide feedback any time, e.g. 
when they feel particularly stressed or relaxed. 

3.4 Biofeedback for Reducing Stress 

Apart from the continuous recording of stress levels 
and generating stress warnings, the SmartCoping 
solution will also comprise a biofeedback compo-
nent to support users in emotional regulation aimed 
at reducing stress. This component will guide the 
user through relaxation exercises such as breathing 
exercises, and at the same time visualise the stress 
level based on HRV thus showing the immediate 
impact of an exercise. The reinforcing effect of HRV 
biofeedback has been well demonstrated in various 
studies (e.g. Lehrer, 2013, or Sakakibara et al., 
2013). 

3.5 Architecture 

The SmartCoping system consists of sensors, the 
app on the mobile phone and the backend (cp. Fig-
ure 3). The app calculates the HRV based on the 
ECG signals from the sensor and transmits the HRV 
measures, the aggregated stress levels as well as all 
sensor and contextual data to the backend. 
The data are stored at the backend and their history 
can  be  displayed  either  via  a  web  browser  ( and 
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Figure 3: Data Flows and Architecture of SmartCoping. 

viewed by a therapist or coach if the user agrees) or 
via the display on the mobile phone. The learning 
algorithm for recognising individual stress patterns 
runs in the backend. The stress patterns are defined 
as a (biologically inspired) neural network. The 
neural network prompts the mobile phone to gener-
ate a stress alert if a stress pattern is recognised in 
the input data. A simplified “light” version of the 
neural network will be installed in the smartphone 
app to allow a simpler, though less accurate stress 
recognition process when there is no connection to 
the backend. 

4 PRELIMINARY RESULTS 
AND NEXT STEPS 

This paper discusses work in progress. Currently, the 
learning algorithm is being implemented and differ-
ent versions of the mood map are being tested with 
potential users. 

Originally we considered using a similar mood 
map as in the Mobile Heart Health project (Morris 
and Guilak, 2009) that integrates the two dimensions 
of valence (emotion) and arousal (energy) in one 
matrix. However, a series of user tests showed that 
some users found the matrix too complex and there-
fore had difficulty in finding the appropriate point 
that corresponded to their mood. 

As a result, we decided to split the two dimen-
sions into two separate columns “Emotion” and 
“Energy”, which enables the user to focus on one 
specific dimension at a time (see Figure 4). 

Additionally, we might pre-define the character-
istics of certain activities, such as being absorbed in 
non-physical work, strenuous physical work, sports 
or non-active leisure time (e.g. reading, watching 
movies) and present them as a menu to the user. 
Those activities combined with the feedback about 

the mood will allow the learning algorithm in the 
backend to obtain a more adequate as well as a more 
comprehensive assessment of the user’s stress levels 
and thus enhance the recognition of stress patterns. 

 

Figure 4: Mood Map. 

Furthermore, we might prompt users for their sensa-
tions (e.g. visual, auditory, olfactory, affective) as 
there is growing evidence that sensory impressions 
can affect physiological stress reactions (Hasson et 
al., 2013; Angelucci et al., 2013). To this end, we 
might either offer a series of options from which 
users can choose the most appropriate one or let 
users define sensations relevant to them. Besides, as 
a result of the feedback from some users whose 
HRV measures have shown fluctuations for no obvi-
ous reason, we will look closely at the question of 
time frames. Possibly, we will have to define differ-
ent time frames for different HRV metrics to achieve 
a more reliable overall indication of stress. 

For the time being, the app is tested only by 
healthy individuals. Once we have integrated the 
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feedback of the test users and solved the various 
problems, the app will be validated in a field test 
with high-risk subjects, namely detoxified alcohol-
ics. In stressful situations, they are overwhelmed by 
the urge to drink (craving) as a neurobiologically 
triggered stress reaction that is beyond their con-
scious control (Sinha, 2013).  

The impact will be measured in terms of the per-
ceived stress of the test persons. This will be meas-
ured with the German version of the Perceived 
Stress Questionnaire (PSQ), which has been shown 
to be a valid and economical tool for stress research 
(Fliege et al., 2005). Usability of the app and user 
satisfaction will also be measured, especially pa-
tients’ judgements of the every-day practicability 
and convenience of the system and its perceived 
effectiveness with regard to the prevention of crav-
ing and thus relapse (Clarke et al., 2010). 
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