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Abstract: A neural multi-agent-based approach for system monitoring and preventing large-scale emergencies in 
power systems is presented in this paper. The automatic emergency control process is represented as a 
neural multi-agent system with hierarchical architecture. The proposed system consist of two main parts: the 
alarm trigger, a Kohonen neural network-based system for early detection of possible alarm states in a 
power system, and the competitive–collaborative multi-agent control system. For demonstration purposes, 
we investigated conventional and neural multi-agent automatic control schemes. Results are presented and 
discussed. 

1 INTRODUCTION 

The ongoing deregulation and restructuring in power 
system worldwide require more complex control and 
decision making. In many cases, the current 
generation of automatic emergency control systems 
is ineffective and unreliable. Moreover, in 
emergency condition, a power system operator has 
to deal with a large amount of data and apply most 
appropriate remedial actions. At such times it 
becomes difficult to reach a correct diagnosis of the 
problem or to formulate the correct decision when 
actions must be taken. As a result, large scale 
blackouts still happen (PSDP 2007, Wang 2005) 

Computational intelligence techniques in power 
systems provides a way forward to give new 
possibilities for energy management systems, 
especially in the field of preventing large scale 
emergencies.  There are many benefits to using a 
multi-agent system as automatic control system, 
such as the ability to perform multiple 
computationally intensive tasks in parallel such that 
effective optimized real-time control can be 
achieved. These parallel tasks include neural 
network training, parameter optimization, and 

system monitoring. The multi-agent system 
approach also allows for intelligent control that is 
robust and flexible in that it can autonomously make 
decisions and adjust to partial control system failure 
to maintain control with minimal performance 
degradation, to name a few of the potential benefits. 
What’s more decentralized emergency control is 
showing important advantages over centralized 
control, especcialy with large data, calculation and 
communication.  

Several intelligent approaches have been 
proposed for preventing large-scale emergencies. On 
the one hand, there have been some previous 
attempts to take advantage of agents and multiagent 
systems as control systems (Lehnhoff 2011, Häger 
2012, Panasetsky 2012, Negnevitsky 2008). On the 
other hand, some different machine learning models 
– including artificial neural networks (ANNs) – have 
been successfully applied for power system security 
assesment, as for example (Kalyani 2012, Voropai 
2012, Niebur 1994). 

The use of ANN models as a trigger system of 
the multi-agent control systems let take advantage of 
some of the properties of ANNs (such as pattern 
recognition) and agents (reactivity, proactivity and 
sociability) making preventing large-scale 
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emergencies is more effective and reliable (Tomin 
2013, Negmevitsky 2013) . The paper proposes a 
neural multi-agent-based system for preventing 
blackouts in power systems. This system includes 
some experience and developments obtained at the 
University of Tasmania (Australia), the Melentiev 
Energy Systems Institute (Russia) and the TU 
Dortmund (Germany) in developing intelligent 
systems for a disaster management in modern power 
systems. 

2 PROBLEM DESCRIPTION 

Several studies identified voltage instability as one 
of the major reasons of blackouts (PSDP 2007, 
Tomin 2013, CAMS 2008). A typical blackout 
scenario develops as follows: high system loading 
(due to heavy transfers across the grid) is followed 
by events that initiate protection system actions. As 
a result, some lines are disconnected, the grid 
becomes even more overloaded, and consumption of 
reactive power is increased, causing a cascading 
effect in which voltages drop even further. Practical 
experience demonstrates that most blackouts begin 
with a large disturbance (a disturbance, which may 
or may not cause cascading failures), which leads to 
a slow deterioration of the system conditions (PSDP 
2007, Tomin 2013). 

Failures of protection and emergency control 
devices as well as human errors are the two biggest 
causes of large-scale blackouts. Most blackouts 
begin with a large disturbance, which leads to a slow 
deterioration of the system conditions. The system 
parameters may still remain within specified limits, 
but many of these parameters are on the boundary of 
stability. If such conditions are identified as pre-
emergency, preventive actions can be taken, and 
major events avoided.  

Unfortunately, in current competitive 
environment, such conditions may not be easily 
detected because different problems may 
simultaneously occur in different parts of a large 
network within different jurisdictions. The 
liberalisation process in power systems has created 
an additional interface which can adversely impact 
communication and coordination activities between 
operators on both sides.  

Multi-agent models are oriented towards 
interactions and collaborative phenomena. It is 
perfect suitable for resolve so called the irony of 
interconnected power grids that are owned by 
separate and often competing companies. In this 
case a technical cooperation between interconnected 

grids to a certain extent militates against the pure 
profit motive. 

3 PROPOSED SYSTEM 

The proposed system consists of two main parts: the 
alarm trigger, which is an intelligent neural network-
based system for detecting possible alarm states in a 
power system, and the competitive–collaborative 
multi-agent control system (MACS). 

3.1 The Hierarchy Multi-agent Control 
System 

The innovation here in using a decentralized 
structure in which distributed “agents” operate in 
either competitive or collaborative modes, 
depending on the system security state, so that fast 
and robust responses can be provided in both normal 
and emergency conditions – responses directly 
tailored to the very different needs of each of these 
two conditions. Agents are hardware or software 
entities operating in virtual or real environments, 
and will be distributed among all serial devices in a 
power system – generators, transmission lines, 
transformers, and power flow controllers (PFCs).  

The MACS is a hierarchy of agents located at 
different levels (Fig. 1): 
1) The top-level agent (Advisor) – the objective is 

to initiate a collaborative protocol of agents 
located on the middle level, setting up their 
priorities, and coordinating their actions. In 
practice this might be a joint security center of 
several TSOs. 

2) Middle-level agents (the transmission system 
operator-level) – the objective is to initiate 
control actions according to the goals set by the 
Advisor. These actions include PFCs between 
different systems. 

3) Low-level agents (i.e. device-level agents – 
generators, transmission lines, transformers and 
loads) – the objective is to achieve the goals set 
by the respective middle-level agents within their 
jurisdictions. The low-level agents are 
specialized devices responsible for specific areas 
of power generation, transmission and 
distribution. 

The Advisor receives messages from middle-level 
agents about the current state of the interconnected 
system, and if required proposes appropriate actions 
to control power flows between different systems. If 
the  Advisor  receives  an  alarm  message  from   the 
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Figure 1: Block diagram of the MACS. 

security alarm system, it assesses the severity of the 
situation, and if required takes control over the 
middle-level agents. 

For normal conditions, we organise competitive 
control by the middle-level agents as follows: 
optimal power flow (OPF) is used to determine the 
optimal settings of power-flow controlling devices 
in the area of responsibility of each agent. Using 
PFC devices as an example, representing them by 
phase-shifting transformers and flexible alternating 
current transmission system (FACTS) devices 
(Häger 2012). The PFCs were installed to increase 
transmission capacity and controllability of the grid. 
In normal operation conditions, each transmission 
system operator (TSO) used OPF methods to 
optimise settings of their PFC devices, to reduce 
internal congestions as required by market rules. The 
objective function is to minimise the generation 
costs by optimising power flows according to the 
market situation. 

However, in emergency conditions, all TSOs will 
need to coordinate their PFC devices to stabilise the 
system. We achieve this coordination through the 
use of MACS. In the collaborative mode, the 
objectives of the agent operation changes: a middle-
level agent seeks and receives help from the low-
level agents that belong to the neighbouring middle-
level agents. For example, under an emergency in 
System A due to voltage instability, a middle-level 
agent A will redefine the objective function of low-
level agent B1 of System B (Systems A and B are be 
connected via a tie transmission line) to increase 
reactive power input from the neighbouring system. 

3.2 a Neural Multi-agent-based 
Approach 

In order to distinguish between competitive and 
collaborative mode, we need to overcome an issue of 

identifying pre-emergency conditions. This paper is 
concerned with the real time identification of alarm 
states that are dangerous for the system security. We 
examined a clustering approach based on the self-
organized Kohonen neural network. The Kohonen 
alarm trigger identifies pre-emergency conditions 
using enormous amounts of data with incomplete 
and distorted alarm patterns and activates the MACS 
(Fig. 2). 

Multi-agent control system  

Figure 2: Diagram of a neural multi-agent-based system. 

The security alarm system is trained using a set of 
training examples based on randomly generated 
events in a power system. The clusters is identified 
using test cases representing a set of normal and 
emergency conditions in the power system. As a 
result, a Kohonen ANN-based clustering system is 
able to classify power system states in real time and, 
if required, to produce an alarm. The main objective 
is to rank power system states with respect to their 
potential for causing voltage instability. 

The Kohonen network is trained off-line and 
used on-line to classify the system operating state 
based on the patterns created in the off-line mode. 
The Kohonen network is divided into power system 
states as follows: normal, alarm, emergency 
(correctable) and emergency (non-correctable). 
Here, a normal state implies that all parameters of 
the power system are maintained within specified 
normal operation limits: 
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ܲ  ܲ
௫	 for every branch ݇ െ݉ (4)

where ܲீ  is the real power generation at bus ݅, ܲis 
the total system demand, ܲ௦௦ is the total real power 
loss in the transmission line, |ܷ| is the voltage 
magnitude at bus ݇, ܲ represents the real power 
flow at branch ݇ െ݉, ீܰ and ܰ being the number 
of generators and the number of buses in the power 
system, respectively.   

Real-time measurements are used to assess the 
system state. Kohonen network-based monitoring 
provides a warning when the system security is 
under threat (Fig. 2). 

4 CASE STUDY 

The proposed neural multi-agent-based system was 
implemented in JADE (Java Agent Development 
Framework). The Kohonen security clustering 
model is realized in STATISTICA 6.0. MATLAB 
and Power System Analysis Toolbox are used as 
modeling tools. In this paper, we demonstrate the 
proposed approach on the modified IEEE One Area 
RTS-96 power system. Active power flow is 
directed from Subsystem B to Subsystem A. 
Subsystem A is a low-voltage distribution subsystem 
being in stressful conditions because of reactive 
power shortage, which potentially may cause voltage 
instability. Subsystem B is a high-voltage 
transmission subsystem with surplus of reactive 
power.  

The modified system has 53 buses and dynamic 
elements to represent generators and loads. In 
Subsystem B, there is an excess of reactive power 
produced by reactors at busses 107, 111, 113. 
Subsystem A has a deficit of reactive power. In 
Subsystem A, the sources of reactive power are 
Non-controlled Reactive Power Sources (NRPS) – 
capacitor. Each load is modeled as exponential 
recovery load. The exponential recovery load model 
can adequately represent the load behavior during 
voltage instability. 

To demonstrate the proposed approach, the test 
system is subjected to the following sequence of 
disturbance: t=10 s – the loss of transformer T101-
208. We assumed that two types of automatic 
control can be used in the power system: 
Conventional Automatic Control System (CACS) 
(includes TGs, AVRs and OXLs on each generator, 
and OLTCs on transformers connected to buses 
204–210), and MACS (Fig. 3) – in addition to the 
set of local controllers, it includes OLTCs on 
transformers connected to busses 101, 102 and 103. 

 

 

Figure 3: Subsystem A with installed Load Agents and 
Generator Agents (the device level agents). 

4.1 Conventional Automatic Control 
Modeling 

The loss of transformer T101-208 immediately leads 
to an overload of generators connected to bus 201. 
After about t=15s, the OLTC starts to change the 
transformation ratio for boosting the secondary 
voltage at the load. This leads to a gradual overload 
of all generators in the subsystem. At t=300 s, the 
rotor current limits are exceeded on all generators as 
the system does not have any reactive power 
reserves. At t=500 s, the primary voltage at the load 
reaches 0.8 p.u. due to the OLTC actions and 
insufficient reactive power, while the secondary 
voltage is maintained close to the nominal (Fig.4). 

 

Figure 4: The system voltage profile under the CACS 
control. 

In this case, the AVR fails to secure critical voltage 
levels in the primary network, and at about t=500 s, 
cascading voltage decrease takes place. As a result, 
after t=600 s, stator currents of the generators 
increase rapidly (Fig. 5), and the voltage at generator 
busses decrease even further. This leads to the 
disconnection of generators by their protection 
systems, and as a result, the system voltage collapses 
(Fig. 4). 
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Figure 5: Stator current and voltage profiles under the 
CACS control. 

4.2 Neural Multi-agent Automatic 
Control Modeling 

The MACS coordinates main controllers of reactive 
power in the system in order to prevent voltage 
instability. The MACS detects dangerous levels of 
excitation currents of a number of generators and 
blocks the OLTCs on transformers.  

The Kohonen network-based security alarm 
system uses the following inputs: voltages at busses 
204 – 210 (primary voltages); voltages at busses 401 
– 406 (secondary voltages); AVR excitation voltages 
for generators G301 – G309; OXL output signals for 
generators G301 – G309 and stator currents of 
generators G301 – G309. Fig. 6 represents a 
topological map of the Kohonen network. The 
network is trained off-line to identify clusters 
corresponding to the following operating states of 
the power system: normal (cluster A); alarm 1–5 

(cluster B); emergency 1 and 2 (correctable) (cluster 
C); and emergency 3 (non-correctable) (cluster D). 

 

Figure 6: The Kohonen topological map. 

After the loss of transformer T101-208, generators 
connected to bus 201 are overloaded (Figs7,8). 
When the multi-agent scheme is available, as soon 
as the Kohonen network detects the alarm state at 
time t=10 s, the MACS is activated in order to 
prevent the system from further deterioration.   

 

Figure 7: The system voltage profile under the MACS 
control. 

 

Figure 9: The sequence of messages between agents in the elimination of emergency. 

0 100 200 300 400 500 600 700 800
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

time,sec.

U
,p

.u
.

 

 

Stator Voltages, p.u.

U
G
303 U

G
306 U

G
307

0 100 200 300 400 500 600 700 800
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

I,p
.u

.

 

 

Stator Currents, p.u.

I
G

303 I
G

306 I
G
307

0 50 100 150 200 250 300 350 400
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

 

 

Load Primary and Secondary Voltages, p.u.

U205
U401
U204
U402
U208
U403
U209
U404
U206
U405
U210
U406
U207
U407

Neural�Multi-agent-based�Approach�for�Preventing�Blackouts�in�Power�Systems

569



 

Figure 8: The system stator current and stator voltage 
profiles under the MACS control. 

The local automation reduces the AVR setting. GAs 
at busses 202 and 203 begin to increase reactive 
power output until the generator excitation currents 
reach their near-critical values. Collaborative actions 
of GAs and LAs are allowed to unload G301-303 
(Fig. 9).  

As a result, the system voltage profile improves, 
as can be seen in Fig. 7, and the Kohonen network 
does not detect any deterioration at t=130.63 s. From 
t=206 s, the Kohonen network identifies the normal 
state, however, the alarm 3 state is also still activated 
because the system is still in the normalization of 
post-emergency state. 

Thus, as a result of the MACS control actions, 
the subsystem can maintain its stability without load 
shedding via coordinating available sources of 
reactive power. 

5 CONCLUSIONS 

This paper proposes a neural multi-agent-based 
approach to the system monitoring and control with 
the goal of identifying potential voltage instability 
problems before they lead to major blackouts. The 
proposed MACS structure is hierarchical; it consists 
of the top-level agent, middle-level agents and low-
level agents. Under normal operating conditions, the 
MACS operates in a competitive mode; low-level 
agents exchange information with other agents to 
maintain their local conditions within specified 
limits and to maximize profits of their respective 
companies. An alarm state triggers a collaborative 
mode in which the agents coordinate their actions to 
prevent a system blackout. 
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