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Abstract: Despite partial synchronization in the oscillatory networks based on Kuramoto model can be used for cluster 
analysis, convergence rate of synchronization processes depends on number of oscillators and number of 
links between oscillators. Moreover result of clustering depends on radius of connectivity that should be 
chosen in line with input data. We propose double-layer oscillatory network for the two problems. Our net-
work relevant in situation when fast solution is required and when input data should be clustering without 
expert estimations. In this paper, we presented results of experiments that confirmed better quality then tra-
ditional algorithms. 

1 INTRODUCTION 

Recent researches have suggested that synchroniza-
tion among neurons in the brain is used to imple-
ment the cognitive functions, for example, vision, 
motion, memory (Haken, 2007). The oscillatory 
networks provide biologically plausible and parallel 
methods of modeling cognitive functions. The syn-
chronization processes in oscillatory networks have 
been applied to various problems such as image 
segmentation, cluster analysis, sound and image 
recognition (Basar, 1998); (Cumin et al., 2006); 
(Benderskaya et al., 2009).  

The Kuramoto equation is one of the successful 
models of synchronization among phases of oscilla-
tors (Kuramoto, 1984). However, convergence of 
synchronization processes depends on number of 
oscillators and degree of connectivity between oscil-
lators in networks that are based on Kuramoto mod-
el. For example, clusters may be elongate and placed 
close to each other, in this case radius of connectivi-
ty (determines oscillators that should be connected) 
should be chosen exactly before starting algorithm 
of clustering. Improper radius will cause a false 
allocation of clusters. Obviously, that a small radius 
is the cause of small number of connections between 
the oscillators in the network and as a result it is 
cause of low level of convergence rate. 

In this paper, we proposed a double-layer oscilla-
tory network SYNC-SOM that ensure faster conver-

gence rate without any estimation such as radius of 
connectivity. The input layer is based on self-
organized feature map (SOM) that encodes input 
features and the output layer based on oscillatory 
network that uses Kuramoto model (Sync) performs 
cluster analysis. 

2 PRELIMINARIES 

2.1 Self-organized Feature Map 

Self-organized feature map is special class of artifi-
cial neural networks that are based on unsupervised 
competitive learning (Kohonen, 2001). Each neuron 
competes for its activation. Self-organization algo-
rithm is divided into three steps: competition, coop-
eration and adaptation.  

Competition process finds the best vector w that 
represents the weight with the smaller distance to the 
input vector x (Haykin, 1999): 

 

  arg min .jj
i  x x w  (1)

 

The neuron-winner determines the spatial location of 
the topological neighborhood – cooperation process: 

 

     

2

, 2
exp .

2

j i

j ih t
n

  
 
 

x

r r

 

(2)

305Novikov A. and Benderskaya E..
SYNC-SOM - Double-layer Oscillatory Network for Cluster Analysis.
DOI: 10.5220/0004906703050309
In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), pages 305-309
ISBN: 978-989-758-018-5
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



Parameter σ is effective width that affects the num-
ber of neurons that will be involved in the adaptation 
process, and ri denotes the location of neuron i on 
the map grid. Synaptic adaptation is the last step that 
allows excited neurons (that are located in topologi-
cal neighborhood) to adjust its weight. In other 
words excited neurons move closer to the input 
vector: 

 

         1 .j j jt t t t   w w x w  (3)

2.2 Kuramoto Model 

Kuramoto model is able to ensure various type of 
synchronization in networks with various structures 
(Acebron et al., 2005); (Arenas et al, 2008). Dynam-
ic of the model described by following equation 
(Kuramoto, 1984): 
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Phase of oscillator θi is basic state variable that dis-
poses in the range from 0 to 2π. Frequency ωi can be 
considered as offset parameter. Coupling strength K 
affects the rate and the type of synchronization. High 
value of coupling strength ensures global synchroni-
zation and low value of coupling strength ensures 
local synchronization or desynchronization. 

The degree of synchronization between oscilla-
tors can be evaluated by estimate r that helps to 
define state of synchronization (Kuramoto, 1984): 
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The state of global synchronization occurs when r 
→ 1, global de-synchronization occurs when r → 0. 
Partial synchronization occurs in case: 

 

1 cr K K  . (6)
 

The degree of partial synchronization depends on 
value of critical coupling strength Kc that is depends 
on the width of the frequency distribution of oscilla-
tor: Kc = 2γ. 

An important feature of the Kuramoto model is 
possibility to provide synchronization processes in 
networks with various communication structures. 
We performed experimental study using numerical 
simulations and found that states of global and par-
tial synchronization can be successfully sets in the 
oscillatory networks with communication structures 
such as grids, stars, bidirectional list and unidirec-
tional circular list. 

2.3 Oscillatory Networks based on 
Kuramoto Model 

Oscillatory networks are nonlinear dynamic systems 
where neuron (unit) is oscillating element that is 
called an oscillator. The dynamic of the oscillatory 
network is characterized by the type of synchroniza-
tion: global, local (partial) and desynchronization. 
Local synchronization can be interpreted as a case of 
clustering where each ensemble synchronous oscilla-
tors corresponds to one cluster. 

The adapted model for oscillatory network that is 
intended for cluster analysis (Miyano et al., 2007); 
(Bohm et al., 2010): 
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Each oscillator corresponds to only one input vector 
from data set and coordinates of oscillator equals to 
coordinates of corresponding object. Parameter N(θi) 
defines number of neighboring oscillators for oscil-
lator i. The set of oscillator neighbors depends on 
connectivity radius ϵ that should be chosen in line 
with input data. 

 
Figure 1: Illustration of how connections are established 
for oscillator in line with radius ϵ. 

The connection is established between oscillators 
if Euclidian distance (it can be other metric) between 
less than connectivity radius ϵ. 

We have investigated possibilities of the network 
for cluster analysis using the widespread data set 
FCPS (Ultsch, 2005). Experiments have shown 
problems with elongate or with non-uniform density 
clusters that are located closely next to each other, 
for example, samples EngyTime, TwoDiamonds and 
WingNut. It can be hard to choose right radius con-
nectivity or even impossible.  

Moreover convergence rate of synchronization 
processes depends on number of oscillators in net-
work based on Kuramoto model. For example, the 
oscillatory network with grid structure has quadratic 
dependence O(n2) and network with unidirectional 
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list structure has cubic dependence O(n3). Therefore 
solution of data clustering may have cubic complexi-
ty in worst case. 

3 THE SYNC-SOM NETWORK 

The proposed network SYNC-SOM consists of the 
input and the output layers. The architecture of the 
network presented on the figure 1.  

 
Figure 2: The architecture of the SYNC-SOM oscillatory 
network. The input layer encodes features from input data 
set and the output layer performs clustering. 

The input layer based on self-organized feature 
map that reduces high dimensional input space to a 
lower dimensional map space. Final state of input 
layer defines number of active oscillators in the 
output layer that usually equals to number of neu-
rons-winners. The input layer contains several prin-
ciple differences from conventional self-organized 
map that will be described further. 

Initial values of weights are initialized by ran-
dom values in the conventional algorithm and it has 
a high influence on learning process (self-
organization process). In this case a neuron-winner 
is random and spatial location of the topological 
neighborhood that is defined each step of learning 
becomes random too. And as a result it is the imme-
diate cause of maps with different topologies at the 
end of learning process with the same data set. 
Moreover, random initialization is cause of the for-
mation of areas in which high and low concentration 
of neurons can occurs. Therefore some clusters can-
not be allocated properly by the second layer. It is 
especially significant shortcoming for the sample 
TwoDiamonds. 

We propose to perform initialization of weights 
by “uniform grid” in line with input data set. The 
“uniform grid” represent rectangular grid that covers 
input data in first two dimensions and distance be-
tween the nodes is the same in each of the two di-
mensions of data. Further the “uniform grid” should 

be aligned with the center in other dimensions of 
data. Thus coordinates of nodes of the “uniform 
grid” define initial weights of neurons. 

Our approach for the initialization ensures stable 
results of learning process and prevents formation of 
areas that are crowded by neurons, whereas in other 
areas there is a lack of them. Example of difference 
of formed featured maps is presented on figure 3. 
Also we offer to abandon using of permutations of 
objects of input data set during training on each step 
as this reduces complexity of learning process, be-
cause complexity of the permutation is O(n!). 

 

Figure 3: Difference of formed feature maps in cases (a) 
the random and (b) the “uniform grid” initialization of 
weights for the sample “Target”. 

The output layer of SYNC-SOM is based on the 
oscillatory network whose dynamics described by 
the following model: 
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Number of oscillators N is defined by number of 
winner-neurons in the input layer. Each neuron-
winner corresponds to only one oscillator and coor-
dinates of neurons from the input layer corresponds 
to coordinates of oscillators in the output layer. The 
proposed architecture ensures faster solution than 
basic oscillatory neural networks based on Kuramo-
to model because the output layer uses significantly 
fewer oscillators due to using neurons-winners of the 
input layer instead of objects of an input data. 

Connections between oscillators are formed if 
Euclidean distance between them is less than aver-
age distance between approximately no more than 
ten percent of the total number neurons-winners in 
input layer. Additionally, U-matrix P-matrix (Ultsch, 
2005), information about active and dead neurons 
(losers) from the first layer can be used for forming 
more accurate structure of the output layer. 

Evaluation of the end of the process clustering rc 
is described as follows (Novikov et al., 2013): 
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Ending process synchronization (clustering) is indi-
cated when rc → 1. Oscillators whose phases are 
approximately equal to each other belong to the 
same cluster with high probability, in other words 
each ensemble of synchronous oscillators corre-
sponds to one cluster of data. 

4 EXPERIMENTAL RESULTS 

To illustrate how SYNC-SOM is used for cluster 
analysis, we have performed study using data set 
FCPS. Comparison has been performed with algo-
rithms such as K-Means (MacQueen, 1967), ROCK 
(Guha et al., 2000), Hierarchical (Anil et al., 1988), 
Sync (Bohm et al., 2010) and DBSCAN (Ester et al., 
1996). All experiments have been performed on a 
workstation with Intel Core i5-2300 CPU 2.8 GHz 
and 4.0 GB RAM. 

We can confirm that the oscillatory network 
SYNC-SOM is able to ensure accurate results of 
clustering for all samples from the FCSP data set. 
We have used 100 neurons in the input layer and 
coupling strength K in the output was used equal to 
1. Several SYNC-SOM results of clustering are 
presented on figure 4. It’s important to note that 
clusters can be allocated not only by final state of 
the output layer. Sometimes global synchronization 
can be reached and only one cluster can be allocated 
in this case. Analysis of dynamics of the output layer 
should be performed by dendogram that shows hier-
archical organization of clusters where uniting time 
of clusters is main feature to determine the actual 
number of clusters (Wang el al., 2009). 

K-Means is not able to allocate clusters properly 
from samples Lsun, Target, WingNut and several 
others sample where clusters don not have Gaussian 
or spherical distribution. Hierarchical algorithm has 
problems with clustering Lsun, Target, Chainlink 
due to using only minimization of the distance be-
tween objects, i.e. has troubles with elongated clus-
ters that are close to each other. Illustration that 
shows shortcomings of K-means and Hierarchical 
algorithm is presented on figure 5. 

DBSCAN, Sync and ROCK algorithms success-
fully allocate clusters for all samples. DBSCAN 
requires finely tuned parameters (number of trusted 
neighbors and connectivity radius), especially, it’s 
hard to find properly parameters for successful clus-
tering samples TwoDiamonds and WingNut, and 
small parameter changes can lead to incorrect re-
sults. But obvious DBSCAN advantage is high per-
formance. Sync and ROCK are parameterized by 
connectivity radius too, but they are more robust. 

The Sync is robust due to possibility to allocate 
clusters by the mentioned before dendogram in case 
of global synchronization. And ROCK is robust due 
to depth analysis of structures. However, they solve 
the problem slowly compared with other considered 
algorithms. Table 1 demonstrates comparison of rate 
solving between the algorithms. 

 

 

Figure 4: SYNC-SOM results of clustering. (a) Three 
clusters for Lsun. (b) Six clusters for Target. (c) Two 
clusters for TwoDiamonds. (d) Two clusters for WingNut. 

 

Figure 5: Illustration of shortcomings. (a) K-means. (b) 
Hierarchical. 

Table 1: Execution time of various algorithms. 

Sample 
Algorithm (Execution time) 

syncsom sync dbscan rock 

Lsun 6.12 26.6 0.37 24.0 

Target 12.8 74.3 1.78 174 

Two 
Diamonds 

14.8 299 1.43 194 

WingNut 21.1 423 2.30 397 

Chainlink 21.7 72.0 2.96 383 

Hepta 2.58 0.87 0.12 3.65 

Tetra 5.70 127 0.39 24.5 
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The SYNC-SOM is much faster than Sync and 
ROCK algorithms. Sync can be faster than SYNC-
SOM only for very small input data sets, for exam-
ple, the sample Hepta, because our algorithm spends 
some time for encoding features. 

5 CONCLUSIONS 

In this paper we have proposed novel oscillatory 
network SYNC-SOM for cluster analysis that is 
based on Kuramoto model and on SOM. We have 
investigated problems with convergence rate in the 
conventional oscillatory network based on Kuramoto 
model and problems with learning processes in 
SOM. We have performed comparison with various 
algorithms such as K-Means, DBSCAN, ROCK, 
Sync and Hierarchical. Our experimental results 
have confirmed ability of SYNC-SOM to perform 
fast successful clustering. 
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