
An Architecture for Resilient Ubiquitous Systems

Anubis G. M. Rossetto1, Cláudio F. R. Geyer1, Carlos O. Rolim1,
Valderi R. Q. Leithardt2 and Luciana Arantes3

1PPGC, Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
2Institute of Technology, Senai, Porto Alegre, Brazil

3LIP6, University of Paris 6, CNRS, INRIA, 4, Place Jussieu, 75005 Paris, France

Keywords: Ubiquitous Computing, Self-healing, Healthcare, Fault Tolerance, Fault Detector.

Abstract: With the perspective of ubiquitous computing becoming more common form of technology in our everyday
lives, our increasing dependency on these systems will require them to be always available, failure-free,
fully operational and safe. They will also enable more activities to be carried out and provide new
opportunities for solving problems. In view of the potential offered by ubiquitous computing and the
challenges it raises, this work proposes a self-healing architecture to support ubiquitous applications aimed
at healthcare The goal is to continuously provide reliable services to meet their requirements despite
changes in the environment. We outline the application scenario and proposed architecture, as well as giving
a detailed account of its main modules with particular emphasis on the fault detector.

1 INTRODUCTION

Ubiquitous computing has its origins in the visionary
work of Marc Weiser who at the beginning of the
1990s predicted that there would be environments
saturated with computing devices, with
communication capabilities highly integrated with
human users (Weiser, 1991). According to Weiser,
ubiquitous computing could only be successful, if its
functions were transparent to the user. This would
allow possible system faults from being masked and
would mean that user intervention is only required
when absolutely necessary. Ubiquitous computing
environments are mainly focused on the interface of
a physical environment, where the user seeks to
make the devices "invisible" and operate with the
minimum of intervention. Thus, the occurrence of a
fault in this type of system can be anything from
annoying which reduces its applicability/usability, to
something that is dangerous and might put the user's
life at risk.

According to Weber (2002) entirely foolproof
systems are impossible, since failures are inevitable.
Thus, the area of fault tolerance attempts to employ
mechanisms that provide computing systems with a
higher level of confidence. In view of the future
scenario, attempts have been made to design
continuously evolving systems that constitute

complex information infrastructures - from super
computers and large data centers to thousands of
small portable computers and embedded devices. As
a result, it - has been a challenge: to maintain
dependability in the systems (Avizienis et al., 2004),
despite the occurrence of changes (Laprie, 2008),
which is called resilience.

As Kephart and Chess (2003) point out, the
management of systems poses a real challenge since
evolution of systems brings increasing of total costs
of ownership. Thus, one solution is to make the
systems more autonomous, to some extent, so as not
to depend on human intervention when carrying out
basic management tasks. Autonomic computing
aims to address the current concerns of complexity
and total cost of ownership, since it is able to meet
the future needs in pervasive and ubiquitous
computing and communications (Sterritt, 2005).

One of the properties of autonomic computing is
self-healing. A system designed with this feature is
able to identify when its behavior deviates from
what is expected and reconfigure itself so that it can
correct the deviation (Sterritt, 2005). This property
ensures effective and automatic recovery when
faults are detected, since it requires not only
masking of failures, but the identification of the
problem and its repair without any interruption of
the service and minimal external intervention. Its

459G. M. Rossetto A., F. R. Geyer C., O. Rolim C., R. Q. Leithardt V. and Arantes L..
An Architecture for Resilient Ubiquitous Systems.
DOI: 10.5220/0004910404590464
In Proceedings of the International Conference on Health Informatics (HEALTHINF-2014), pages 459-464
ISBN: 978-989-758-010-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

goal is to minimize the number of faults so that
applications are kept active and available at all
times.

In light of the potential of ubiquitous computing
and the challenges it raises, we propose a self-
healing architecture to support ubiquitous
applications designed for healthcare, to ensure
reliable services are continuously provided, even in
the face of changes in the environment, as well as to
meet its new requirements.

The paper is structured as follows: first we
provide the application scenario, then the proposed
architecture is outlined in detail; following this there
is a discussion of related works and finally the
conclusions are given together with suggestions for
the next phase of the research.

2 APPLICATION SCENARIO IN
HEALTHCARE

This research is concerned with an application
scenario in the area of healthcare, particularly for
people who require continuous monitoring for some
pathological reason.

This application scenario for monitoring people
requires the use of several sensors to measure
information about the health status of a person in
different ways, for instance, vital signs, location,
falls, gait patterns, acceleration, variations, balance
and symmetry.

On the basis of the collected data, the system can
predict disorders and, for example, detect the
occurrence of an emergency situation that requires
immediate attention, such as a fall. From this
perspective, this scenario is critical, since it is
dealing with life. Thus, the occurrence of faults in
the components can put someone at serious risk.

Research studies into the question of applications
in healthcare should be carried out to make
ubiquitous computing a real technology in the lives
of people. They should be conducted in a transparent
way, so as to bring benefits to the work of
professionals, improve the quality of life and
perhaps in the future act as an alternative means of
making savings in health resources.

Thus, the use and expansion of ubiquitous
applications largely depends on the security and
reliability provided by the environment.

Figure 1 shows the conceived scenario which
aims to provide people with monitoring in their
homes from various sensors. These sensors are
small, have a long battery life and can be deployed

in the environment or on the patient's clothing. An
intermediary mobile device collects the sensor data
and transmits it to a computer base which is also in
the environment. The collect of data can also be
made directly by the computer base. The computer
base processes the data and sends it to a server
where it is stored. The data processing can result in a
simple log (for historical purposes) or trigger a
warning, that can be directed to an emergency
situation.

The central infrastructure makes available
information that can be accessed by different
profiles: doctors, nurses, family, or a health center.
Each profile has access to specialized information.

Figure 1: Healthcare Scenario.

3 PROPOSED ARCHITECTURE

Due to the nature of ubiquitous systems, failures are
inevitable and may be frequent. For this reason, our
aim is to provide an architecture that can continue to
provide services even if failures occur. Thus, we
proposed an architecture (shown in Figure 2) with
different layers to support ubiquitous environments
in accordance with the imagined scenario.

The proposed architecture aims to cater for the
needs of a scenario where the ubiquitous
environment must manage applications that are
distributed, mobile, and adaptive to context and
available anywhere and at any time. In these
environments, detecting a fault in other processes is
a key issue. Thus, when a failure is detected, the
system has to make the necessary adjustments to
avoid error propagation which can result in major
damage to the system.

As shown in Figure 2, the proposed architecture
has been divided into three layers: Home, Central
and Interface. The Home layer has the components
that are part of every cell in the ubiquitous
environment. The Central layer contains the
components responsible for keeping the complete

HEALTHINF�2014�-�International�Conference�on�Health�Informatics

460

Figure 2: Proposed Architecture.

structure of resources for the ubiquitous
environment. And the Interface layer is available
for applications that seek to access information from
the ubiquitous environment.

The ubiquitous environment has what we call
here a ‘cell’, which is a specific structure to respond
to the applications in a particular place. The
ubiquitous environment is composed of various cells
managed by a middleware layer (Central).

Each cell contains a Base Server that is
responsible for storing and processing data from the
sensed context. A cell may contain several sensors,
actuators and other mobile devices. The
communication between them can occur through
different wireless communication protocols (for
instance, Bluetooth, NFC, Wi-Fi, and others). In
addition, the Base Server has the function of
providing the communication with the central server
(Central layer) to send data and process the received
returns. In the architecture, the data exchanged
between mobile devices and the base server must be
encrypted in a way that keeps it confidential.

The developed applications for the Interface
layer is only concerned with an information query
that is available from the Central layer. Since these
applications may be any kind of platform (web,
mobile), they will have access to the data through a
Web Services that is available in the Central layer.
This information must also be transmitted on a
secure channel (encryption).

The Central layer is made available in a cloud
computing structure. Cloud computing makes more
efficient use of computing resources, since it has

features like availability, elasticity and adaptability
of services, and can provide the user with remote
access (Armbrust et.al., 2010).

The Central layer has several components with
specific responsibilities which are interrelated. The
Monitor component is responsible for providing
interaction with the cell layer (Home).
Communication between the layers foresees the
presence of multiple communication channels (DSL,
mobile,...) through interconnection networks, which
makes the system robust with regard to connectivity
and faulty nodes.

The Central layer has a database for storing
historical data from the ubiquitous system. As well
as storing generated information in the system, this
database also contains a repository of rules and
settings that can be used to determine what
adjustments are required when different fault events
occur. Another component is the Context Manager
which is responsible for processing the context and
adaptations. This is directly linked to all the other
components of the Central layer. The manager is
responsible for processing all the contextual
information received by the monitor.

The blue frame in Figure 2 defines what is called
the Self-Healing Module (SHM). Two main
components form a part of this module: Fault
Detector and Adaptation Manager. The former
consists of an adaptive fault detector that is
responsible for detecting faults of different entities
that need to be monitored in the system. The
Adaptation Manager makes decisions to allow a
suitable adaptation strategy to reduce the impact of
the failure that is identified. Table 1 shows some
examples of failures and their adaptation measures.

The Self-Healing Module is also present in the
Home layer of the architecture, in the Base Server
and Mobile Device components, so that the failure
detector is responsible for monitoring all the
processes that are at the same level and the
information is propagated through the hierarchy.

The deployment of ubiquitous systems requires
robust security mechanisms for access control and
authentication. Failures in these cases can lead to
security breaches and hence impair reliability. Thus,
the Access Control component is responsible to
verifying the authentication of users by giving them
restricted access to resources. The basic access
policies of this component are defined and stored in
the repository, which takes into account aspects of
control, role-based access and location. Thus, a user
is provided with a digital identity and can be
communicated to the system access control.

An�Architecture�for�Resilient�Ubiquitous�Systems

461

Table 1: Examples of faults and adaptation.

Fault Adaptation
without

communication
between the home and

central layers

Local mode operation (store
data locally to be sent later)

temperature sensor
Fault notification

(responsible), limited
operation mode (ignore value)

Smartphone Backward error recovery

ECG sensor
Fault notification

(responsible); Forward
recovery.

In addition, since the ability to audit data is very
important, all the changes must be the responsibility
of some decision system, and made by an
autonomous process or specialist, that is, someone
must take responsibility for the messages that are
being transmitted/stored. In this way, the Auditing
component will check who is responsible for the
information and will record all the actions to allow
future audits.

Our main contribution is related to the self-
healing module, whose function is to detect faults
and make the necessary adjustments to keep the
application active and available at all times. Thus, in
this paper we focus on the defined characteristics of
the Fault Detector component.

3.1 Fault Detector

A failure detector (FD) is a fundamental service that
can enable the development of fault tolerant
distributed systems (Greve, Sens, Arantes, Simon;
2012). We propose an unreliable fault detector since
communications for an application scenario can be
considered to be partly synchronous. An unreliable
fault detector periodically provides a list of
processes that are suspected of having crashed. The
partial synchrony model proposed by (Chandra;
Toueg, 1996) stipulates that, for every execution,
there are bounds on process speeds and message
transmission times. The fault detector will handle
two types of faults: crash recovery and omission.

In light of the features of ubiquitous
environment, we propose a self-tuning failure
detector, that is able to calibrate its parameters in
order to offer an improved quality of service. Some
features were defined to proposed detector:
 Flexibility:

The detector must be able to provide an output that
is related to a set of processes (e.g., sensors) and not
just to each one individually. This approach can
reduce the rate of false responses provided by an

unreliable detector. In some scenarios, if one or
another sensor fails, it is not serious, but in
percentage terms, the system can be badly affected.
In this way, the output detector would be a value
related to a set of sensors and not a value for each
one, as proposed in (Hayashibara et al. 2004).
 Adaptability:

According to Nunes & Jansch-Porto (2004),
adaptive detectors have the ability to dynamically
adapt their timeout to the behavior of the delay, in
accordance with a margin of safety that can enhance
the quality of service. The detector must have the
ability to self-calibrate with different values of its
parameters (for instance, the heartbeat interval,
detection time, time of expected arrival ...) according
to the requirements of the process (or processes)
monitored. Thus, we seek to reduce the number of
false suspicions, runtime and number of mistakes, by
taking into account that there are periods of burst in
the network with loss and delay messages.
Moreover, by means of the criteria established for
the detector adaptation, it is possible to consider the
history of faults and mistakes. In other words, it can
be determined if there is a burst of failures in a given
period and whether in this same period, the number
of mistakes is low, which indicates that multiple
sensors are probably faulty and action needs to be
taken. Moreover, in some cases, the accuracy of
detection, may be pre-defined by the user for each
monitored node (or group of nodes), for instance,
with regard to hours (at night a finer monitoring
process is required but this can be relaxed during the
day).
 Economy:

In carrying out its functions, the fault detector
receives the control messages, such as the heartbeat
mechanism (Arantes; Strike; Sens, 2011). This
mechanism is based on two temporal references, in
the interval for sending the message I_am_alive! (th)
and in the timeout to wait for the reception of a
message.

Every th time unit, each monitored component q
sends a I_am_alive! message to the monitor
component. If the detector of a monitored
component receives a message from q before its
timeout expires, then the related timeout is restarted.
If the detector of the monitor component does not
receive a message within timeout, then q is added to
the list of suspects.

With the aim of measuring the energy consumed
by different types of devices that may be in the
ubiquitous environment, it will seek strategies to
reduce the number of heartbeats, find an appropriate
agreement about the detection time, and the number

HEALTHINF�2014�-�International�Conference�on�Health�Informatics

462

of mistakes, and frequency of heartbeats. An
approach that can be applied is the use of the
application message rather than heartbeats (Fetzer;
Raynal; Tronel, 2001) (Satzger et al., 2008). Thus, if
the application sends a message, the detector
considers this message to be an "I am alive" message
and delays sending the I_am_alive! self-message.
 Scalability:

The fault detectors of a distributed system composed
by several processes may or may not collaborate
with each other. This feature determines their degree
of scalability. In this approach, we seek a detector
that can be applied to a scenario with a hierarchical
organization of modules, where the detector is used
in different layers and provides this result to the
higher layers.

4 RELATED WORKS

With regard to related work, references were
consulted that focus on ubiquitous systems and
employ fault handling.

Gaia is a middleware architecture that has the
capacity to manage resources in physical spaces
(Chetan; Ranganathan; Campbell, 2005). A fault
tolerance technique was incorporated in the Gaia
system that considers a model of the faults fail-stop
type and only devices that can host applications,
such as laptops and portable devices. This tolerates
application faults that can be masked by the restart
of applications; thus, the applications periodically
save their states at checkpoints. When it detects that
there is a lack of heartbeat messages, it infers a
contextually appropriate surrogate device where the
application can be restarted (rollback).

The SAFTM is considered to be a fault-tolerant
middleware self-adaptive for ubiquitous computing
with a dynamic environment in ad hoc networks.
The authors propose the architecture of a fault-
tolerant system that applies a scheme based on
policies that seek to address faults in hardware,
software and the network (CAI; PENG; JIANG;
ZHANG, 2012). It detects faults by means of
continuous monitoring of the state of the component
(CPU, memory, OS, I / O, network operations) and
dynamically builds the self-adaptive mechanism in
accordance with the various types of failures.

The Self-healing unit of MARKS (ad-hoc)
middleware is called ETS (efficient, transparent, and
secure) Self-healing, and contains a healing
manager, to handle faults (Sharmin; Ahmed;
Ahamed, 2006). In predicting faults, it conducts an

analysis of the changing rate of status of each device
(memory, energy, communication signal). With
regard to fault containment, it isolates the faulty
device and assigns the service to a provider of
alternative resources.

The fault tolerant service framework selection
(FTSS) keeps track of all the services that are
allocated to registered users and monitors whether
the execution of the allocated service has been
completed successfully (Silas; Ezra; Rajsingh,
2012). When a failure occurs, it waits for 't' time to
examine whether it is a transient failure. If it is not
restored, it delivers a generated report at the
checkpoint (checkpoint) to the next service provider.

Table 2: Related Works.

 Focus
Self-

healing
Fault

Detector
Adaptation

G
ai

a

Middleware No
Yes/

Heartbeat
Checkpoint

rollback

M
ar

ks

Middleware
Ad-hoc

Yes
No/

Changing
rate of status

Isolation/
alternative
resources

FT
SS

Framework No
No/ Monitor
execution of

service

Checkpoint
rollback

SA
FT

M

MiddlewareAd-
hoc

Yes
No/ Monitor
the state of

device
Dynamic

P
ro

po
se

d

Middleware Yes
Yes/
Fault

detector
Dynamic

In the evaluation of related work, it can be seen
that there are limitations with regard to adaptation,
with most of the studies employing a fixed criterion
for adaptation when failures occur. Moreover, none
of the studies employs the use of an adaptive fault
detector as proposed in this work. Table 2
summarizes the features of related works.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we have outlined a self-healing
architecture that enables the development and
execution of ubiquitous applications that are reliable,

An�Architecture�for�Resilient�Ubiquitous�Systems

463

and allow their evolution and adaptation in the face
of change. This proposal is based on an application
in the health scenario which is of critical importance
since it deals with people´s lives. Thus, the self-
healing mechanism employed in this scenario is
essential to ensure effective recovery. It operates
automatically when faults are detected, in order not
to interrupt the service and only requires a minimum
of external intervention, by keeping the applications
active and available at all times. We have described
the architecture with its layers and main
components, while focusing on the characteristics of
the Fault Detector.

As a further stage of this research, we are
planning to implement the failure detector and make
an evaluation with regard to some metrics supplied
by the QoS of fault detectors. The purpose of this is
to determine how quickly faults can be detected and
the exact extent of false detections (Chen; Toueg;
Aguilera, 2002).

REFERENCES

Arantes, L., Greve, F., & Sens, P., 2011. Unreliable
Failure Detectors for Mobile Ad-hoc Networks. In:
Cruz-Cunha, Maria Manuela; Moreira, Fernando.
Handbook of Research on Mobility and Computing:
Evolving Technologies and Ubiquitous Impacts.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., & Zaharia, M., 2010. A view of
cloud computing. Communications of the ACM, 53(4),
50-58.

Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C.,
2004. Basic concepts and taxonomy of dependable and
secure computing. Dependable and Secure Computing,
IEEE Transactions on, 1(1), 11-33.

Cai, H., Peng, C., Jiang, L., & Zhang, Y. (2012, April). A
Novel Self-Adaptive Fault-Tolerant Mechanism and
Its Application for a Dynamic Pervasive Computing
Environment. In Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops
(ISORCW), 2012 15th IEEE International Symposium
on (pp. 48-52). IEEE.

Chandra, T. D., & Toueg, S. (1996). Unreliable failure
detectors for reliable distributed systems. Journal of
the ACM (JACM), 43(2), 225-267.

Chen, W., Toueg, S., & Aguilera, M. K. (2002). On the
quality of service of failure detectors. Computers,
IEEE Transactions on, 51(5), 561-580.

Chetan, S., Ranganathan, A., & Campbell, R. (2005).
Towards fault tolerance pervasive computing.
Technology and Society Magazine, IEEE, 24(1), 38-
44.

Fetzer, C., Raynal, M., & Tronel, F. (2001). An adaptive
failure detection protocol. In Dependable Computing,

2001. Proceedings. 2001 Pacific Rim International
Symposium on (pp. 146-153). IEEE.

Ganek, A. G., & Corbi, T. A. (2003). The dawning of the
autonomic computing era. IBM systems Journal,
42(1), 5-18.

Greve, F., Sens, P., Arantes, L., & Simon, V. (2012).
Eventually Strong Failure Detector with Unknown
Membership. The Computer Journal, 55(12), 1507-
1524.

Hayashibara, N., Defago, X., Yared, R., & Katayama, T.
(2004, October). The φ accrual failure detector. In
Reliable Distributed Systems, 2004. Proceedings of
the 23rd IEEE International Symposium on (pp. 66-
78). IEEE.

Kephart, J. O., & Chess, D. M. (2003). The vision of
autonomic computing. Computer, 36(1), 41-50.

Laprie, J. C. (2008, June). From dependability to
resilience. In 38th IEEE/IFIP Int. Conf. On
Dependable Systems and Networks.

Nunes, R. C., & Jansch-Pôrto, I. (2002, February). Non-
stationary communication delays in failure detectors.
In Proceedings of the 3rd IEEE Latin-American test
Workshop (LATW’02), Montevideo-Uruguay (pp. 16-
21).

Satzger, B., Pietzowski, A., Trumler, W., & Ungerer, T.
(2008, March). A lazy monitoring approach for
heartbeat-style failure detectors. In Availability,
Reliability and Security, 2008. ARES 08. Third
International Conference on (pp. 404-409). IEEE.

Sharmin, M., Ahmed, S., & Ahamed, S. I. (2006, April).
MARKS (middleware adaptability for resource
discovery, knowledge usability and self-healing) for
mobile devices of pervasive computing environments.
In Information Technology: New Generations, 2006.
ITNG 2006. Third International Conference on (pp.
306-313). IEEE.

Silas, S., Ezra, K., & Rajsingh, E. B. (2012). A novel fault
tolerant service selection framework for pervasive
computing. Human-centric Computing and
Information Sciences, 2(1), 1-14.

Sterritt, R. (2005). Autonomic computing. Innovations in
systems and software engineering, 1(1), 79-88.

Weber, T. S. (2002). Um roteiro para exploração dos
conceitos básicos de tolerância a falhas. Relatório
técnico, Instituto de Informática UFRGS.

Weiser, M. (1991). The computer for the 21st century.
Scientific american, 265(3), 94-104.

HEALTHINF�2014�-�International�Conference�on�Health�Informatics

464

