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Abstract: Methods of heart sound pre-processing are compared in this study. These methods are wavelet transform 
and Fourier analysis in different frequency bands. After pre-processing, the first heart sound was detected. 
Correlation of the first heart sound with respiration was chosen, as a sign of optimal detection. The results 
are demonstrated in a study of 30 volunteers. Optimal band selection for heart sound filtering is shown to be 
strongly individual, and is far more important than selecting Fourier analysis or wavelet transform as 
filtering method. Correlation with respiration proved to be a good sign for first heart sound detection 
evaluation. 

1 INTRODUCTION 

Evaluation of heart sound has been used for 
diagnosis for a long time. Despite advances in ECG 
it still has the potential to provide a cost-effective 
technology for monitoring valuable information 
about the heart. Normally, the heart sound is made 
up of two separated sounds, the first and the second 
heart sound. Together, they are known as the 
fundamental heart sound (FHS). According to 
valvular theory FHS emanate from a source located 
near the valves. However, cardiohaemic theory says 
that the heart and blood are an interdependent 
system that vibrates as a whole (Smith and Craige 
1988). When we focus on valvular theory, the first 
heart sound (S1) is caused by closure of the 
atrioventricular valves at the beginning of 
ventricular contraction, thus identifying early 
systole. The second heart sound (S2) is caused by 
closure of the semilunar valves at the end of 
ventricular systole. The time between S1 and S2 is 
known as left ventricular ejection time (LVET) or 
systole. LVET is an important parameter in number 
of applications such as computing left ventricular 
stroke volume (SV) according to (Bernstein and 
Lemmens, 2005; Cybulski, 2011). One possible way 
of computing SV is represented by equation (1). In 
addition to LVET, the maximum of derived thorax 

impedance ܼ݀ሺݐሻ ⁄௫ݐ݀ , raw thorax impedance 
ܼ, and a constant based on body weight, height and 
thorax volume ூ்ܸ ζଶ⁄  are also used for SV 
calculation. When we realize that the changes in ܼ 
value are minimal, there are just two parameters that 
influence SV, namely ܼ݀ሺݐሻ ⁄௫ݐ݀  and LVET. 
Accurate detection of S1 and S2 is therefore crucial 
for correct definition of LVET and SV. 

ܸܵ ൌ
ܸܤܶܫܸ

ζ2 ඨ
ܼ݀ሺݐሻ ⁄௫ݐ݀

ܼ
(1) ܶܧܸܮ	

Heart sound is a highly non-stationary and complex 
signal. S1 consists of two main components, the 
closure of the mitral valve (M1) and the closure of 
the tricuspid valve (T1) (Debbal and Bereksi-Reguig 
2008), as shown in Figure 1. S1 has quite a stable 
position within the R-R interval. It is located from 
the R-wave + 5 % of the R-R distance to the R-wave 
+ 20 % of the R-R distance, abbreviated to 0.05R-R 
to 0.2R-R (El-Segaier et al 2005). Information 
concerning the spectrum of the S1 is not clear in the 
literature. One source claims the spectrum is in the 
interval 50–150 Hz (Abdelghani and Fethi 2000), 
another source claims 20–150 Hz (JiZhong and 
Scalzo 2013). 

Many studies have tried to find a successful 
automated heart sound classification algorithm. The  
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Figure 1: Spectrum of S1 (Debbal and Bereksi-Reguig 
2008). 

most frequent contributor to their success is robust 
and reliable detection of fragments making up 
heart  sounds. These  fragments  include  FHS,  heart 

murmurs and extra heart sounds – third and fourth 
heart sounds. Pre-processing techniques used 
include wavelet transform (Xinpei et al 2009) and 
the use of Fourier analysis (El-Segaier 2005). 

This study focuses on filtering techniques that 
prepare heart sound for the detection of S1 in 
an optimal way. The study compares the use of 
Fourier analysis and wavelet transform in a number 
of bands and decompositions. 

2 METHODS 

The study presented was performed on 30 volunteers 
in good health. During the experiment, the 
volunteers were in the supine position. ECG, heart 
sound and thorax bioimpedance were measured 
continuously. Two types of breathing were 
measured; the first  was 10–second  period breathing 

 
Figure 2: Upper part of the figure: 20-80 Hz envelope (magenta) of the heart sound with integrals (blue, green) representing 
gravity center computation,  next, heart sound filtered in band 20-80 Hz (cyan) and the last ECG (yellow). Blue asterisk 
represent R-wave position, red circle is 20% of R-R interval, blue circle is centre of gravity or S1. The lower part of the 
figure represents respiration curve (blue), next R-S1 function (red) and the last one heart sound envelope (green) of 
volunteer number 55 during short part of deep breathing. The x-axis represents time in seconds. Time scales differ between 
the upper and the lower part of the figure. 
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and lasted 5 minutes, it was referred to as deep 
breathing. At the end of this exercise, the volunteers 
were asked to breathe normally. The second type of 
breathing was recorded after 2 minutes of rest. This 
type was referred to as spontaneous breathing and 
was also recorded for 5 minutes. Spontaneous 
breathing records the normal breathing of the 
volunteer. The heart sound was recorded using 
a microphone held in place by an elastic bandage. It 
was measured with a sampling frequency of 500 Hz. 
An example of heart sound filtered in the 20–80 Hz 
band can be seen as the second curve in the upper 
part of Figure 2 coloured cyan. The R-wave was 
detected from the ECG signal. It was used as a 
reference for S1 detection. Thorax bioimpedance 
was filtered with a low-pass filter with a cut-off 
frequency at 0.8 Hz. This produces a curve 
representing respiration. Impedance was used only 
for extracting the respiration curve. The respiration 
curve can be seen in the lower part of Figure 2, third 
from the bottom, coloured blue. 

This study evaluates combinations of filtering 
techniques and frequency bands. Stages involved in 
filtering techniques evaluation are depicted in Figure 
3. At the beginning, heart sound was filtered. The 
first type of filtering technique was Fourier analysis. 
For this purpose raw heart sound signal was filtered 
with a band-pass filter. Filtering was performed in 
Matlab environment (MATLAB 2009) by 
eliminating frequencies outside of the pass band 
using filtfilt function. Transitional parts after 
filtering at the beginning and at the end of the signal 
were excluded from the signal. As cut-off 
frequencies for signal filtering, all combinations of 
low cut-off frequencies: 5, 10, 15, 20, 25, 30, 35, 40, 
45, 50 Hz and high cut-off frequencies: 10, 15, 20, 
25, 30, 35, 40, 45, 50, 60, 80, 100, 120, 150 Hz were 
used. A table with all these combinations can be 

seen in Figure 4. The upper two tables represent 
filtering using Fourier analysis, with a bottom band 
cut-off frequency in the leftmost column. The upper 
cut-off frequencies are in the first row. For example 
band pass filter with low cut-off frequency 20 and 
the high cut-off frequency 80 is located in the fifth 
row marked with 20 and the twelfth column marked 
with 80. The second type of filter used was wavelet 
transform in which filter banks from the Daubechies 
family, numbers 4 and 14 (db4, db14) were used. 
A filter bank from the Coiflet family, number 2 
(coif2) was also used. They showed the best results 
during the initial phase of this study and were also 
evaluated by a previous study (Messer et al 2001). 
Wavelet transform decomposed the signal into a 5 
level details. Again, Matlab environment (MATLAB 
2009) was used for signal decomposition, namely 
function swt. The spectrum of the first level detail 
corresponds to approximately a band of 125–250 
Hz, the second detail level to 62.5–125 Hz, the third 
detail level to 31.25–62.5 Hz, the fourth detail level 
to 15.5–31 Hz and the fifth detail level to 8–15.5 Hz. 
The signal is reconstructed by summing detail 
levels. Let ݔଵ

ௗ(n), ݔଶ
ௗ(n), ݔଷ

ௗ(n), ݔସ
ௗ(n) and ݔହ

ௗ(n) be 
the detail levels of the original signal ݔሺ݊ሻ. 
Reconstructed signal ݔᇱ is then 

ᇱሺ݊ሻݔ ൌ ݔ
ௗ



 ୀ 

ሺ݊ሻ (2),

where	݈ ∈൏ 1,5 , ݄ ∈൏ 2,5 , ݈  ݄. The equation 
(2) is the sum of details ranging from the lowest 
detail –l to the highest detail –h. Note, that the 
highest and the lowest detail can be of the same 
level and that the highest detail of the sum is greater 
than the lowest. All the combinations from the 
equation (2) were used for the signal filtering. These  

 

 

Figure 3: Block diagram with steps involved in comparing filtering techniques. First, heart sound was filtered using Fourier 
analysis or wavelet transform. Next, envelope was computed using NASA (normalized average Shannon energy detection 
algorithm - equation (3)) and then centre of gravity (S1) of interval starting from R-wave to the R-wave + 20 % of the R-R 
distance, abbreviated <R, 0.2R-R>was computed. S1 distance from R-wave was determined for every R-R interval, thus 
creating R-S1 function. R-S1 was delayed from 0 to 9 R-R intervals towards respiration and then R-S1 was correlated with 
respiration curve. 
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Subject 32 - Deep breathing - Filtered using Fourier analysis 

cut-off 10 15 20 25 30 35 40 45 50 60 80 100 120 150 Hz 

5 -0,05 0,32 0,65 0,77 0,86 0,85 0,82 0,83 0,83 0,83 0,83 0,83 0,83 0,83   

10 0,64 0,83 0,86 0,89 0,85 0,81 0,81 0,81 0,81 0,81 0,81 0,81 0,81   

15 0,48 0,63 0,72 0,66 0,58 0,58 0,58 0,62 0,59 0,58 0,57 0,58   

20 0,47 0,52 0,46 0,44 0,46 0,48 0,49 0,49 0,49 0,49 0,49   

25 0,12 0,35 0,34 0,37 0,37 0,35 0,38 0,38 0,39 0,39   

30 0,28 0,22 0,3 0,4 0,45 0,44 0,44 0,44 0,45   

35 0,43 0,53 0,6 0,65 0,69 0,69 0,7 0,7   

40 0,44 0,46 0,51 0,61 0,6 0,6 0,6   

45 0,29 0,39 0,39 0,38 0,38 0,37   

50 0,45 0,45 0,44 0,43 0,45   

Hz                               

Subject 55 - Deep breathing - Filtered using Fourier analysis 

cut-off 10 15 20 25 30 35 40 45 50 60 80 100 120 150 Hz 

5 0,07 0,17 0,12 0,13 0,13 0,09 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06   

10 0,13 0,19 0,21 0,14 0,29 0,42 0,45 0,46 0,46 0,46 0,46 0,46 0,46   

15 0,44 0,07 0,44 0,54 0,59 0,6 0,61 0,62 0,61 0,61 0,61 0,61   

20 0,39 0,5 0,59 0,64 0,64 0,63 0,64 0,64 0,64 0,64 0,64   

25 0,45 0,56 0,62 0,61 0,61 0,62 0,61 0,61 0,62 0,61   

30 0,45 0,54 0,54 0,53 0,52 0,52 0,53 0,53 0,53   

35 0,35 0,43 0,37 0,24 0,24 0,24 0,24 0,23   

40 0,18 0,12 0,14 0,24 0,22 0,22 0,21   

45 0,16 0,24 0,23 0,22 0,22 0,22   

50 0,19 0,19 0,2 0,21 0,22   

Hz                                     

Wavelet filter, deep breathing Wavelet filter, deep breathing 

Subject 32 Subject 55 

level 5 4 3 2 1 level 5 4 3 2 1 

5 0,02  0,77 0,87  0,87  0,87 5 0,21 0,2 0,22  0,22  0,22 

4 0,77 0,85  0,85  0,85 4 0,26 0,22  0,23  0,23 

3 0,21  0,26  0,26 3 0,61  0,64  0,64 

2          0,41  0,45 2          0,15  0,15 

Figure 4: Numbers in the tables represent correlations between R-S1 function and respiration of volunteers number 32 and 
55 after heart sound was filtered with a band-pass filter using Fourier analysis with low cut-off frequency from first column 
and high cut-off frequency from first row in upper two tables. Lower two tables represent the same correlations after 
summing wavelet detail levels ranging from the lowest detail from first column to highest detail from first row. 

combinations can be seen in the lower part of Figure 
4. For example, the sum of details 5, 4, 3 used for 
signal reconstruction are located in row marked with 
5 in the table representing the highest detail, and 
column marked with 3, representing the lowest 
detail used in the sum. Another example, single 
detail 2 used for reconstruction, is in row 2 (highest 
detail) and in column 2 (the lowest detail of the 
sum). After the signal had been filtered, an envelope 
was computed using a normalized average Shannon 
energy detection algorithm (NASA) (3), 

௦ܧ ൌ
1
ܰ
|ݔሺ݅ሻ|ଷ log|ݔሺ݅ሻ|ଷ
ே

ୀଵ

 (3)

The envelope of heart sound can be seen as the first 
curve in the upper part of Figure 2 and the very 

bottom curve in the lower part of Figure 2. The 
second one is significantly squeezed, which can be 
observed on the x-axis representing time. Next, in 
interval starting from R-wave to the R-wave + 20 % 
of the R-R distance, abbreviated <R, 0.2R-R>, the 
centre of gravity was computed. Computation of the 
gravity centre is depicted in Figure 2, the first curve 
in the upper part of the figure. Integrals of the 
envelope were computed from the left and right side 
of the interval <R, 0.2R-R>. Particular integrals are 
also depicted in the same place as the envelope with 
the blue and green colour. The point at which these 
integrals have the same value was found. This point 
was declared the centre of gravity and was also S1. 

We assume that if S1 was detected correctly then 
it should correlate with respiration. For every R-R 
interval we computed the mean value of the 
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respiration curve and also the R-S1 distance which is 
the distance between the R-wave and the detected 
S1. The R-S1 function can be seen as the second 
curve from the bottom in the lower part of Figure 2. 
When we look at the R-S1 function and respiration 
in the lower part of Figure 2 it is clear that they are 
shifted in respect of each other. Therefore, we 
delayed the R-S1 curve towards the respiration curve 
in 10 steps, always by one R-R interval. In this way, 
we had 10 R-S1 curves, delayed from 0 to 9 R-R 
intervals. Next, we computed correlation with all 10 
R-S1 functions and R-R segmented respiration curve 
as a sign of good or bad detection capability for the 
given filter. We found the highest of the 10 
correlation coefficients and declared it the 
correlation between R-S1 and respiration for the 
given filter. 

3 RESULTS 

We assume that the higher the correlation, the better 
the detection of S1. Correlation for spontaneous and 
deep breathing was computed separately for each 
volunteer. Correlations were entered into the tables 
as shown in Figure 4. This figure shows the results 
for volunteer number 32 and volunteer number 55 
for deep breathing after filtering using Fourier 
analysis in the upper part of the figure and after 
filtering using wavelet transform at the bottom of the 
figure. The values of the correlations are coloured 
for better orientation in the tables. Values are 
coloured with a grey scale ranging from 1 –darkest 
to 0 –white. 

Median values - Deep breathing, filtered using Fourier analysis 
cut-
off 10 15 20 25 30 35 40 45 50 60 80 100 120 150 Hz 

5 0,32 0,44 0,45 0,57 0,54 0,53 0,48 0,46 0,46 0,44 0,43 0,43 0,43 0,43   

10 0,39 0,46 0,47 0,4 0,45 0,47 0,46 0,45 0,46 0,45 0,45 0,45 0,45   

15 0,44 0,48 0,44 0,46 0,42 0,45 0,44 0,43 0,44 0,44 0,44 0,44   

20 0,46 0,46 0,46 0,42 0,45 0,48 0,49 0,48 0,48 0,48 0,48   

25 0,37 0,42 0,44 0,48 0,48 0,48 0,52 0,52 0,52 0,52   

30 0,36 0,36 0,36 0,42 0,46 0,48 0,49 0,5 0,5   

35 0,27 0,38 0,42 0,43 0,46 0,46 0,46 0,46   

40 0,31 0,36 0,35 0,36 0,38 0,38 0,38   

45 0,24 0,31 0,33 0,37 0,37 0,37   

50 0,3 0,3 0,35 0,36 0,36   

Hz                               

Median values - Spontaneous breathing, filtered using Fourier analysis 
cut-
off 10 15 20 25 30 35 40 45 50 60 80 100 120 150 Hz 

5 0,21 0,2 0,23 0,22 0,23 0,25 0,24 0,24 0,26 0,26 0,26 0,25 0,25 0,25   

10 0,25 0,25 0,22 0,24 0,25 0,26 0,23 0,23 0,22 0,22 0,22 0,21 0,21   

15 0,27 0,25 0,26 0,33 0,33 0,36 0,36 0,34 0,35 0,34 0,33 0,33   

20 0,29 0,31 0,33 0,3 0,25 0,25 0,26 0,27 0,28 0,27 0,27   

25 0,31 0,29 0,26 0,27 0,24 0,3 0,31 0,3 0,31 0,31   

30 0,25 0,29 0,3 0,25 0,29 0,3 0,3 0,3 0,3   

35 0,22 0,25 0,28 0,32 0,33 0,31 0,31 0,31   

40 0,21 0,3 0,27 0,21 0,19 0,19 0,19   

45 0,23 0,23 0,19 0,21 0,2 0,21   

50 0,21 0,26 0,26 0,25 0,25   

Hz                               
Wavelet filter, deep breathing Wavelet filter, spontaneous breathing 

Median values Median values 

level 5 4 3 2 1 level 5 4 3 2 1 

5 0,41  0,45  0,42  0,42  0,42  5 0,25 0,22 0,22 0,22  0,22 

4 0,49  0,44  0,45  0,45  4 0,3 0,29 0,3  0,3 

3 0,49  0,5  0,5  3 0,28 0,32  0,3 

2          0,4  0,38  2          0,29  0,29 

Figure 5: Numbers in the tables represent median correlations between R-S1 function and respiration of all 30 volunteers 
after heart sound was filtered with a band-pass filter using Fourier analysis with low cut-off frequency from first column 
and high cut-off frequency from first row in upper two tables. Lower two tables represent the same correlations after 
summing wavelet detail levels ranging from the lowest detail from first column to highest detail from first row. 
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4 CONCLUSIONS 

As can be seen in Figure 4, individuals have 
different frequency bands in which they correlate 
with respiration. This is true for both deep and 
spontaneous breathing. As can be seen in Figure 5 
median values of correlations do not reach 
significantly higher values in any particular areas as 
compared to the rest of the table, which strengthens 
the claim that the spectrum of S1 that correlates with 
breathing is highly individual for each volunteer. We 
can say that for each volunteer there is a frequency 
band in which heart sound correlates significantly 
with breathing. If we compute median of maximum 
correlations of all volunteers across all the bands, we 
get a median correlation of 0.718 for deep breathing 
and 0.585 for spontaneous breathing. We can now 
say that R-S1 correlates with respiration for some 
filter for each volunteer. Another piece of 
information gained from this study is that deep 
breathing produces larger values of correlation than 
spontaneous breathing. When we compare wavelets 
and Fourier analysis, wavelets are not so sensitive in 
selecting the optimal band, while the advantage of 
Fourier analysis is its capability to tune bands more 
precisely. Filter banks db4, db14 and coif2 did not 
produce very different results when compared to 
each other. On the basis of this study, we can say 
that Fourier analysis is sufficient for heart sound 
pre-processing. The crucial thing here is appropriate 
frequency band selection for each individual. 
Computing correlation with respiration proved to be 
good sign for correct S1 detection. Further study 
would be beneficial for S2 and also for LVET 
detection. 
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