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Abstract: Classical social choice theory provides axiomatic modeling for collective decision making in multi-agent 
situations as functions of a set of profiles (i.e., tuples of transitive orderings). The celebrated Arrow’s 
impossibility theorem (for unanimity-and-independence-obeying preference aggregation) and the Gibbard–
Satterthwaite theorem (for strategy-proof voting procedures) assume the unrestricted domain as well as the 
transitivity of orderings. This paper presents a distribution map of all Arrow-type aggregation rules without 
the unrestricted domain axiom for the two-individual three-alternative case in parallel with non-imposed 
strategy-proof voting procedures by using a Prolog program that systematically removes profiles in the 
super-Arrovian domains. 

1 INTRODUCTION 

Social choice theory studies axiomatic collective 
decision making in multi-agent situations by 
assuming the transitivity of individual preference 
orderings (i.e., rankings), which is mapped into 
certain collective decision outcomes. 

Kenneth J. Arrow’s general impossibility 
theorem is a classical result regarding the social 
aggregation of a tuple of individual orderings (i.e., a 
profile) into the ordering of society as a whole 
(Arrow, 1951/63). A social welfare function (SWF) 
is required to satisfy the following five axioms: 
unrestricted individual orderings (U), the transitivity 
of the ordering of society as a whole (T), unanimity, 
namely the weak Pareto principle (P), independence 
of irrelevant alternatives (I), and non-dictatorship 
(D). Arrow proved that any aggregation rule that 
satisfies the first four axioms should be dictatorial, 
and therefore it is impossible to satisfy all five 
axioms. Allan Gibbard and Mark Satterthwaite 
independently proved that if there are three or more 
candidates any voting procedure is non-imposed and 
strategy-proof, namely every candidate has a 
possibility to win and no individual can manipulate 
the outcome of a vote by falsely reporting his or her 
own preference, the procedure should be dictatorial 
(Gibbard, 1973; Satterthwaite, 1975). These 

classical results of social choice theory assume an 
unrestricted domain. 

In order to prove new possibility results as well 
as classical impossibility theorems, this paper adopts 
a computational step to axiomatically model social 
choice under restricted domains instead of using 
pure mathematics. Prolog language is useful to 
program intelligent processing systems in the AI 
research and industry. In addition, Prolog uses a 
basic technology that stems from automated theorem 
proving (Robinson, 1965) based on predicate logic.  

Social choice theory has recently drawn the 
attention of computer scientists, as it is the 
foundation of mechanism design for multi-agent 
systems as well as game theory. Tang and Lin 
(2008) and Lin and Tang (2009) provided computer-
aided proofs of Arrow’s impossibility theorem and 
the Gibbard–Satterthwaite theorem for two 
individuals and three alternatives (which Lin and 
Tang called the “base case”) by using a SAT solver, 
and they proved the general case through 
mathematical induction. Without exposure to the 
source code, Tang and Lin also insisted that the base 
case could be proven by using Prolog. Independent 
of their work, Indo (2007) introduced a complete 
Prolog program that proves Arrow’s theorem and 
Wilson’s theorem for the “base case” in linear 
ordering. Indo (2009) also extended this approach to 
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several classical results of social choice theory 
including the Gibbard–Satterthwaite theorem and 
domain restrictions. In order to generate a possible 
domain and a social choice rule, Indo (2010) 
developed a Prolog program that implemented the 
systematic removal of a pair of profiles in the super-
Arrovian domains. 

In this paper, a generalized version of the profile 
elimination that removes arbitrary subsets in the 
union of two super-Arrovian domains is applied to 
prove the comprehensive distribution of Arrow-type 
preference aggregation rules without the unrestricted 
domain axiom for the base case, in parallel to non-
dictatorial strategy-proof social choice functions 
(SCFs).  

The remainder of this paper is organized as 
follows. Section 2 describes the two classical 
impossibility results and the domain conditions in 
order to escape from impossibility. Section 3 
introduces the alternative domain condition by 
eliminating profiles in the paired super-Arrovian 
domains. Section 4 explains a computational version 
of social choice theory and the profile elimination 
implemented in Prolog. Section 5 summarizes the 
experimental results (i.e., automated proofs) of the 
possibility of Arrow-type aggregation parallel to 
non-imposed strategy-proof voting. Section 6 
concludes. 

2 CLASSICAL RESULTS 

2.1 Preference Model 

Given a set of individuals, N = {1, 2, …, n}, and a 
set of a finite number of alternatives, A = {x, y, z, 
…}. A is called agenda. A (weak) preference 
ordering or ranking is defined as a complete and 
transitive binary relation on A. R is complete if for 
all x and y, either xRy, yRx, or both. R is transitive if 
for all x, y, and z, if x R y and yRz, then xRz. A 
binary relation {xRy, yRz, zRx} is intransitive. 

The indifference relation w.r.t. a relation R, 
which means xRy and yRx, is denoted by xIy. R is 
anti-symmetric if for all x and y, if xIy, then x = y. P 
stands for the strict part of R, namely x P y if xRy 
and not yRx. A preference ordering R is called a 
linear ordering if R = P(R), i.e., R is strict. 

Throughout this paper, we assume linear 
ordering. In this case, we can consider any ordering 
as a permutation of agenda A. Let profile RN = (R1, 
R2, …, Rn) be a combination of all individuals’ 
orderings. The set of all possible profiles U is called 
the unrestricted domain (or universal domain). 

Moreover, we assume that there exists a ranking of 
society as a whole, RS, as well as individual rankings. 

2.2 Preference Aggregation 

Definition. An SWF is a function defined on a 
subset of profiles D   U to the set of social 
rankings. For any profile RN   D, we say RN is 
permissible. The ranking of society, RS = f(RN), 
aggregated by an SWF f should satisfy the following 
five conditions: 
(U)  The SWF is defined for every possible profile 
(unrestricted domain). 
(T) The  social ranking RS should be transitive. 
(P) For any pair of alternatives, x and y, if xRiy for 
every individual i, then xRSy (unanimity). 
(I) For any pair of alternatives, x and y, if every 
individual has the same ranking regarding this pair 
in two profiles RN and RN', then xRSy if xRS'y (the so-
called independence of irrelevant alternatives). 

An individual i is called a dictator if for any pair 
of alternatives, x and y, if xRiy, then xRSy. 
(D) There is no dictator (i.e., non-dictatorship). 

An SWF is termed resolute if the social ordering 
is linear for every profile. We abuse the notion of 
SWF when its domain is restricted to a subset of 
profiles, thereby dropping the conditions U and D. 
Theorem (Arrow’s Impossibility Theorem). If there 
are one or more individuals and more than two 
alternatives, then any SWF that satisfies U, T, P, and 
I is dictatorial. 

2.3 Voting Procedure 

Definition. A (resolute) SCF is a function that 
selects a single alternative from each non-empty 
subset of alternatives (i.e., the agenda) for every 
permissible profile.  

An SCF is manipulable if an individual can 
report a false ordering to establish a more preferable 
outcome for herself/himself: 
(A) An SCF is defined for every profile and the 
agenda is restricted to A. 
(S) An SCF is not manipulable (strategy-proofness 
or non-manipulability). 
(C) There is no alternative x as x is never selected 
(as a single winner) for any profile or agenda (non-
imposition or a citizen’s sovereignty). 

A single individual whose top-ranked alternative 
is always selected as a winner is called a dictator. An 
SCF is dictatorial if there is a dictator. 
Theorem (The Gibbard–Satterthwaite Theorem). If 
there are one or more individuals and more than two 
alternatives, then any (resolute) SCF that satisfies A,
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 S, and C is dictatorial. 

2.4 Restricted Domain 

Restricting permissible orderings for each individual 
may help society escape from impossibilities. Many 
classical domain conditions are known for a 
pairwise-majority vote. Kalai and Muller (1977) 
proposed decomposability into a relation that is 
closed under a decisiveness implication as a 
necessary and sufficient condition for the existence 
of non-dictatorial SWFs, paralleling strategy-proof 
voting procedures, assuming that every individual 
has the same possible orderings (i.e., a common 
admissible domain). Blair and Muller (1983) 
modified this for an individual’s possible set of 
orderings. Kalai, Muller, and Satterthwaite (1979) 
extended decomposability to economic 
environments (i.e., saturated domains). Arrow 
proposed the “free triple” condition, while Kelly 
(1994) and Ozdemir and Sanver (2007) elaborated 
on this condition. 

All the above literature argues that mathematical 
conditions that restrict the domain of social choice 
rule at most the possible set of orderings for each 
individual. We depart from classical mathematical 
approaches to social choice in two aspects. First, this 
paper proposes finer-grained conditions that restrict 
profiles as the permissible inputs of collective 
decision making (see Section 5) and, second, to do 
so we adopt computational proofs instead of 
standard mathematical proofs, as we demonstrate in 
the following sections. 

3 ELIMINATION OF PROFILES 
FROM THE SUPER-ARROVIAN 
DOMAINS 

This section introduces an alternative way in which 
to find domains to avoid impossibility. By using the 
backtrack mechanism, we can find all the possible 
aggregation rules, at least in principle. Note that 
even for two-individual three-alternative cases, a 
naive backtrack is not computationally efficient for 
generating all those functions. The cumulative 
constraint in the recursive program plays a crucial 
role in the negative proof for unrestricted domains. 
However, this is not enough for analyzing restricted 
domains. This section therefore introduces a profile 
elimination procedure for removing a set of profiles 
in order to generate versions of the SWF in restricted 
domains more efficiently. 

3.1 Super-Arrovian Domain 

Let agenda A = {a, b, c}. If we take a subset of 
profiles instead of the unrestricted domain, an 
aggregation rule may satisfy all the axioms except 
for U. Indeed, we can deliberately select a set of 
profiles to be eliminated in order to escape from the 
Arrow-type impossibility. These profiles have been 
termed the super-Arrovian domain in the literature 
(Fishburn and Kelly, 1997): 

P1. (a P4 c P4 b, c P4 b P4 a) = ((a, c, b), (c, b, a)), 
P2. (a P5 b P5 c, c P5 a P5 b) = ((a, b, c), (c, a, b)), 
P3. (b P6 a P6 c, a P6 c P6 b) = ((b, a, c), (a, c, b)), 
P4. (b P1 c P1 a, a P1 b P1 c) = ((b, c, a), (a, b, c)), 
P5. (c P2 b P2 a, b P2 a P2 c) = ((c, b, a), (b, a, c)), 
P6. (c P3 a P3 b, b P3 c P3 a) = ((c, a, b), (b, c, a)). 

These six profiles propagate the decisiveness of 
any subgroup for a pair of alternatives over all the 
possible pairs of alternatives, and they are minimal 
and sufficient for deducing a dictatorship under 
Arrow’s axioms without U. There are also another 
six profiles where Qk is (r2, r1), which corresponds to 
Pk = (r1, r2), k = 1, …, 6. 

3.2 Profile Elimination 

The profile elimination procedure implemented in 
Prolog used first by Indo (2010) can provide 
domains and rules finer than those conditions 
introduced in Section 2.3. The next section explains 
the computational proof for the impossibility results 
and its modification to implement the profile 
elimination. 

In order to generate a possible domain and a 
social choice rule more effectively, it is beneficial to 
eliminate the profiles from M = {P1, …, P6}   {Q1, 
…, Q6}. Indeed, Indo (2010) demonstrated that after 
the removal of (Pk, Qj) such that |(k – j) mod 6|  1, 

the remaining domain that consists of 34 profiles has 
18 Arrovian aggregation rules that can be reduced to 
essentially six unanimous and constant rules (this 
result can be verified by using test1/0 in the Prolog 
program). Those rules are maximally robust in the 
sense of Dasgupta and Maskin (2008). 

4 COMPUTATIONAL APPROACH 

This section introduces the Prolog application for the 
computational version of axiomatic social choice 
theory. Because the basic technique adopted in this 
paper is essentially the same as that used in previous 
studies, we omit the detail. The source code is 
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available from http://www.xkindo.net/ 
sclp/pl/icaart2014.pl.  

The program has been tested for version 6.4.1 
running 64 bit Windows 7 (and it may run for any 
PC that has installed SWI-Prolog version 5.6.52 or 
later). 

4.1 Social Choice Theory in Logic 
Programming 

A Prolog program consists of clauses. A generic 
discrete functional form f( Function, Domain, 
Axiom )is represented as follows: 

f([ ], [ ], _). 
f([ X - Y | F ], [ X | D ], Axiom):-  

f(F, D, Axiom),  
Goal =.. [ Axiom, X, Y, F], 
Goal. 

The first clause is the null function defined on an 
empty domain. The second clause assigns 
recursively a logically possible value without 
violating any axiom given by the modeler under the 
values F that have already been assigned to the 
subdomain D. Note that, abusing the notation, we 
write “X-Y” to indicate an assignment of a value Y in 
the region to a value X in the domain. Predicate 
=../2 in the second clause stands for a “term to list 
conversion.” 

The axioms of SWFs and SCFs can be written as 
follows: 

swf_axiom( X, Y, F):- rc( _, Y),  
pareto( X - Y), iia( X - Y, F). 

scf_axiom( X, Y, F):- x( Y), 
\+ manipulable( _, X - Y, F). 

The SWFs and SCFs defined on some domain D 
can be written as follows: 

swf( F, D):- f( F, D, swf_axiom),  
\+ dictatorial_swf( _, F). 

scf( F, D):- f( F, D, scf_axiom), 
non_imposed(F), 
\+ dictatorial_scf(_,F). 

4.2 Profile Elimination 

For the sake of later use, the rankings represented by 
a predicate rc/2 are as follows: 

rc( 1, [a, c, b]). 
rc( 2, [a, b, c]). 
rc( 3, [b, a, c]). 
rc( 4, [b, c, a]). 
rc( 5, [c, b, a]). 
rc( 6, [c, a, b]). 

The possible profiles (pp/1) and unrestricted 

domain (all_pp/1) are written as follows: 

pp( [P, Q]):- rc( _, P), rc(_, Q). 
all_pp(U):- findall( O, pp(O), U).. 

Note that these six rankings should be numbered 
in the specified sequence (modulo 6). The super-
Arrovian domain Pk and Qj (k, j = 1, …, 6) described 
in Section 3.1 can be generated by pairing (and by 
exchanging) indices such that (k, j) = (1, 5), (2, 6), (3, 
1), (4, 2), (5, 3), and (6, 4). 

The simple recursive program described in the 
previous section is also useful for finding a way in 
which to escape from the impossibility results. A 
candidate domain consists of the remaining profiles 
in the domain after a subset C   M has been 
removed from the unrestricted domain U, where D = 
U   C. In the Prolog program, select_n/3 (user-
defined) for generating subsets and subtract/3 
(builtin) for deleting list elements are used. 

5 POSSIBILITY RESULTS 

Tables 1–3 summarize the experimental results of 
the profile elimination (these results are reproducible 
by the automated proofs test2/0 and test3/0 in 
the Prolog program). 

5.1 Possible SWFs 

The top row in Table 1 (labeled 2) indicates the 
cases that no Arrow-type aggregation rule exists 
except for dictatorships. In particular, Cell (2, 12) 
corresponds to the case of Arrow’s impossibility 
theorem. Moreover, Cell (2, 6) valued 2 implies that 
even when one super-Arrovian domain has been 
completely eliminated, the other remaining super-
Arrovian domain is sufficient to prove a dictatorship. 
Further, Cell (3, 10) and Cell (20, 0) both indicate 
the 18 rules mentioned in Section 3.2. Note that 
there are 4096 domains in total. The bottom row 
coincides with binomial coefficients 12Ccolumn. 

Interestingly, Cell (k, 6) (k >2) suggests that any 
exchange between P and Q can reverse impossibility 
if the status quo domain is a complete removal of 
one of the super-Arrovian domains. We term this the 
exchange property. 

5.2 Possible SCFs 

With regard to Table 2, the total number of domains 
is the same as shown in Table 1. Similar to the SWF 
cases in Table 1, the top row labeled 2 also indicates 
the   impossibility   results   that     no   non-imposed 
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Table 1: Arrow-type preference aggregation rules (SWFs) 
generated by profile elimination in super-Arrovian 
domains. The rows represent the counts of SWFs that 
include two dictatorships, the columns represent the 
remaining numbers of the super-Arrovian profiles, and the 
cells contain the counts of restricted domains on which an 
SWF exists.  

 

Table 2: Non-imposed strategy-proof voting procedures 
(SCFs) generated by profile elimination in super-Arrovian 
domains. The rows represent the counts of SCFs that 
include two dictatorships, the columns represent the 
remaining numbers of the super-Arrovian profiles, and the 
cells contain the counts of restricted domains on which an 
SCF exists. 

 

strategy-proof voting procedure exists except for the 
dictatorship of each person. Cell (2, 12) valued 1 
corresponds to the case of the Gibbard–Satterthwaite 
theorem. Similar to Table 1, Cell (2, 6) valued 2 
suggests that the super-Arrovian domain is sufficient 
to prove a dictatorship. Cell (k, 6) also satisfies the 
exchange property. Cell (3, 10) valued 18 
corresponds to the 18 maximal domains. 

Table 3: Parallel possibility results of SWFs and SCFs. 
The rows represent the numbers of SCFs that include two 
dictatorships, the columns represent the numbers of SWFs, 
and the cells contain the counts of restricted domains.  

 

5.3 Parallel Possibility Results 

In Table 3, the two distributions seem to be 
positively correlated, but the precise interrelation is 
unclear. The top-left corner (2, 2) has a value of 169, 
which indicates that the parallel impossibility results 
have occurred in the 169 domains. Cell (3, 2) 
implies that 24 domains have a strategy-proof voting 
procedure but no non-dictatorial Arrow-type 
preference aggregation. In Cell (196, 20), the two 
super-Arrovian domains have been eliminated; the 
remaining 24 profiles deduce 20 SWFs and 196 
SCFs.  

6 CONCLUSIONS 

This paper presented a complete distribution map of 
all Arrow-type aggregation rules without the 
unrestricted domain axiom for the two-individual 
three-alternative linear ordering case in parallel with 
non-imposed strategy-proof voting procedures by 
using a Prolog program that systematically removes 
the arbitral subset of the super-Arrovian domains. 

We can summarize the presented observations 
into the following three parallel possibility results. 
Result 1. The impossibility result no longer occurs if 
more than half of the 12 profiles have been 

swf 0 1 2 3 4 5 6 7 8 9 10 11 12 total
2 2 12 48 76 48 12 1 199
3 60 156 108 18 342
4 54 228 225 36 543
5 12 170 348 60 590
6 60 390 120 6 576
7 228 252 24 504
8 48 348 50 446
9 156 120 6 282

10 225 24 249
11 76 60 136
12 108 6 114
13 36 36
14 48 48
15 18 18
17 12 12
20 1 1

total 1 12 66 220 495 792 924 792 495 220 66 12 1 4096

sp 0 1 2 3 4 5 6 7 8 9 10 11 12 total
2 2 12 30 64 48 12 1 169
3 114 120 18 252
4 144 255 36 435
5 62 300 90 452
6 12 150 252 6 420
7 294 72 366
8 120 242 12 374
9 132 78 210

10 18 192 72 282
11 36 48 84
12 57 108 18 183
13 30 48 6 84
14 4 36 72 112
15 36 12 48
16 69 24 93
17 12 36 48
18 72 72
19 12 24 36
20 36 12 48
21 12 12
22 36 36 72
23 12 12
25 30 30
26 12 12
28 24 3 27
29 6 6
30 6 6
31 24 24
34 12 12
35 12 12
37 12 12
38 6 12 18
40 6 12 18
41 12 12
46 6 6
48 12 12
50 6 6
74 6 6
88 12 12

196 1 1
total 1 12 66 220 495 792 924 792 495 220 66 12 1 4096

swf
scf 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 20 total

2 169 169
3 24 228 252
4 6 84 345 435
5 6 144 302 452
6 24 24 168 204 420
7 36 192 138 366
8 24 36 78 168 68 374
9 12 12 60 96 30 210
10 36 36 18 120 60 12 282
11 24 12 24 24 84
12 30 36 30 24 48 12 3 183
13 6 24 24 12 18 84
14 24 48 30 10 112
15 12 24 12 48
16 12 18 48 12 3 93
17 12 24 12 48
18 60 12 72
19 12 12 12 36
20 6 6 24 12 48
21 12 12
22 12 24 24 12 72
23 12 12
25 24 6 30
26 12 12
28 3 24 27
29 6 6
30 6 6
31 24 24
34 12 12
35 12 12
37 12 12
38 12 6 18
40 12 6 18
41 12 12
46 6 6
48 12 12
50 6 6
74 6 6
88 12 12
196 1 1
total 199 342 543 590 576 504 446 282 249 136 114 36 48 18 12 1 4096
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eliminated (see the top row in Table 1 and Table 2: 
Cell (2, j) = 0 if j < 6). 

In addition, the exchange property described in 
the previous section is satisfied.  
Result 2. The possibility may occur if more than two 
of the 12 profiles are eliminated appropriately (see 
the second and subsequent rows in Table 1 and 
Table 2: If Cell (k, j) > 0 & k > 2, then j>2). 

The minimal number of eliminations sufficient to 
deduce a possibility is two. Indeed, these are the 18 
profile pairs (see Cell (3, 10) in Table 1 and Table 2 
as well as test1 in the author’s Prolog program). 
Result 3. (i) There are 169 domains where Arrow-
type aggregation (SWF) and non-dictatorial non-
imposed strategy-proof voting (SCF) are both empty 
(i.e., Cell (2, 2) = 169 in Table 3). (ii) There are also 
30 domains where SCF exists but SWF is empty (i.e., 
Cell (3, 2) = Cell (4, 2) = 0 in Table 3). (iii) There is 
no domain where SWF exists but SCF is empty (i.e., 
Cell (2, j) = 0 if j > 2 in Table 3). (iv) In the other 
domains, SWF and SCF are both non-empty.  

Additionally, if we substitute Maskin 
monotonicity and unanimity for strategy-proofness 
and non-imposition, then Table 2 is the same as 
shown in Table 1 (see test4). Muller and 
Satterthwaite (1977) proved the equivalence for the 
unrestricted domain. Lastly, the n-person and m-
alternative case possibility result can be proven by 
assuming that n – 2 individuals are dummy and 
everyone is indifferent for m – 3 alternatives, but 
further study in this regard is needed. 
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