
Multiagent Planning Supported by
Plan Diversity Metrics and Landmark Actions

Jan Tožička1, Jan Jakubův1, Karel Durkota1, Antonı́n Komenda2 and Michal Pěchouček1

1Agent Technology Center, Department of Computer Science, Czech Technical University, Prague, Czech Republic
2Technion - Israel Institute of Technology, Haifa, Israel

Keywords: Multiagent Planning, Diverse Planning, Planning with Landmarks.

Abstract: Problems of domain-independent multiagent planning for cooperative agents in deterministic environments
can be tackled by a well-known initiator–participants scheme from classical multiagent negotiation protocols.
In this work, we use the approach to describe a multiagent extension of the Generate-And-Test principle dis-
tributively searching for a coordinated multiagent plan. The generate part uses a novel plan quality estimation
technique based on metrics borrowed from the field of diverse planning. The test part builds upon planning
with landmarks by compilation to classical planning. Finally, the proposed multiagent planning approach was
experimentally analyzed on one newly designed domain and one classical benchmark domain. The results
show what combination of plan quality estimation and diversity metrics provide the best planning efficiency.

1 INTRODUCTION

Multiagent planning is a specific form of distributed
planning and problem solving, which was summa-
rized by (Durfee, 1999). Multiagent planning re-
search and literature focused mostly on thecoordina-
tion part of the problem while thesynthesispart deal-
ing with a particular ordering of actions was studied
in the area of classical planning.

The coordination was, for instance, studied
in well-known General Partial Global Planning
by (Decker and Lesser, 1992) or with additional
domain-specific information as TALPlanner by (Do-
herty and Kvarnström, 2001). The first fusion of
the coordination and synthesis parts for domain-
independent multiagent planning with deterministic
actions was proposed by (Brafman and Domshlak,
2008). The approach was based on the classical plan-
ning formalism STRIPS(Fikes and Nilsson, 1971) ex-
tended to multiagent settings denoted as MA-STRIPS.
(Brafman and Domshlak, 2008) also proposed a solu-
tion for the coordination part of the problem by trans-
lation to a Distributed Constraint Satisfaction Prob-
lem (DCSP). Since the paper was focused primar-
ily on theoretical analysis of computational complex-
ity of MA-STRIPS problems, several algorithmic ap-
proaches appeared later in other papers, e.g., in (Nis-
sim et al., 2010) or (Torreño et al., 2012).

In this paper, we propose a novel algorithmic ap-

proach to multiagent planning for problems described
in MA-STRIPS based on the principle of classical
multiagent negotiation protocols as Contract Net with
one agent acting as an initiator and the rest acting as
participants. The approach can be seen as a proto-
col describing distribution of theGenerate-And-Test
Searchwhich was a base principle also in multia-
gent planners described by (Nissim et al., 2010) (us-
ing DCSP for the coordination part and classical plan-
ner for the generation part) and by (Pellier, 2010) (us-
ing backtracking search for the coordination part and
planning graphs for the generation part).

The contribution of our work is in the way how
plan candidates are generated and tested. Our gener-
ative process uses estimation of quality of generated
plans based on metrics of diverse planning (particu-
larly from (Bhattacharya et al., 2010) and (Srivastava
et al., 2007)). In other words, the idea is to generate
good-quality plans and avoid low-quality ones. The
quality measure is based on the history of answers
of the participants who were trying to extend the ini-
tial plan. Therefore it can be understood as a learn-
ing of the initiator agent to generate plan candidates
which can be more likely extended by more partici-
pant agents to a final solution.

The testing part utilizes planning with landmarks
(similarly as used by (Nissim et al., 2010)). The dif-
ference is that we translate a planning problem with
landmarks into an ordinary planning problem, which

178 Tožička J., Jakubův J., Durkota K., Komenda A. and Pěchouček M..
Multiagent Planning Supported by Plan Diversity Metrics and Landmark Actions.
DOI: 10.5220/0004918701780189
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 178-189
ISBN: 978-989-758-015-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

can be then solved by a classical planner. Usually,
landmarks are incorporated into planners as special
heuristics as in (Richter and Westphal, 2010). How-
ever, our translation enables a straightforward incor-
poration of externally defined landmarks, which is re-
quired by the proposed planning protocol.

Finally, we provide experimental evaluation of the
planner on a newly designed planning domaintools
androversplanning domain from International Plan-
ning Competition extended for multiagent planning.

2 PLANNING MODEL

We consider a number ofcooperativeandcoordi-
natedagents featuring distinct sets of capabilities (ac-
tions) which concurrently plan and execute their local
plans in order to achieve a joint goal. The environ-
ment wherein the agents act isclassicalwith deter-
ministic actions. The following formal preliminaries
compactly restate the MA-STRIPSproblem (Brafman
and Domshlak, 2008) required for the following sec-
tions.

2.1 Planning Problem

An MA-STRIPS planning problemP is defined as a
quadrupleP = 〈P,A , I ,G〉, whereP is a set of propo-
sitions or facts,A is a set ofagents, I is an initial state
andG is a set of goals. We useα andβ to range over
agents inA .

An action an agent can perform is a triplea =
〈apre,aadd,adel〉 of subsets ofP, whereapre is the set
of preconditions,aadd is the set of add effects, and
adel is the set of delete effects. We define functions
pre(a), add(a), anddel(a) such that for any action
a it holdsa = 〈pre(a),add(a),del(a)〉. Moreover let
eff(a) = add(a)∪del(a).

The set A contains agents. We identify an
agent with its capabilities, that is, an agentα =
{a1, . . . ,an} is characterized by a finite repertoire of
actions it can preform in the environment. Astate
s= {p1, . . . , pm}⊆P is a finite set of facts and we say
that pi holds ins. When no confusion can arise, we
useA also to denote the set of all actions ofP , that is,
when we writea∈ A thenA is to be considered as a
shortcut for

⋃
A .

Example 1. We shall demonstrate definitions of this
section on a simple logistic problem involving three
locationsPrague, Brno, Ostrava, and aCrown to be
delivered fromPrague to Ostrava. A Plane can travel
fromPrague to Brno and back. Similarly, aTruck pro-
vides connection betweenBrno andOstrava.

The set of facts P contains (1) facts to describe po-
sitions ofPlane and Truck like Plane-at-Prague and
Truck-at-Ostrava, and (2) facts to describe position
of theCrown like Crown-in-Brno andCrown-in-Truck.
The initial state and the goal are given as follows.

I = {Plane-at-Prague,Truck-at-Brno,Crown-in-Prague}
G= {Crown-in-Ostrava}

Agents can execute actions to:

1. load and unload the Plane or the Truck like
loadPlane@Prague and unloadTruck@Ostrava. The action
loadPlane@Prague has preconditionsPlane-at-Prague
and Crown-in-Prague, one add effectCrown-in-Plane
and it deletesCrown-in-Prague. Other actions are de-
fined similarly.

2. fly the Plane and drive the Truck between allowed
destinations likeflyBrno→Prague and driveBrno→Ostrava.
For example, driveBrno→Ostrava has precondition
Truck-at-Brno and it adds Truck-at-Ostrava while
removingTruck-at-Brno.

AgentPlane is defined as being capable of executing
following actions.

Plane = { flyPrague→Brno,flyBrno→Prague,
loadPlane@Prague, loadPlane@Brno,
unloadPlane@Prague,unloadPlane@Brno }

AgentTruck is defined similarly. Agent setA is then
simply{Plane,Truck}.

2.2 Problem Projections

MA-STRIPS problems distinguish betweenpublic
and internal facts and actions. Letfacts(a) =
pre(a) ∪ add(a) ∪ del(a) and similarly facts(α) =⋃

a∈α facts(a). An α-internal and public subset of all
factsP, denotedPα-int andPpub respectively, are sub-
sets ofP such that the following hold.

Ppub ⊇
⋃

α 6=β(facts(α)∩ facts(β))
Pα-int = facts(α)\Ppub

Pα = Pα-int∪Ppub

The setPpub contains all the facts that are used in
actions of at least two different agents. The set can
possibly contain also other facts, that is, some facts
mentioned in actions of one agent only. This defini-
tion of public facts differs from other definitions in
literature (Brafman and Domshlak, 2008) wherePpub

is defined using equality instead of superset (⊇), i.e.,
our definition gives partial freedom what is treated as
public. Our definition allows us to experiment with
extensions of the set of public facts. For the purpose
of this paper, however, the definition with equality can
be considered without any effect on our results. We
suppose thatPpub is an arbitrary but fixed set which

Multiagent�Planning�Supported�by�Plan�Diversity�Metrics�and�Landmark�Actions

179

satisfies the above condition. SetPα-int of α-internal
facts contains facts mentioned only in the actions of
agentα, but possibly not all of them. The setPα con-
tains factsrelevantto agentα.

Example 2. In our running example the set
facts(Plane) contains Plane-at-Prague, Plane-at-
Brno, Crown-in-Prague, Crown-in-Plane, andCrown-
in-Brno. The only fact shared by the two agents is
Crown-in-Brno but later on we will require also G⊆
Ppub so we have the following.

Ppub= {Crown-in-Brno,Crown-in-Ostrava}
PPlane-int = {Plane-at-Prague,Plane-at-Brno

Crown-in-Prague,Crown-in-Plane}
PPlane = Ppub∪PPlane-int

The set PTruck is defined appropriately.

Theprojection aα of actiona to agentα is an ac-
tion defined as follows.

aα = 〈pre(a)∩Pα,add(a)∩Pα,del(a)∩Pα〉

Example 3. In our example we can compute the
below action projections. To save space we write
(flyPrague→Brno)

Plane asflyPlane
Prague→Brno and so on.

flyPlane
Prague→Brno = flyPrague→Brno

flyTruck
Prague→Brno = 〈 /0, /0, /0〉

loadPlane
Truck@Brno = 〈{Crown-in-Brno}, /0,{Crown-in-Brno}〉

unloadPlane
Truck@Ostrava = 〈 /0,{Crown-in-Ostrava}, /0〉

The setαpubof public actionsof agentα is defined
asαpub = {a | a ∈ α,eff(a)∩Ppub 6= /0}, and the set
αint of internal actionsof agentα asαint = α \αpub.
The setApub of all public actionsof problemP is de-
fined asApub=

⋃
α∈A αpub, and the setAα of all ac-

tionsrelevantto agentα is Aα =αint∪{aα|a∈Apub}.
Note thataα = a for anya∈α. Hence in the definition
of Aα we do not need to project internal actions, and
the only actions which are effected byα-projection
are public actions of agents other thanα.

Example 4. In our example we have the following
public and relevant actions.

Planepub= { loadPlane@Brno,unloadPlane@Brno }
APlane = { flyPrague→Brno,flyBrno→Prague,

loadPlane@Prague,unloadPlane@Prague,

loadPlane
Plane@Brno,unloadPlane

Plane@Brno,

loadPlane
Truck@Brno,unloadPlane

Truck@Brno,

loadPlane
Truck@Ostrava,unloadPlane

Truck@Ostrava }

Note thatAPlane has ten actions whileATruck has only
eight becauseloadPlane@Prague andunloadPlane@Prague

are private forPlane.

In a MA-STRIPS problemP , all the agents op-
erate on a shared global state. The projectionP α of
a problemP to agentα is a classical STRIPS prob-
lem where an agent has an internal copy of the global
state. Previously defined relevant actionsAα contain
(1) internal actions of agentα, (2) public actions ofα,
and (3) projections of public actions of other agents
which emulate effects of external actions on the inter-
nal state. ProjectionP α of P is defined as follows.

P α = 〈Pα,Aα, I ∩Pα,G〉

Example 5. In our example we have

I ∩PPlane = {Plane-at-Prague,Crown-in-Prague}
P Plane = 〈PPlane,APlane, I ∩PPlane,G〉

ProjectionP Truck is defined similarly.

In the rest of this paper we consider only problems
where all the facts of the goal stateG are public, that
is, G⊆ Ppub which is common in literature (Nissim
and Brafman, 2012). This assures that any agent is
able to find its local solution fulfilling the goal if it is
satisfiable. Then it is up to the agent negotiation to
extend this local solution to a valid plan. Moreover
we suppose that two different agents do not execute
the same action, that is, we suppose that the setsαi
are pairwise disjoint (Brafman and Domshlak, 2008).

2.3 Plans and Solutions

A plan π is a sequence of actions〈a1, . . . ,ak〉. A plan
π defines an order in which the actions are executed
by their unique owner agents. It is supposed that inde-
pendent actions can be executed in parallel. A planπ
is called asolutionof P when it contains actions from
A and a sequential execution of the actions fromπ by
their respective owners transforms the initial stateI to
a state which is a subset ofG. Let sol(P) denote the
set of all solutions of MA-STRIPS problemP . Simi-
larly, let sol(P α) denote the set of all solutions of the
classical STRIPSproblemP α.

Example 6. Let us consider the following plans.

π0 = 〈loadPlane@Prague,flyPrague→Brno,unloadPlane@Brno,

loadTruck@Brno,driveBrno→Ostrava,unloadTruck@Ostrava〉

π1 = 〈unloadPlane
Truck@Ostrava〉

π2 = 〈unloadTruck
Plane@Brno, loadTruck

Truck@Brno,

driveBrno→Ostrava,unloadTruck
Truck@Ostrava〉

It is easy to check thatπ0 is a solution of our example
MA-STRIPSproblemP . Planπ1 is a solution of pro-
jection P Plane because projectionunloadPlane

Truck@Ostrava
of Truck’s public action simply produces the goal state
out of the blue. Finally, clearlyπ2 ∈ sol(P Truck).

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

180

A public planof problemP is a plan that contains
only actions fromApub, that is, contains only public
actions ofP . A public plan can be seen as a solution
outline that captures execution order of public actions
while ignoring agents internal actions. For a solu-
tion π of P we construct thepublic projectionπpub by
removing internal actions, that is, by restrictingπ to
Apub. Henceπpub is a public plan ofP . For a solution
π of P α thepublic projectionπpub is constructed sim-
ilarly by removing internal actions and additionally
by translating projection images back to their projec-
tion origins. That is to say, thatπpub is composed of
public actions fromApub rather than from their pro-
jections which are present inπ. Thusπpub is again a
public plan ofP .

Example 7. In our example we know thatπ0∈ sol(P)
and π1 ∈ sol(P Plane) and π2 ∈ sol(P Truck). Thus we
can construct the following public plans.

πpub
0 = 〈unloadPlane@Brno, loadTruck@Brno,

unloadTruck@Ostrava〉

πpub
1 = 〈unloadTruck@Ostrava〉

πpub
2 = 〈unloadPlane@Brno, loadTruck@Brno,

unloadTruck@Ostrava〉

Note thatπpub
0 = πpub

2 .

2.4 Public Plan Extensibility

We want to construct a solution ofP from solutions
of agent projectionsP α. But not all projection solu-
tions can be easily composed to a solution ofP . The
concept ofpublic plan extensibilityhelps us to select
projection solutions which are conductive to our pur-
pose. In this section we useσ to range over public
plans to improve readability.

Definition 1. Letσ be a public plan ofP . We say that
σ is internally extensibleif there isπ ∈ sol(P) such
thatπpub= σ. Similarly, we say thatσ is internallyα-
extensibleif there isπ ∈ sol(P α) such thatπpub= σ.

Example 8. In our example it is clear thatπpub
0 is

internally extensible because it was constructed from
the solution ofP . From the same reason we see that
πpub

1 is internally Plane-extensible andπpub
2 is inter-

nally Truck-extensible. It is easy to see thatπpub
2 is

also internallyPlane-extensible. However,πpub
1 is not

internallyTruck-extensible becauseTruck needs to ex-
ecute other public actions prior tounloadTruck@Ostrava.

The following lemma states that a solution of
problemP can be constructed from a public planσ
which is internallyα-extensible for all the involved
agents. The constructive proof suggests an algorithm
to construct a solution.

Lemma 1. Let public planσ of P be given. Public
planσ is internally extensible if and only ifσ is inter-
nally α-extensible for every agentα that owns some
action fromσ.

Proof. Case (⇒) is trivial. Whenσ is internally ex-
tensible then there isπ ∈ sol(P) such thatπpub = σ.
We can construct projectionπα of π to agentα by re-
moving internal actions of agents other thanα, and by
applying projectionaα to the remaining actionsa. It
holds thatπα ∈ sol(P α) and alsoπpub

α = σ. Thusσ is
internallyα-extensible.

To prove case (⇐) let us suppose thatα1,. . . ,αn
are all the agents that owns some action inσ. For
every i, σ is internally αi-extensible and thus there
is πi such thatπi ∈ sol(P αi) andπpub

i = σ. Now we
construct a solutionπ of P from projection solutions
πi ’s as follows. We split eachπi by the public actions
from σ and we join the corresponding internal parts
of different plans together. Then we constructπ from
σ by adding the joined parts between corresponding
public actions inσ. Note that we do not need to do
a reverse projection because for actiona internal to
agentα it holds thataα = a. Clearly πpub = σ and
it is not hard to prove thatπ ∈ sol(P). Henceσ is
internally extensible.

The consequence of the lemma is that to ensure
thatP has a solution it is enough to find a solutionπ∈
sol(P α) for some agentα such thatπpub is internally
extensible.

Example 9. We have seen previously thatπpub
2 is in-

ternally Truck-extensible and also internallyPlane-
extensible. Hence we know that there is some solution
of P even without knowingπ0. On the other hand, we
know thatπpub

1 is not internallyTruck-extensible and

thusπpub
1 is not internally extensible.

Some public plans ofP can be extended to a valid
solution ofP but it might require inserting also public
actions intoσ. The following definition captures this
notion which will be used in the following sections.

Definition 2. Let public planσ of P be given. We say
that σ is publicly extensibleif there is public planσ′
of P which is internally extensible andσ is a subse-
quence ofσ′.

Example 10. We have seen thatπpub
1 is not internally

extensible, however, it is still publicly extensible be-
cause it is a subsequence ofπpub

0 .

Similarly we define thatσ is publiclyα-extensible.
Projection solutionπ∈ sol(P α) is called internally ex-
tensible (or publicly extensible) when the correspond-
ing public planπpub is so.

Multiagent�Planning�Supported�by�Plan�Diversity�Metrics�and�Landmark�Actions

181

3 CONFIRMATION SCHEME

In this section we present a multiagent planning al-
gorithm which effectively iterates over all solutions
of one selected agent (initiator) in order to find such
a solution which is internally extensible by all the
other agents (participants). The confirmation algo-
rithm provides a sound and complete multiagent plan-
ning algorithm (see Theorem 2).

Algorithm 1: Multiagent planning algorithm with it-
erative deepening.

input : multiagent planning problemP
output : a solutionπ of P when solution exists
Function MultiPlanIterative(P) is

lmax← 1
loop

π← MultiPlan(P , lmax)
if π 6= /0 then

return π
end
lmax← lmax+1

end
end

We suppose that we have a separate agent capa-
ble of running planning algorithms for each agent
mentioned in a given problemP . Procedure
MultiplanIterative from Algorithm 1 is the main
entry point of our algorithms, both in this and the fol-
lowing sections. This procedure is initially executed
by one of the agents calledinitiator. It takes a prob-
lem P as the only argument and it iteratively calls
procedureMultiPlan(P , lmax) to find a solution of
P of lengthlmax, increasinglmax by one on a failure.
In this way we ensure completeness of our algorithm
because we enumerate the infinite set of all plans in
a way that does not miss any solution. To simplify
the presentation, we restrict our research only to those
problemsP which actually have a solution, that is,
sol(P) 6= /0.

Algorithm 2 presents implementation of
MultiPlan in the confirmation algorithm. We
suppose thatSinglePlan(P ,F , lmax) implements a
sound and complete classical planner which returns
a solution of (an initiator projection of)P of length
lmax which is not inF . Moreover we suppose that
SinglePlan always terminates and that it returns/0
when there is no solution.

Initially, we set F to /0. Then we invoke
SinglePlan to obtain a solution ofP denoted as
π. Afterwards, we ask the participant agents whether
or not the public planπpub is internallyα-extensible.
How participant agents fulfill this task is described in
Section 5.1 When answers from all of the agents are
affirmative thenπ is returned as a result. Other-

Algorithm 2: MultiPlan(P , lmax) in the confirma-
tion scheme. FunctionSinglePlan(P ,F , lmax) re-
turns a plan of lengthlmax solving problemP omit-
ting forbidden plans fromF or /0 if there is no such
plan. MethodAskAllAgents(πpub) ask all agentsα
mentioned in the plan whether they consider the pub-
lic plan πpub to be internallyα-extensible and returns
OK if all agents replyYES.

input : problemP and a maximum plan lengthlmax

output : a solutionπ of P when solution exists
Function MultiPlan(P , lmax) is

F ← /0
loop

π← SinglePlan(P ,F , lmax)
if π = /0 then

return /0
end
reply← AskAllAgents(πpub)
if reply= OK then

return π
end
F ← F ∪{π}

end
end

wise π is added to the set of forbidden plansF and
SinglePlan is called to compute a different solution.

The following states that the (public projection of
the) plan returned by the confirmation algorithm is in-
ternally extensible to a solution ofP (soundness), and
that the algorithm finds internally extensible solution
when there is one (completeness). It is easy to con-
struct a solution ofP given an internally extensible
plan.

Theorem 2. Let procedure SinglePlan in
MultiPlan (Alg. 2) be sound and complete.
Then algorithmMultiplanIterative (Alg. 1) with
confirmation procedureMultiPlan is sound and
complete.

Proof. To prove soundness, let us suppose thatπ is
the result ofMultiPlanIterative. Public planπpub

was confirmed by each agentα to be internallyα-
extensible. Thus, by Lemma 1, it is internally extensi-
ble and following the lemma proof we can reconstruct
the whole solution ofP .

Let us prove completeness. During each loop
iteration in MultiPlan one plan is added toF .
There are only finitely many plans of lengthlmax

and thus algorithmMultiPlan always terminates be-
causeSinglePlan is sound and complete. WhenP

is solvable, then some internally extensible solution
π has to be eventually returned bySinglePlan at
some point becauseSinglePlan is complete. This
solution is then the result ofMultiPlan (and hence

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

182

MultiPlanIterative) because, as a solution ofP ,
it has to be confirmed by all the participants.

4 GENERATING PLANS USING
DIVERSE PLANNING

In the previous section we have supposed that func-
tion SinglePlan(P ,F , lmax) selects an arbitrary so-
lution of P of length lmax which is distinct from all
the previous solutions stored inF . In this section we
present an improved version ofSinglePlan which
selects a solution based on evaluation ofqualitiesof
previously found solutions.

Section 4.1 defines the notion of plan metrics
which are used to describe how much two plans dif-
fer. Based on these metrics we define in Section 4.2
a notion of therelative qualityof a plan based on
evaluation of previously considered solutions which
were, however, rejected by at least one of the partic-
ipant agents. Finally, Section 4.3 describes improved
version of functionSinglePlan.

4.1 Plan Metrics

While planning looks for a single solution of a prob-
lem, the goal of diverse planning is to find severaldif-
ferent solutions. There are two main approaches to
define how much two plans differ. Firstly, the differ-
ence of two plans can be defined by their member-
ship to the same homotopy class (Bhattacharya et al.,
2010). Another approach defines a distance between
plans. The distance can be defined either on(i) ac-
tions and their relations, or on(ii) states that the exe-
cution of a plan goes through, or on(iii) causal links
between actions and goals (Srivastava et al., 2007). In
this paper, we use two metrics of the first type, that is,
distance metrics defined on actions and their mutual
positions in the plan.

4.1.1 Different Actions Metric

The Different Actions Metriccounts the ratio of ac-
tions which are contained only in one of the plans. It
is defined as follows. Letπ0 \π1 denote the planπ0
with all the actions fromπ1 removed.

δA (πA,πB) =
|πA\πB|+ |πB\πA|

|πA|+ |πB|

This metric considers neither the ordering of ac-
tions nor the fact that some of the actions can be in
a plan multiple times. Nevertheless, it is very simple
for evaluation.

4.1.2 Levenshtein Distance Metric

TheLevenshtein Distance Metric(Levenshtein, 1966)
is a general distance metric defined on two sequences.
Let trim(π) be the planπ with the last action removed.
Moreover letdiff(πA,πB) be 1 if the last actions ofπA
andπB differ and 0 otherwise. Then the Levenshtein
metricδL(πA,πB) is defined as follows.

δL(π, /0) = |π|
δL(/0,π) = |π|

δL (πA,πB) = min

δL(trim(πA),πB)+1
δL(πA, trim(πB))+1
δL(trim(πA), trim(πB))+

+diff(πA,πB)

This metric describes how many changes usingel-
ementary operationshave to be performed to convert
one plan into another. The elementary operations are
addan action into the plan,removean action from the
plan, andreplaceone action in the plan by another
action.

4.2 Plan Quality Estimation

In Algorithm 2, the initiator agent generates its lo-
cal solutionπ and asks participant agents to check
whetherπpub can be extended to a solution of their
local problems. Each participant either accepts or re-
jectsπpub. Based on their replies, we can define the
qualityQ (π) of π as the ratio of the number of partic-
ipants acceptingπpub and the total number of partici-
pants.

Q (π) =
of participants acceptingπpub

of all participants

Hence the planπ with Q (π) = 1 is accepted by all of
the participants and the algorithm successfully termi-
nates.

Once we have a planπ′ whose quality has al-
ready been established, we can define arelative qual-
ity ∆(π,π′) of an arbitraryπ with respect toπ′ using a
selected metricδ on plans as follows.

∆(π,π′) =
∣

∣Q (π′)− δ(π,π′)
∣

∣

The relative quality∆(π,π′) is high when eitherQ (π′)
is high andπ is close toπ′, or whenQ (π′) is low and
π is distanced fromπ′. In other cases the value is close
to zero.

Suppose we have a set of plansΠ whose qualities
have already been established. Then we can compute
the relative quality∆(π,Π) of an arbitrary planπ with
respect toΠ in several ways. In our work we work
with the following twoquality estimators.

Multiagent�Planning�Supported�by�Plan�Diversity�Metrics�and�Landmark�Actions

183

4.2.1 Average Quality Estimator

Theaverage estimator∆⊘(π,Π) is defined as the av-
erage of the relative qualities ofπ with respects to the
plans fromΠ.

∆⊘(π,Π) =
∑π′∈Π ∆(π,π′)

|Π|

4.2.2 Minimal Quality Estimator

The minimal estimator∆min(π,Π) is defined as the
minimal relative quality.

∆min(π,Π) =minπ′∈Π∆(π,π′)

4.3 Generating Diverse Plans

During the execution of Algorithm 2, the initiator
agent remembers the qualitiesQ of generated but re-
jected plans, that is, it remembers the qualities of all
the plans fromF . We suppose thatQ is updated with
every call toAskAllAgents. Additionally, the initia-
tor computes the following statistics about actions.

Q (a) = average quality of plans containinga

Q (a,a′) = average quality of plans containinga be-
forea′

The functionSinglePlan executed repeatedly by
the initiator is described in Algorithm 3. It calls
DiversePlan to generate a fixed number (n) of local
solutions. FunctionDiversePlan works as follows.
Firstly it generates a solution candidate using roulette
wheel selection (Bäck, 1996) based on average action
qualitiesQ (a). These actions are then presorted us-
ing statistics about action orderingQ (a,a′). Note that
two actions are swapped only if the difference of the
statistics is larger then some threshold∆Q (0.1 in our
experiments). This ordering step allows algorithm to
find the correct solution faster, but the price for that is
lost of completeness ofSinglePlan procedure.

Once a solution candidate is generated, the initia-
tor α tests whether this sequence of actions is publicly
α-extensible, that is, whether it is its local solution.
If so, the solution is added to a set of diverse plans.
This process is repeated until the required number of
local solutions is found. In our implementation, this
process is further extended and occasionally, instead
of a roulette selection, those action which have not
been used often are chosen. In this way the algorithm
gathers further information about unused actions. Fi-
nally, functionSinglePlan selects the diverse plan
with the maximum relative quality.

Algorithm 3: SinglePlan(P ,F) uses
DiversePlan(P ,n, lmax) to generate n differ-
ent solutions to the problemP and then selects
the best one using metric∆(π,F). The generation
of different plans is based on the roulette wheel
selection by the quality evaluation received by other
agents.

input : classical STRIPSproblemP , the setF of
forbidden plans, and a maximum plan length
lmax

output : a solutionπ of P when solution exists
Function SinglePlan(P ,F , lmax) is

/* n is a constant */
Πdiv← DiversePlan(P ,F ,n, lmax)
π← argmaxπ∈Πdiv (∆(π,F))
return π

end

input : problemP andn number of solutions
output : a set of diverse solutions
Function DiversePlan(P ,F ,n, lmax) is

Π← /0
while |Π|< n do

A← GetRandomActions(P)
π′← OrderActions(A)
π← CreatePublicExtension(P ,π′)
if π 6= /0 & π /∈ F & |π| ≤ lmax then

Π←Π∪{π}
end

end
return Π

end

Function GetRandomActions(P , lmax) is
n← RandomInt(1. . .min(lmax, |A|))
A← /0
while |A|< n do

A← A∪{a : roulette selection byQ (a)}
end
return A

end

Function OrderActions(A) is
π← A
for i = 2..|π| do

if Q (πi ,πi−1)−Q (πi−1,πi)> ∆Q then
SwapActions(πi−1,πi)

end
end
return π

end

5 FROM THEORY TO PRACTICE

We have implemented the algorithms described in the
previous sections taking advantage of several existing
techniques and systems. An overall scheme of the ar-

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

184

����

���

���	
����

������

���������

�	���	��

����	
�������

�����	

�	������

���������	�

������

����	
�������

Figure 1: Architecture of the planner.

chitecture of our planner is sketched at Figure 1. An
input problemP described in PDDL is translated into
SAS usingTranslator script which is a part of Fast
Downward1 system. OurMulti-SASscript then splits
SAS representation of the problemP into agents’ pro-
jectionsP α using user provided selection of public
factsPpub. Initiator then computes public extension
of actions to create a solution to its own projection of
the problem. Participants are then requested to check
whether they consider it to be internallyα-extensible.

Next part of this section demonstrates how the
public and internal extension can be easily verified us-
ing any standard STRIPSplanner.

5.1 Computing Plan Extensions

In our algorithms, agents are asked whether a pro-
vided sequence of actions can be extended into a solu-
tion by adding other actions into the sequence. Tech-
nically, this is similar to the planning problem with
landmarks (Brafman and Domshlak, 2008). In this
section we describe our algorithm to solve this prob-
lem. Based on this solution we describe how an ini-
tiator agent computes public extensions of a given se-
quence and how participant agents check whether a
sequence of public actions is internally extensible.

Suppose we are given a classical STRIPSplanning
problem P = 〈P,A, I ,G〉 together with a sequence
σ = 〈a1, . . . ,an〉 of actions build from the factsP. The
planning problem with landmarks is the task to find
a solutionπ of the problem〈P,A∪{a1, . . . ,an}, I ,G〉
such thatσ is a subsequence ofπ, that is, that all the
actions fromσ are used inπ in the proposed order.
Note that an actionai might or might be not inA.

1http://www.fast-downward.org/

Definition 3. A planning problem with landmarksis
a pair 〈P ,σ〉 where P = 〈P,A, I ,G〉 is a classical
STRIPS problem andσ = 〈a1, . . . ,an〉 is a sequence
of actions build from the facts ofP .

A solutionπ of 〈P ,σ〉 is a solution of the classical
STRIPSproblem〈P,A∪{a1, . . . ,an}, I ,G〉 such thatσ
is a subsequence ofπ.

We solve a planning problem with landmarks by
translating〈P ,σ〉 into a classical STRIPSproblemP σ

such that the solutions ofP σ are in a direct correspon-
dence to the solutions of the original problem with
landmarks. Firstly we take a setPmarks of n+1 facts
distinct fromP denoted as follows.

Pmarks = {mark0, . . . ,markn}

The meaning of factmarki is that the landmark actions
a1, . . . ,ai has already been used in the correct order
and that the actionai+1 can be used now. We will
ensure that only one fact fromPmarks can hold in any
reachable state. We will addmark0 to an initial state
and we will requiremarkn to be in the goal.

Definition 4. LetP = 〈P,A, I ,G〉 andσ = 〈a1, . . . ,an〉
and Pmarks = {mark0, . . . ,markn} such that P and
Pmarks are distinct be given. For every action ai let
us define action bi as follows.

bi = 〈 pre(ai) ∪ {marki−1},
add(ai) ∪ {marki},
del(ai) ∪ {marki−1} 〉

The translation of the planning problem with land-
marks〈P ,σ〉 into a classicalSTRIPS problemP σ is
defined as follows.

P σ = 〈 P∪Pmarks, A∪{b1, . . . ,bn},
I ∪{mark0},G∪{markn}〉

Basically we take actionai and we addmarki−1 to
its preconditions and removemarki−1 whenai is used.
Moreover a use ofai enables us to use the next action
ai+1 from the listσ by addingmarki to the effects. It
is easy to show the following property.

Lemma 3. Let 〈P ,σ〉 be a planning problem with
landmarks. Whenπ is a solution ofP σ thenπ with
bi ’s changed back to ai ’s is a solution of〈P ,σ〉. More-
over when there is a solution of〈P ,σ〉 then there is a
solution ofP σ.

Recall that every agentα is equipped with its lo-
cal projectionP α of problemP , that is, a classical
STRIPSproblem defined as follows.

P α = 〈Pα,Aα, I ∩Pα,G〉

The setAα of local actions consists ofα-internal ac-
tionsαint and projections of public actions.

aa Aα = αint∪{aα|a∈ Apub}

Multiagent�Planning�Supported�by�Plan�Diversity�Metrics�and�Landmark�Actions

185

���������	���
�

���������	�����

�����������	
��	���
�

�����������	���	�����

�����������	
�

�����������	��

�

��

���	��	�������	���� �����	����	��������������� ��������	��������������� ����

Figure 2: A scheme of the Tool problem.

In Algorithm 3, the initiator agent is asked using
function CreatePublicExtension(P ,π′) to find a
solution of its local projectionP α that has a given ac-
tion sequenceπ′ as a subsequence, that is, its public
extension. The initiator can simply solve the planning
problem with landmarks〈P α,π′〉 as shown in the fol-
lowing Theorem 4. Note that in this case the land-
marks fromπ′ are also in the setAα of actions ofP α.

Theorem 4. Plan π is publiclyα-extensible to a so-
lution of P α if and only if the planning problem with
landmarks〈P α,π〉 is solvable. And moreover, the so-
lution of planning problem with landmarks serves as
a proof of the extensibility, and vice versa.

Proof. It is quite straightforward to translate each
planπ′ proving public extensibility of planπ to a solu-
tion of the planning problem with landmarks〈P α,π〉,
and vice versa.

In Algorithm 2, the participant agents are asked
from the call toAskAllAgents(πpub) to establish
whetherπpub is internallyα-extensible to a solution of
P α. The participant can simply check the solvability
of the planning problem with landmarks〈aα

1 , . . . ,a
α
n〉

as shown in the following Theorem 5. Note that in
this case the landmarks are not inαint.

Theorem 5. Plan π = 〈a1, . . . ,an〉 is internally α-
extensible to a solution ofP α if and only if the
planning problem〈Pα,αint, I ∩Pα,G〉 with landmarks
〈a1, . . . ,an〉 is solvable. And moreover, the solution of
planning problem with landmarks serves as a proof of
the extensibility, and vice versa.

6 EXPERIMENTS

For our experiments, we have designed theTool Prob-
lem that allows us to observe a smooth transition in
the complexity of the problem.

We focused our experiments on the following cri-
teria: (1) comparison of different estimators and (2)
an average number of iterations required to find a so-
lution.

6.1 Tool Problem

In theTool Problem, the goal is that each ofN agents
performs its publicdoGoal action as it is shown in
Figure 2. However, this action must be preceded by its
internaluseTool action first. Only the initiator agent
can provide tools with thehandTool action. Formally,
there areN tools tool1, . . . , toolN, andN+ 1 agents
(the initiator andN participants). In the initial state,
none of the participants has its tool and the initiator
has all of them. However, the initiator does not know
that the participants need them. One of possible solu-
tions is as follows.

1. handTool(initiator, tool1)
...

N. handTool(initiator, toolN)
N+1. useTool(participant1, tool1)

...
2N. useTool(participantN, toolN)

2N+1. doGoal(participant1, tool1)
...

3N. doGoal(participantN, toolN)

Other permutations of the plan also form a valid
solution.

6.2 Results

Let us present our results for theTool Problemwith 2,
4, 6, 8, 10, and 12 tools. Graphs in figures 3, 4, and 5
show the results of running our experiments 50 times.

Estimator Average Errors. Firstly, we compare
both estimators presented in this paper: Average Esti-
mator (titledAVG in the graphs) and Minimal Estima-
tor (MIN). Each estimator is tested with two different
distance metrics: Different Action Metric (DIFF) and
Levenshtein Distance Metric (LEV). Figure 3 demon-
strates the progress of the estimators errors for the
Tool Problem with 10 tools. Errors are computed
from the average of 50 runs. As shown in the graph,
Average Estimator with Different Action Metric con-
verts quickly to very low error and thus it seems to be
the best choice for this problem.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

186

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

a
v
e
r
a
g
e

e
r
r
o
r

of iterations

AVG+LEV

AVG+DIFF

MIN+LEV

MIN+DIFF

Figure 3: Progress of an average error of plan qualities com-
puted by different estimators for theTool Problemwith 10
tools.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12

a
v
e
r
a
g
e

e
r
r
o
r

of tools in problem

AVG+LEV

AVG+DIFF

MIN+LEV

MIN+DIFF

Figure 4: Average errors of plan qualities computed from
the first 80 iterations for theTool Problemwith a variable
number of tools.

Figure 4 shows an average error for each estima-
tor during first 80 iterations for different sizes of the
Tool Problem. We can see that the Average Estimator
with Different Action Metric again shows the lowest
errors for all the cases, and furthermore, that its error
decreases with increasing problem complexity.

Results for Tool Problem. Table 1 shows how
many Tool Problems of different sizes has been solved
during 50 runs using different plan generation tech-
niques. We can see that most of the approaches
perform better than a random generation of plans2.

2We have implemented a simple implementation of
SinglePlan by translating a planning problem into a SAT
problem instance and by calling an external SAT solver to
solve it. It is easy to instruct a SAT solver to compute a
solution different from previously found solutions.

 0

 100

 200

 300

 400

 500

 2 4 6 8 10 12

#
 o

f
it

e
ra

ti
o
n
s

of tools in problem

RND
AVG+LEV

Figure 5: The number of Generate-And-Test iterations
needed to solve different sizes of the Tool Problem using
random generation of plans (RND) and generation driven by
the Average Estimator with the Levenshtein Distance Met-
ric (AVG+LEV). Graph shows median (line in the rectangle)
and 25 % and 75 % quantile (lower and upper bound of the
rectangle) of the results.

AVG+LEV again shows the best performance. Fig-
ure 5 shows more detailed distribution for its results in
comparison to the baseline random generation. This
graph shows a significant improvement over the base-
line solution and that more complex cases of Tool
Problem can be solved using this technique.

Results for Rover Problem. Classical planners are
compared at the International Planning Competition
with a well defined set of problems calledIPC prob-
lems. Unfortunately, most of these problems are by
their nature a single-agent problems and there is no
standard way to convert them into a multiagent set-
ting. Nevertheless, some of the problems are by their
nature multiagent and fulfills all the requirements we
have specified above in this article. One of the prob-
lems is calledroversand its goal is to plan actions for
multiple robotic rovers on Mars that need to collect
samples and transmit their data back to Earth via a
shared base.

Table 2 shows that we were able to solve some
problem instances very quickly when the first plan
generated by the initiator (rover0) was internallyα-
extensible by all the other agents and thus formed a
solution of the problem. When the first generated plan
was not a solution of the problem then the search for a
solution usually timeouted because it requires a plan-
ner to find out that a problem has no solution. This
constitutes a challenge for the state-of-the-art plan-
ners which usually performs best on problems which
actually have a solution. When there is no solution

Multiagent�Planning�Supported�by�Plan�Diversity�Metrics�and�Landmark�Actions

187

Table 1: Percentage of successfully solved instances of theTools Problem for different number of tools. Comparison of a
reference random plans generator (RND) and different combinations of estimators and plan distance metrics.

2 3 4 5 6 7 8 9 10 11 12
RND 100% 100% 100% 100% 98% 80% 54% 40% 16% 6% 10%
MIN+DIF 100% 100% 100% 98% 60% 36% 22% 6% 16% 2% 0%
MIN+LEV 100% 100% 100% 94% 96% 100% 90% 96% 68% 100% 76%
AVG+DIF 100% 100% 100% 100% 94% 88% 84% 72% 68% 70% 78%
AVG+LEV 100% 100% 100% 100% 100% 100% 100% 100% 96% 98% 82%

Table 2: Number of iterations needed to successfully solve Rovers problems from the IPC collection of planning problems.
Problems marked by∞ were not solved because the problem was too large for the testof public extensibility and FD did
not finish in a reasonable time. Two experiments did not finishbecause of an error in FD planner during the test of internal
extensibility (marked as E-P). The value 0 means that a solution was found immediately and successfully confirmed by all the
participants without any need for negotiation.

rovers 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
iteration 2 0 0 0 0 ∞ ∞ 0 ∞ ∞ ∞ ∞ E-P ∞ ∞ 0 0 E-P

then the planners usually get stuck in an exhaustive
search of the whole plan space. Nevertheless, our
planner was able to solve quickly few of harder in-
stances of the problem, even faster than other multia-
gent planners (Nissim and Brafman, 2012).

7 FINAL REMARKS

We have proposed a novel approach to planning
for MA-STRIPS problems based on the Generate-
And-Test principle and initiator–participant protocol
scheme. We have experimentally compared various
combinations of plan quality estimators and plan dis-
tance metrics improving efficiency of the plan gen-
erating approach. Additionally, we have validated a
principle of planning with landmarks by compilation
to classical planning problem used as the testing part
of the planner. The results show that the principle is
viable and the best combination of estimator and met-
ric for the designed domain is averaging with action
difference metric.

In future work, we plan to test the planner in
more planning domains, as it is from the beginning
designed as domain-independent and reinforce the
plan generation process by elements of backtracking
search. Additionally, the approach hinges on efficient
solving of plan-(non)existence problems with land-
marks (the plan extensibility problem), therefore we
will analyze how to improve on that as well.

ACKNOWLEDGEMENTS

This research was supported by the Czech Science
Foundation (grant no. 13-22125S) and in part by a
Technion fellowship.

REFERENCES

Bäck, T. (1996). Evolutionary algorithms in theory and
practice: evolution strategies, evolutionary program-
ming, genetic algorithms. Oxford University Press,
Oxford, UK.

Bhattacharya, S., Kumar, V., and Likhachev, M. (2010).
Search-based path planning with homotopy class con-
straints. In Felner, A. and Sturtevant, N. R., editors,
SOCS. AAAI Press.

Brafman, R. and Domshlak, C. (2008). From One to Many:
Planning for Loosely Coupled Multi-Agent Systems.
In Proceedings of ICAPS’08, volume 8, pages 28–35.

Decker, K. and Lesser, V. (1992). Generalizing the Par-
tial Global Planning Algorithm. International Jour-
nal on Intelligent Cooperative Information Systems,
1(2):319–346.

Doherty, P. and Kvarnström, J. (2001). Talplanner: A tem-
poral logic-based planner.AI Magazine, 22(3):95–
102.

Durfee, E. H. (1999). Distributed problem solving and plan-
ning. In Weiß, G., editor,A Modern Approach to
Distributed Artificial Intelligence, chapter 3. The MIT
Press, San Francisco, CA.

Fikes, R. and Nilsson, N. (1971). STRIPS: A new approach
to the application of theorem proving to problem solv-
ing. In Proceedings of the 2nd International Joint
Conference on Artificial Intelligence, pages 608–620.

Levenshtein, V. (1966). Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals.Soviet
Physics Doklady, 10:707.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

188

Nissim, R. and Brafman, R. I. (2012). Multi-agent A* for
parallel and distributed systems. InProceedings of
AAMAS’12, pages 1265–1266.

Nissim, R., Brafman, R. I., and Domshlak, C. (2010). A
general, fully distributed multi-agent planning algo-
rithm. In Proceedings of AAMAS, pages 1323–1330.

Pellier, D. (2010). Distributed planning through graph
merging. In Filipe, J., Fred, A. L. N., and Sharp, B.,
editors,ICAART (2), pages 128–134. INSTICC Press.

Richter, S. and Westphal, M. (2010). The lama planner:
guiding cost-based anytime planning with landmarks.
J. Artif. Int. Res., 39(1):127–177.

Srivastava, B., Nguyen, T. A., Gerevini, A., Kambhampati,
S., Do, M. B., and Serina, I. (2007). Domain indepen-
dent approaches for finding diverse plans. In Veloso,
M. M., editor, IJCAI, pages 2016–2022.

Torreño, A., Onaindia, E., and Sapena, O. (2012). An ap-
proach to multi-agent planning with incomplete infor-
mation. InECAI, pages 762–767.

Multiagent�Planning�Supported�by�Plan�Diversity�Metrics�and�Landmark�Actions

189

