
MEFORMA Security Evaluation Methodology
A Case Study

Ernő Jeges, Balázs Berkes, Balázs Kiss and Gergely Eberhardt
SEARCH-LAB Security Evaluation Analysis and Research Laboratory, Budafoki út 91/C, Budapest, Hungary

Keywords: Security Evaluation Methodology, Security Testing, Security Objectives, Threat Modelling, Case Study,
Embedded Systems Security.

Abstract: Even software engineers tend to forget about the fact that the burden of the security incidents we experience
today stem from defects in the code – actually bugs – committed by them. Constrained by resources, many
software vendors ignore security entirely until they face an incident, or are tackling security just by focusing
on the options they think to be the cheapest – which usually means post-incident patching and automatic
updates. Security, however, should be applied holistically, and should be interwoven into the entire product
development lifecycle. Eliminating security problems is challenging, however; while engineers have to be
vigilant and find every single bug in the code to make a product secure, an attacker only has to find a single
remaining vulnerability to exploit it and take control of the entire system. This is why security evaluation is
so different from functional testing, and why it needs to be performed by a well-prepared security expert. In
this paper we will tackle the challenge of security testing, and introduce our methodology for evaluating the
security of IT products – MEFORMA was specifically created as a framework for commercial security
evaluations, and has already been proven in more than 50 projects over twelve years.

1 INTRODUCTION

Hacking is not just an arcane activity committed by
social outcasts with a strange hobby – not anymore
(Kirwan, 2012). There are well-organized criminals
who are making good money by taking over
computers through attacking vulnerable software
across the Internet, and creating botnets consisting
of millions of zombie machines to do their bidding.
Hacking became a big business (Moore, 2009), an
industry on its own within the area of cyber-crime.

Due to the effective financial motivation,
attackers are coming up with newer attack methods
literally every day. The attack landscape is
continuously changing; new technologies appear
regularly, usually solving some known problems,
but – most of the time – they also introduce new
ones. We very rarely have silver bullet solutions to
problems (Brooks, 1986), and trying to keep up with
attackers is an eternal cat-and-mouse game.

The landscape of motivations also changes. From
cyber-crime we are apparently moving towards
cyber-war and cyber-terrorism (Andress, 2011), with
major governmental players expending massive
resources, resulting in much more severe

consequences that we are yet to experience. Stuxnet
(Symantec, 2010), Duqu, Flame and Gauss
(Bencsáth, 2012) are examples of complex malware
developed by security specialists for millions of
dollars that can destroy factory machinery or spy on
targeted victims while being undetectable for long
enough to do their job. Yet even these are doing
nothing else but exploiting security vulnerabilities –
actually: bugs – being present in software products.

So vulnerabilities are here to stay. But several
sources confirm – including CERT (CERT Software
Engineering Institute, 2010), SANS (Walther, 2004),
Gartner or Microsoft – that around 90% of attacks
do actually exploit well-known vulnerabilities,
which have been already published at least six
months before the attack took place. Thus, usually
we have solutions for the occurring problems, but
we just don’t use them; it is similar to driving cars
without the safety belts fastened.

Securing software is possible in many different
ways. Considering the product development
lifecycle, approaches may consist of educating
engineers about secure coding practices, doing
security by design, appropriate implementation (i.e.
coding), accomplishing security testing of the

267
Jeges E., Berkes B., Kiss B. and Eberhardt G..
MEFORMA Security Evaluation Methodology - A Case Study.
DOI: 10.5220/0004919902670274
In Proceedings of the 4th International Conference on Pervasive and Embedded Computing and Communication Systems (MeSeCCS-2014), pages
267-274
ISBN: 978-989-758-000-0
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

product, secure deployment and operation, and many
more. Not all approaches are generally equivalent
regarding efficiency or usefulness, and each
development team should analyse the best return of
investment for each; a good source of wisdom of the
crowd in this area is the Building Security In
Maturity model (BSIMM, 2013), a survey intended
to collect and document possible activities that
companies are applying to secure their products.

1.1 The Nature of Security Evaluation

Security evaluation of products is a challenging
discipline that requires a fundamentally different
mind-set from functional testing. While functional
testing simply consists of the verification of well-
defined requirements and the goal is usually to
statistically decrease the number of bugs, security
testing involves finding evidence of abnormal
operation in non-obvious borderline cases: it is not
about how the system should work (aligned to the
various use cases), but rather about how it should
not (considering misuse and abuse cases).

Since during security testing we are looking for
possible behaviour outside of the specified
functionality, in theory we should check “anything
else”, which is obviously an infinite and hard-to-
define set. This is why – due to the bounded
resources – one should first prioritise by doing a risk
analysis. To do that, solid expertise in security is
needed, complemented with the ability to think as
the attackers would do, and be aware not only of the
applicable methodologies, techniques and tools, but
also of the trends among the attackers.

1.2 Security Evaluation Methodologies

Various methodologies exist that aim at security
evaluation of products – some of them general, some
of them domain-specific.

One of the best-known schemes for certification
of products from a security point of view is
Common Criteria, applying the Common
Methodology for Information Technology Security
Evaluation (CEM, 2012). The methodology defines
roles and the evaluation process itself, distinguishing
between evaluating a Protection Profile (describing
generic criteria for certain product family) or an
actual product as the Target of Evaluation (ToE). A
Common Criteria evaluation, however, needs
enormous resources, which are often not in line with
the evaluated product.

Microsoft has gone a long way in the last decade

to secure its products, in parallel defining a
methodology for secure software development.
Microsoft Secure Development Lifecycle (MS SDL,
http://www.microsoft.com/security/sdl/default.aspx)
is a process covering all steps of software product
development; however, there is only a weak focus
on testing, since its Verification step includes only
the practices of applying dynamic analysis, fuzz
testing and the review of the attack surface.

One of the most referred sources regarding
security in the Web application domain is the
OWASP – Open Web Application Security Project
(http://www.owasp.org). One of its sub-projects is
the Application Security Verification Standard
(ASVS, 2013), which defines a methodology for
assessing the security level of products, governed by
a guidance and with a commercial approach through
providing requirements for project contracts. ASVS
defines four levels of verification: 0-Cursory, 1-
Opportunistic, 2-Standard and 3-Advanced, along
with verification requirements for each; though parts
of the methodology are stated quite generally, its
focus is still solely on Web applications.

Open Source Security Testing Methodology
Manual (OSTMM, 2010) provides a quite general
approach, and is a continuously developing, peer-
reviewed – open community developed –
methodology based on verified facts. The overall
process is, however, at some points quite vague, and
some find it hard to translate the presented general
approach to actual evaluation steps and procedures.

Some of the above-described methodologies are
too domain-specific, yet some are incomplete
considering the whole evaluation process or are
quite vague in describing certain steps. In the
following Chapter we will introduce our
comprehensive, practice oriented approach that has a
proven track record in evaluating the security of
various IT products.

2 MEFORMA OVERVIEW

MEFORMA is a security evaluation methodology
designed to be customer-oriented, meaning that the
evaluations are being accomplished on a project
basis using up resources fixed in advance, and the
outcomes not only provide a passed-or-failed result
like most of the certification schemes, but by the
recommendations given, the development groups
also receive valuable support on how to correct the
found problems.

Aligned to the usual terminology, ToE denotes
the system being evaluated, and we have two simple

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

268

roles, the Developer and the Evaluator.
The project approach implies that the work is

accomplished in different phases that build upon
each other, and that each phase ends with providing
a deliverable documenting the results. A typical
MEFORMA evaluation project consists of the
following phases:
 Preparation Phase: The test environment is

established, and threat modelling is performed on
the ToE – based on its results, test cases are
specified. Deliverable is the Evaluation Plan that
contains the definition of the scope, the identified
security objectives, the threat model, and the test
cases.
 Evaluation Phase: The defined test cases are

executed, confirming whether the originally
identified threats are viable or not. Verified threats
(findings) are reported to the Developer regularly
through Weekly Status Reports documenting the
progress of the evaluation.
 Documentation Phase: The findings are

collected, all threats are enlisted and a risk analysis
is performed. Most importantly, recommendations
are given to the Developer explaining how it
should deal with each threat. All results are
compiled in the Evaluation Report as the main
deliverable of the project.
 Review Phase: During this final phase, a new and

fixed version of the ToE is re-evaluated
(regression testing) to determine whether the
identified threats had been adequately addressed.
Evaluation Report is updated with the new results,
forming the Review Report.

In the following chapter we introduce the steps
of the methodology in more detail.

3 THE EVALUATION PROCESS

In the subsequent sections we will explain the steps
of the evaluation. The Preparation Phase (see
previous Chapter) consists of Scoping, Information
Gathering, Threat Modelling, and finally the Test
Case Specification, all documented in the Test Plan.
The actual Evaluation takes place based on the
agreed Test Plan, followed by the Documentation
Phase during which the findings are documented and
recommendations are given, and the verified threats
are rated by a Risk Analysis. Finally, a low-intensity
Review phase allows for the clarification of findings
and regression testing.

3.1 Scoping

As the first step, the ToE must be identified, and the
scope of the evaluation must be specified, which is a
co-operative effort between the Evaluator and the
Developer. For this, it is important to fix the ToE
(platform, versions, builds, etc.) before the work
starts, since the evaluation involves consecutive tests
that build upon the results of previous ones.

Basically there are three main aspects of
planning an audit: scope, depth of analysis and the
audit risk. If we limit the scope of the evaluation,
important issues may not be addressed even if we
increase the depth of the analysis. Contrarily, if we
want to keep the scope as wide as possible and
evaluate the whole system, limits in the available
resources will imply limitations in the depth of the
analysis. In both cases it is important to be aware of
those remaining risk factors that the investigations
would not cover.

Figure 1: Preparatory steps for the MEFORMA security evaluation.

MEFORMA�Security�Evaluation�Methodology�-�A�Case�Study

269

3.2 Information Gathering

The main goal of this step is to specify the security
objectives. For this, one should first identify and
understand the assets within the system that need to
be protected, and then for each asset determine
which of the independent security objectives
(typically taken from the CIA triad i.e.
Confidentiality, Integrity, and Availability) are
relevant. The assets are then further grouped into
categories appropriate to the specific evaluation –
for instance, a software evaluation would likely have
‘software assets’, ‘data assets’, and ‘other assets’
categories.

If the Developer provides their own list of
security requirements, those are used to refine these
further, prioritizing the security of the assets the
Developer finds to be the most important.

3.3 Threat Modelling

Once the elements of the system are identified and
understood, threat modelling is accomplished
according to the security objectives. This can be
done by various means and following various
approaches; we mostly use the following:
 Attack tree (Schneier, 1999) modelling consists of

conceptual diagrams of perceived threats to a
system. This process is performed by identifying
an attacker goal, and then modelling the various
ways these goals can be achieved.
 Misuse cases are similar to the use case UML

formalism, but instead of describing ways to use
system functionality, they present ways on how to
misuse it (Alexander, 2002). The misuse cases are
derived from the normal use cases: for instance,
for a normal ‘shutdown’ use case there may be
several misuse cases defined where the system can
be shut down.

In threat modelling, as security testing is about
how a system should not work, there is a remarkable
emphasis on the evaluators’ security experience, i.e.
its knowledge about how things can go wrong, and
also about the attack trends among the attackers. For
this, one can rely not only on its experience, but can
also refer to repositories and knowledge bases, like
the SVRS (Security Repository Vulnerability
Services, browsable and accessible after registration
at https://svrs.shields-project.eu) or the ENISA
Threat landscape (ENISA, 2012).

Optionally, attacker profiling may also be
performed in this stage. This identifies several
different types of attackers that may have different
goals when it comes to attacking the security of the

ToE, and may also have different resources and
expertise at their disposal. Example profiles are
insider, exploiter, misuser, and thief.

The end result of this step is a set of threats.

3.4 Test Case Specification

During threat modelling, many potential threats will
be identified. Some of these threats may be
considered out of scope for the evaluation due to
some reasons (for instance being unlikely or out of
the control of the Developer, like the vendor’s secret
key being leaked) or trivial (e.g. a particular aspect
of the system is insecure by design). However, most
of the threats will require investigation to confirm
their feasibility – which is the main goal of the
evaluation.

To that end, the evaluators categorize the
relevant threats, and accomplish a preliminary risk
analysis to reveal which are the most important
threats. This prioritization is especially important,
since the project size and the allocated efforts might
not be in line with the volume of the actually
revealed and relevant threats; risk analysis will show
which are the issues that should be put in focus and
included in the evaluation, and which will be
possibly omitted due to lack of resources.

As the final step of the preparatory work, test
cases are defined, aligned to the threats in focus. By
accomplishing these test cases, we can check if the
associated threats are real, i.e. if it is feasible to
execute an attack and realize the threat.

Results of Scoping, Information Gathering,
Threat Modelling and Test Case Specification are all
summarized in the Test Plan, which is refined and
agreed with the Developer through several iterations.

3.5 Evaluation

Building upon good preparatory work, the
evaluation simply means the execution of the test
cases already specified. Actual evaluation of a test
case can consist of black-box / white-box / grey-box
(Kicillof, 2007) testing or source code review, and
can also include reverse-engineering of the system.
Manual execution of test cases can be mixed with
automated evaluation, for instance fuzzing (Miller,
1990) or penetration testing tools.

The goal is basically to determine if any of the
identified threats can be realized through any flaw or
vulnerability that exist the system.

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

270

3.6 Documentation
and Recommendations

As a result of the evaluation a list of verified threats
is compiled, i.e. the findings. Most of the time, these
are threats that were already identified during the
threat modelling step, but completely new threats
can also surface during the evaluation.

When documenting the threats, we use several
symbols to denote the results of individual tests
within a test case. These symbols are as follows:
 Normal operation. The outcome of the test

indicates that the implementation is correct; no
findings.

 Problem. The outcome of the test has clearly
identified a security problem.

 Potential / possible problem. The outcome of
the test does not clearly indicate a security
problem, but may lead to unexpected or
abnormal operation. This symbol is also used if a
security issue is suspected, but could not be
verified.

Figure 2: Documenting the findings.

For each verified threat, recommendations are given
for techniques that could be used to completely
eliminate the threat, or at least reduce the associated
risks. In each case, the goal is to reduce either the
likelihood or the severity of the threat.

All results are contained in an Evaluation Report
delivered to the Developer, who should make the
appropriate steps to address the found issues.

3.7 Risk Analysis

We estimate the risk each discovered threat poses to
the system. This is done by specifying the severity
(damage that can be potentially done by realizing the
threat) and likelihood (the difficulty of realizing the
threat) of each threat. This latter can be dependent of
many factors, including the needed resources (time,

money, tool accessibility, etc.) and the expertise
level required by an attacker to realize the threat, i.e.
commit a relevant attack.

The risk is the product of these two values using
the standard likelihood X severity risk calculation:

Table 1: Likelihood X severity risk calculation.

Likelihood
/ Severity

Low Medium High

Low Very Low Low Medium
Medium Low High Very High

High Medium Very High Catastrophic

The risk value of each threat can take the following
levels:
 Very Low (VL): The threat has a very minor – but

still not negligible – effect on the security of the
asset.
 Low (L): The threat has a minor effect on the

security of the asset.
 Medium (M): The threat has a noticeable effect on

the security of the asset.
 High (H): The threat significantly endangers the

asset.
 Very high (VH): The threat significantly

endangers the asset or the system as a whole.
 Catastrophic (C): The threat presents a critical

risk to the system as a whole; if not mitigated, its
effects could put the entire business process at risk.

3.8 Review

Following the evaluation, a several weeks long
review phase is usually reserved for the Developer
to review the results and fix the revealed
weaknesses. At the end of this period, the Evaluator
receives a new version of the ToE, and re-runs the
relevant test cases on it to verify if the threats have
been appropriately tackled.

A residual risk analysis is accomplished showing
the threats that still remain in the system after the
review. Any new threats discovered during the
review are also presented in the Review Report.

4 A CASE STUDY

The case study evaluation described in this section
was performed as part of the nSHIELD project (see
acknowledgements).

4.1 The ToE

The Target of Evaluation was an integrated secure

MEFORMA�Security�Evaluation�Methodology�-�A�Case�Study

271

node prototype running on an ARM-based
development board. The protection of node
functionality was realized through two main
software components: a secure boot loader and a
hypervisor.

The secure boot loader is the code that is first run
on the ToE. It ensures the integrity of the firmware
that is loaded and run afterwards, and which also
contains the hypervisor and the protected application
running on the board.

The hypervisor guarantees the isolation of
applications running on the platform as well as
secure interaction between trusted applications and
open components. An example trusted application
running within the hypervisor was also provided for
the evaluation.

As the first step, we had to define the scope of
the evaluation. Considering the dependencies
between the two components – specifically, the
hypervisor’s dependency on the secure boot loader
to maintain integrity within the node – we decided to
perform a combined evaluation of the two software
components described above.

After the scope definition, we identified the
security objectives that were relevant for the ToE.
We focused mainly on integrity objectives from the
CIA triad model, since – aside from the trusted
application and its cryptographic assets –
confidentiality and availability objectives were not
in the scope. We identified the following assets:
 Hardware assets: secure flash, persistent storage
 Software assets: secure boot loader, hypervisor,

trusted application, kernel
 Cryptographic assets: trusted application keys,

secure boot loader public key

We then identified the main threats that an
attacker may need to realize in order to achieve their
goal (compromising the node’s operation). These
threats consisted of bypassing the bootloader’s
integrity protection, obtaining confidential data
from the trusted application, and breaking out of
the virtual guest mode provided by the hypervisor.

Based on the identified threats, we have specified
the following test cases in the Test Plan:
 Source code analysis of the secure boot loader –

checking whether the main function and high-level
logic of the secure boot loader were implemented
correctly.
 Security of the signature verification process –

checking whether image validation was
implemented correctly, and whether the process
itself was free of cryptographic issues, e.g. the
Bleichenbacher attack (Kühn, 2008).
 Source code analysis of other libraries – checking

whether additional libraries used by the secure
boot loader to manage hardware devices (MMC,
VFAT, etc.) were free of typical security flaws.
 Source code analysis of hypercalls – checking

whether the implementation of hypercall handlers
were free of typical security flaws.
 Protection of virtual guest modes – checking

whether the state of the virtual guest mode was
protected and whether the implementation was free
from any logical flaws.
 Protection of trusted application – verifying

whether it was possible to bypass the Hypervisor
and access the trusted application in any way.

4.2 Evaluation Results

As we had access to the source code of the secure
boot loader and hypervisor components, source code
analysis was the main approach to follow during the
evaluation. Additionally, for the Source code
analysis of hypercalls test case, we set up a runtime
environment to verify our results.

During the evaluation, we have identified and
verified several threats that could impact the security
of the prototype. These are listed below; along with
the appropriate recommendations, these were
communicated to the Developer in the Test Report.
 Integrity protection could be bypassed – Due to a

design flaw and several implementation flaws, it
was possible to bypass the integrity protection
features of the secure boot loader.
 Security-critical programming errors – Several

programming bugs in the prototype could be
potentially exploited by an attacker to crash the
node, or – in some cases – even take control of it.
 Signature padding was not checked properly – The

secure boot loader’s signature checking function
did not check the padding at the end of the
signature properly; this was a Bleichenbacher-type
weakness, but was not exploitable due to the RSA
exponent used.
 Library contained known vulnerability – An old

version of the PuTTY library
(http://www.chiark.greenend.org.uk/~sgtatham/put
ty/) was used for RSA operations; this version
contained a known buffer overflow vulnerability
that could cause a crash or even execution of
malicious code.
 Hypervisor-level code execution possibility – A

Write-What-Where vulnerability in the hypervisor
could allow an attacker to write arbitrary data into
any place in memory.
 Guest privilege escalation possibility – A logic

error in hypercall handling could allow a guest to

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

272

change its mode to trusted; however, the
hypervisor would crash soon thereafter.
 Weaknesses in the trusted application – Several

recurring programming errors and design issues
were found in the example trusted application that
could allow an attacker to obtain the application’s
secret data as well as forge contract signatures that
would be accepted as valid. Even though this
example application was meant to be only a proof
of concept implementation, it could be used as a
basis for developing an example application later.
For this reason, this issue was still reported to the
Developer in order to make future ToE releases
more secure.

After having the above list of verified threats, we
performed a risk assessment, the results of which are
presented in the next Table ordered by risk value
(S: Severity, L: Likelihood, R: Risk – see section 3.7
for more details).

Table 2: Risk assessment for the evaluated prototype.

Threat name S L R
Integrity protection could be
bypassed

H M VH

Security-critical programming errors
(secure boot loader)

H M VH

Weaknesses in the trusted application H M VH

Hypervisor-level code execution
possibility

VH L H

Guest privilege escalation possibility L H M

Library contained known
vulnerability

M L L

Signature padding was not checked L L VL

Security-critical programming errors
(hypervisor)

L L VL

Following the delivery of the Test Report, all of the
identified vulnerabilities in the prototype have been
addressed by the Developer, and this has been
verified by the regression testing accomplished in
the Review Phase. The presented case study proved
once again that the approach provided by the
MEFORMA methodology can be used to
successfully improve the overall security level of
any system.

5 CONCLUSIONS

The MEFORMA security evaluation methodology
was created to provide a framework for commercial
security evaluations, and it has been used – and
continuously refined – in more than 50 evaluation
projects over twelve years, aiming at assessing the

security of various software and hardware based
products, in the domain of telecom, banking, finance
and consumer electronics, among others.

As compared to Common Criteria (CC) which
focuses on the development process and the proofs
developers should produce during their work, our
methodology provides a cost efficient approach in
focusing on the actual results of the design and
development work, i.e. the security of the actual ToE
itself. Thus the primary aim of MEFORMA is to
help developers in creating more secure products.

In the presented case study, we have shown the
effectiveness of our systematic approach, which
revealed 7 weaknesses of the evaluated platform: a
hypervisor supported by a secure boot loader.
Moreover, based on the recommendations given to
address each revealed problem, the Developer has
fixed the evaluated system, and the correctness of
the fixes has been verified by regression testing in
the final Review Phase of the evaluation. After the
conclusion of the evaluation, it has resulted in an
implementation of the prototype that is much more
resistant to various attacks.

For further improvement of the methodology, we
plan to do a comprehensive study of the threat
modelling landscape, and optionally include some
recently introduced techniques in this critical step of
the process. In addition, we plan to introduce a
suggestion on the tools and techniques (e.g static
code analysis or fuzz testing) to be used during the
actual evaluation, since this step is at the moment
completely dependent on the evaluator’s expertise.

ACKNOWLEDGEMENTS

MEFORMA is a security evaluation methodology
developed by SEARCH-LAB Security Evaluation
Analysis and Research Laboratory for its everyday
assessments.

The case study has been accomplished within
nSHIELD project (http://www.newshield.eu) co-
funded by the ARTEMIS JOINT UNDERTAKING
(Sub-programme SP6) focused on the research of
SPD (Security, Privacy, Dependability) in the
context of Embedded Systems.

REFERENCES

Kirwan, G. and Power, A., 2012. The Psychology of Cyber
Crime: Concepts and Principles, IGI Global.

Moore, T., Clayton, R., and Anderson, R., 2009. The
Economics of Online Crime, Journal of Economic

MEFORMA�Security�Evaluation�Methodology�-�A�Case�Study

273

Perspectives, American Economic Association, vol. 23
(3), pp. 3-20.

Brooks, Jr.F.P., 1986. No Silver Bullet—Essence and
Accidents of Software Engineering, Information
Processing 86, Elsevier Science Publishers, pp. 1069-
1076.

Andress, J., Winterfeld, S, 2011. Cyber Warfare:
Techniques, Tactics and Tools for Security
Practitioners, Syngress.

Symantec Security Response, 2010. W32.Stuxnet.
http://www.symantec.com/security_response/writeup.jsp?
docid=2010-071400-3123-99; last visited: October 2013.

Bencsáth, B., Pék, G., Buttyán, L., Félegyházi, M., 2012.
The Cousins of Stuxnet: Duqu, Flame, and Gauss,
Future Internet 2012, 4, pp. 971-1003.

CERT Software Engineering Institute, 2010. Software
Assurance Curriculum Project Volume I: Master of
Software Assurance Reference Curriculum, Technical
Report.

Walther, J., 2004. Meeting the challenges of automated
patch management, GSEC practical assignment.

BSIMM, Building Security In Maturity Model, Release V,
October 2013. http://bsimm.com/; last visited October
2013.

CEM, 2012. Common Methodology for Information
Technology Security Evaluation, v3.1, revision 4.
http://www.commoncriteriaportal.org/files/ccfiles/CE
MV3.1R4.pdf; last visited: October 2013.

ASVS, 2013. OWASP Application Security Verification
Standard 2013, version 2.0 beta,
http://www.owasp.org/index.php/Category:OWASP_
Application_Security_Verification_Standard_Project;
last visited October 2013.

OSSTM, 2010. The Open Source Security Testing
Methodology Manual , Contemporary Security
Testing and Analysis, version 3, ISECOM,
http://www.isecom.org/research/osstmm.html; last
visited November 2013.

Schneier, B., 1999. Attack Trees. Dr. Dobb's Journal, vol.
24, pp. 21 - 29.

Alexander, I., 2002. Misuse cases: Use cases with hostile
intent, Software, IEEE, Vol. 20, 1, pp. 58-66.

ENISA European Network and Information Security
Agency, 2012. ENISA Threat Landscape, Responding
to the Evolving Threat Environment, September 2012.

Kicillof, N., Grieskamp, W., Tillmann, N., Braberman V.
A., 2007. Achieving both model and code coverage
with automated gray-box testing, in: 3rd Workshop on
Advances in Model-Based Testing, A-MOST'07,
ACM Press, pp. 1-11.

Miller, B. P., Fredriksen, L. and So, B., 1990. An
Empirical Study of the Reliability of UNIX Utilities,
Communications of the ACM 33, pp. 32-44.

Kühn, U., Pyshkin, A., Tews, E. and Weinmann, R., 2008.
Variants of Bleichenbacher's Low-Exponent Attack on
PKCS#1 RSA Signatures, Proc. Sicherheit 2008, pp.
97-109.

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

274

