
Improving Proceeding Test Case Prioritization with Learning Software
Agents

Sebastian Abele and Peter Göhner
Institute of Industrial Automation and Software Engineering, University of Stuttgart, Stuttgart, Germany

Keywords: Machine Learning, Test Case Prioritization, Test Suite Optimization, Software Agents.

Abstract: Test case prioritization is an important technique to improve the planning and management of a system test.
The system test itself is an iterative process, which accompanies a software system during its whole life cy-
cle. Usually, a software system is altered and extended continuously. Test case prioritization algorithms find
and order the most important test cases to increase the test efficiency in the limited test time. Generally, the
knowledge about a system’s characteristics grows throughout the development. With better experience and
more empirical data, the test case prioritization can be optimized to rise the test efficiency. This article intro-
duces a learning agent-based test case prioritization system, which improves the prioritization automatically
by drawing conclusions from actual test results.

1 INTRODUCTION

The development of systems with a high quality is an
important factor to succeed in the market. The high
competition leads to a decreasing time-to-market.
Hence, the development process must be carried out
efficiently. One of the major parts of the test pro-
cess is the system test. The system test is a process
which accompanies the whole development process
and can’t be considered isolated. With about 80%, the
largest quantity of the total test expenditure is spent to
the regression test (Chittimalli and Harrold, 2009). In
the regression test, already available test cases are ex-
ecuted repeatedly to find faults that may have been
newly introduced with changes in the system. Over
time, the test suites for regression testing may grow
to very large repositories with thousands of test cases.
Executing all the test cases takes a vast amount of
time and resources which are often not available due
to the short time-to-market.

The planning of a test run with the selection of ap-
propriate test cases is a very complex time intensive
task. A lot of data has to be considered to achieve a
very efficient test plan. In order to address these chal-
lenges, computer-aided test case selection and priori-
tization techniques are used to find the most important
test cases for the available time slots automatically.
Test case selection techniques reduce the test suites
by identifying only relevant test cases, for example
based on the coverage of changes of the source code

since the last test run. An overview over different test
selection techniques can be found in (Engström et al.,
2010). Prioritization techniques order the test cases
by their expected benefit for the test. Unlike test case
selection, a test run that is executed on the base of pri-
oritized test cases may be interrupted at any time hav-
ing still the maximal benefit possible to the interrup-
tion time. (Yoo and Harman, 2012) describe test case
selection and prioritization techniques, which have
been developed in the past decades. The test case pri-
oritization techniques have in common that they cal-
culate the test case order to specific times before a
new test run starts.

The knowledge about the tested system grows
from test run to test run. More and more data, like
fault histories, are collected and evaluated to gener-
ate the test case order for the next test run. Not only
the collected data, but also the knowledge about the
tested system and the developer and tester experience
is growing. The tested software may show some un-
expected behavior in the test, which is understood bet-
ter and better by the test engineers. The classic test
case prioritization techniques are usually not adapted
to grown knowledge and experience. The test case
prioritization may not be optimal with respect to the
new knowledge.

To improve the test case prioritization with the
grown knowledge during the test process, we propose
a test case prioritization system, which uses machine
learning approaches. With machine learning, the test

293Abele S. and Göhner P..
Improving Proceeding Test Case Prioritization with Learning Software Agents.
DOI: 10.5220/0004920002930298
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 293-298
ISBN: 978-989-758-016-1
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



case prioritization algorithm is updated every test run
with the actual test results. The test case prioritiza-
tion algorithm and the machine learning approaches
are developed using software agents. Chapter 2 de-
scribes the agent-based test case prioritization and the
used prioritization algorithm. This approach is ex-
tended by a machine learning approaches in chapter
3. Finally, chapters 4 and 5 describe further research
plans and ideas.

2 AGENT-BASED TEST CASE
PRIORITIZATION

The paradigm of agent-based software development is
well suited to conquer the issues given by the bound-
ary conditions in a system test. Agent systems are
software systems, which consist of various agents. An
agent is a piece of software, which is capable to act
largely independent to fulfill the given goals. In an
agent system, different agents cooperate to achieve a
superior goal. Agent systems and their development
are described in (Wooldridge and Jennings, 1995) and
(Mubarak, 2008).

In the field of prioritizing test cases, the agents
collect and integrate information about the tested sys-
tem. Using this information they provide a list of pri-
oritized test cases. An agent-based test case prioriti-
zation system has been developed by (Malz and Göh-
ner, 2011). Each software module and each test case
is represented by one agent. The prioritization pro-
cess consists of two main steps: First the test mod-
ule agents predict the fault-proneness of the software
modules for the next test run. In the second step,
the test case agents calculate the fault-revealing prob-
ability of the test cases. For every module, the test
case agents calculates how probable it is that the rep-
resented test case reveals faults in that module. By
calculating the mean value of all fault-revealing prob-
abilities weighted with the fault-pronenesses of the
modules, the priority value is obtained.

The fault-proneness is calculated by evaluating
different metrics for each software module. Fault-
proneness prediction is described for example in (Kim
et al., 2007). (Bellini et al., 2005) compare different
models to estimate the fault-proneness. The metrics
are differentiated in white box and black box met-
rics. White box metrics base on the analysis of the
source code, e.g. to cover changes since the last test
run. Especially when the software system is devel-
oped by different departments or even different com-
panies together, the access to the source code may
be restricted and the white-box metrics not available.
Black-box metrics represent information about the

modules, which is available without direct access to
the source code. Part of the black-box metrics are
fault and change histories and developer-given criti-
cality and complexity values.

This kind of agent-based systems is predestined to
run in a distributed environment. Information about
a software system that is under test is usually dis-
tributed in such an environment. Every department
or company holds information about the part of the
software, which is developed by the department or by
the company. Agent-based test case prioritization al-
lows to integrate the distributed information to gener-
ate the test case order for the system test. By operat-
ing the relevant agents locally, departments or compa-
nies keep the control over their data. The agents only
deliver data, which is necessary for the current pri-
oritization task. A concept for an agent-based infor-
mation retrieval system was described by (Pech and
Goehner, 2010).

The agent-based test case prioritization system
uses fuzzy-logic rules, which reflect expert knowl-
edge about the relation of the metrics to the fault-
proneness and the fault-revealing probability. A de-
scription of the fuzzy logic rules for test case prior-
itization can be found in (Malz et al., 2012). The
rules mainly state common relations like "a fault-
prone module in the past will be fault-prone in the
future", "complex modules are more fault prone than
simple ones" or "test cases, which found a lot of faults
in the past, will find a lot of faults in the future".
Like (Fenton and Neil, 1999) states, expert knowl-
edge often is only an expert opinion, when the fault-
proneness is predicted by them. This statement is
applicable to the fuzzy-logic rules on the one hand
but also to some evaluated parameters like complex-
ity and criticality values, which are obtained by the
developers. With additional knowledge about the sys-
tem, e.g. with the actually found faults during the test,
the fault-proneness prediction can be evaluated and
improved. Therefore learning mechanisms are inte-
grated into the agents.

3 IMPROVING PRIORITIZATION
BY LEARNING AGENTS

In the classic agent-based test case prioritization ap-
proach, the prioritization is determined using fuzzy-
logic. Rules are formalized, which reflect com-
mon expert knowledge, which is usually valid for all
software development projects. In reality, the soft-
ware development projects may have deviations be-
cause the size, purpose, development team and many
other factors differ from project to project. Adapting

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

294



the prioritization algorithm manually to the project
specifics is nearly impossible because the specifics are
usually unknown and hard to be identified. With the
usage of learning algorithm, the prioritization system
is able to adapt itself using the knowledge from actual
performed tests.

3.1 Learning Fault-proneness
Prediction

As a first step towards a learning agent-based test
case prioritization system, the prediction of the fault-
proneness has been extended by a genetic algorithm.
The usage of the genetic algorithm is depicted in fig-
ure 1. The classic approach uses fuzzy logic rules
to estimate the fault-proneness out of the parame-
ters also shown in the figure. The calculated fault-
proneness value is compared with the number of ac-
tually found faults in the test. The difference between
the predicted fault-proneness and the actually found
faults is given to the genetic algorithm as a correction
value for the next test run.

Figure 1: Usage of a Genetic Algorithm to improve the
fault-proneness prediction.

The genetic algorithm optimizes the fuzzy logic
rules in that way that the fault-proneness prediction
would have given a value, which was much closer to
the number of actually found faults. For the next test
run, the fuzzy logic will use the optimized rule set
and provide a better prediction of the fault-proneness
value. With the better fault-proneness a better test
case prioritization is achieved.

The genetic algorithm has been applied to opti-
mize the weight of the single rules. The rule weight
reflects the influence of a parameter to the fault-
proneness. The more the fault-proneness depends on
a single parameter, the higher the weight of the rules
representing this parameter is. The weight of all rules
is combined to a chromosome for the genetic algo-
rithm. With inheritance and random mutation, the
genetic algorithm searches for a new, evolved chro-
mosome, which is better suited to calculate the fault-
proneness. Therefore it creates a various number of
chromosomes and compares their fitness. The fitness
is determined by comparing the prediction result of
the fuzzy logic rules using the current chromosome as

rule weights with the number of actually found faults.
The smaller the difference, the higher the fitness.

Since not every rule is used necessarily for each
fault-proneness calculation, only the weights of rules
that are used should be changed to avoid unwanted
side effects. If a mutation to a weight doesn’t have
an influence to the result, then this weight is locked
and not changed anymore. The chromosome with the
best fitness is given to the fuzzy logic. The fuzzy
logic adapts the weight to it’s rules for the next fault-
proneness prediction.

3.2 Evaluation of the Learning
Fault-proneness Prediction

To evaluate the learning fault-proneness prediction, it
is compared against the classic approach that doesn’t
learn. As an example project, a computer game was
chosen that has been developed during a 24 hours
programming competition. The boundary conditions
of this competition assure that the developer is time-
bounded in implementation and test. Additionally, we
assume that the development process is fundamen-
tally different to classic software development in a
short-time programming competition. Therefore the
classic rules may not be optimal and can be optimized
using the learning approach.

The game was divided into five modules, which
have been investigated: Underground, Obstacle,
Player, Enemy and Background. Before the develop-
ment started, the developer assigned complexity and
criticality values to the modules (see Table 1). As
third parameter, the relative development effort to the
single modules has been recorded as an indicator of
the changes done to the modules in the development
phases (see Table 3). Additionally, the faults that were
revealed were recorded for further analysis (see Ta-
ble 2). The fault-proneness has been calculated three
times during the 24 hours, once at the beginning of
the project, once in the middle and once shortly be-
fore the deadline.

Table 1: Parameters given by the developer.

Complexity Criticality
Underground 10 6
Obstacle 1 5
Player 8 10
Enemy 6 5
Background 7 7

To assess the quality of both fault-proneness pre-
diction methods, a reference value has been calcu-
lated. The reference value is assembled by the actual
number of revealed faults, the severity of the faults

Improving�Proceeding�Test�Case�Prioritization�with�Learning�Software�Agents

295



0

2

4

6

8

10

12

Early Phase Mid Phase End Phase

Underground

Actual Value Classic Prediction Learning Prediction

0

2

4

6

8

10

12

Early Phase Mid Phase End Phase

Obstacle

Actual Value Classic Prediction Learning Prediction

0

2

4

6

8

10

12

Early Phase Mid Phase End Phase

Player

Actual Value Classic Prediction Learning Prediction

0

2

4

6

8

10

12

Early Phase Mid Phase End Phase

Enemy

Actual Value Classic Prediction Learning Prediction

0

2

4

6

8

10

12

Early Phase Mid Phase End Phase

Background

Actual Value Classic Prediction Learning Prediction

Figure 2: Comparison between classic prediction and learning prediction.

Table 2: Real found faults in early, mid and late phases.

Early Mid Late
Underground 3 7 3
Obstacle 1 3 4
Player 0 2 5
Enemy 0 3 8
Background 1 5 2

Table 3: Spend effort in early, mid and late phase.

Early Mid Late
Underground 49% 12% 6%
Obstacle 13% 10% 31%
Player 27% 36% 22%
Enemy 6% 22% 32%
Background 5% 20% 9%

and a postmortem estimation of the developer, which
module would have been the most important to test.
Figure 2 shows the result and comparison between the
approaches. By analyzing the results and the given
scenario the following facts have been witnessed:

� The judgment of the developer for the criticality
and complexity values is not fitting very well. He
overestimated the criticality of the Underground
module, which may lead to an excessively high
predicted fault-proneness.

� For the obstacle module the developer underesti-
mated the complexity. In reality that module was
more fault-prone than expected.

� The trend of the found faults follows the order in
which the modules were developed. The timing
of the development has a big impact to the fault-
proneness in this scenario.

� For all modules, the prediction, which uses the ge-
netic algorithm, is closer to the actual value than
the classic prediction.

Those results show that the scenario in which the
software is developed has a large impact on the fault-
proneness, and the prediction of it. Especially in such
a very short-termed development project, the classic
factors like criticality and fault history are quite weak
for the fault proneness calculation. However, the re-

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

296



sults show that the used genetic algorithm is capa-
ble to correct the unfavorably selected parameters and
weights for the calculation. The impact of the unfor-
tunate chosen criticality values is weakened.

3.3 Critique of the Approach

Despite the results of the study, there are some things
that must be considered. The fault-proneness predic-
tion is optimized using the actually found faults in the
performed test. This brings two requisites: The test
cases, which test the software module, must be good
enough to find a representative number of faults. As-
sessing the quality of test cases is a very complex task
itself. Secondly, at least some of the test cases must
have been executed in the test run. If the test cases are
not executed due to time limitations, then there is no
optimization possible. The algorithm should not run
with a number of actually found faults, which is too
small to be representative.

The currently implemented genetic algorithm is
only optimizing the weight factors of the single fuzzy
logic rules. There may be other relations, which
make it necessary to change the rules themselves, add
new rules or change fuzzyfication and defuzzyfica-
tion functions. This will be investigated in further re-
search.

4 PLAUSIBILITY CHECKING

Another conclusion of the results presented in chap-
ter 3.2 is that not only the algorithm itself may be in
focus for a learning agent system. Other data, like
the complexity value, can also be corrected with ac-
tual test results. In that case, the wrong complexity
would be corrected instead of eliminating its influ-
ence to the fault-proneness. The correction of data
brings a lot of challenges for further work. It is nec-
essary to distinguish between wrong parameter data
and a wrong estimated fault-proneness. The first step
towards improving input data of the fault-proneness
prediction and test case prioritization is to check the
data plausibility. The plausibility can be checked on
two levels. Firstly, the consistency of all input data is
ensured. Secondly, further conclusions are generated
to find faults or uncertainties in the parameters, which
are not violating the consistency.

4.1 Consistency Checking

All parameters, which are evaluated to generate the
test case prioritization must be consistent in order to
draw valid conclusions. For the consistency, rules can

be established. A lot of consistency checking is al-
ready done by state of the art test management tools.
Especially the establishment of invalid dependencies
is denied and the traceability is ensured. Neverthe-
less, the current consistency checking needs to be ex-
tended by the incorporation of actual test results and
other feedback from the test. When an inconsistency
occurs, the test management system should be capa-
ble to give the user detailed information about the rea-
son or even to fix the inconsistency automatically. To
generate this information, more evaluation needs to be
done. One objective of further research is to generate
consistency rules and to add further data evaluation
to generate conclusions, which help to fix the incon-
sistency. The following list gives some examples for
consistency rules and the conclusions, which can be
drawn:

� A test case can only find faults in software mod-
ules, which are covered or which are dependent
from covered modules. If the test case finds a fault
in another module, either the coverage is wrong or
a dependency is missing.

� The interrelations between requirements, func-
tionalities and modules must be consistent with
the test case coverage. If a fault is revealed in
a module, which is not implementing the tested
functionality, the dependencies are set wrong.

� Especially when modules have been added or
deleted, it must be ensured that all relations and
dependencies are updated as well.

(Rauscher and Göhner, 2013) developed an agent-
based approach to ensure the consistency of a set of
concurrent system models of a mechatronic system.
They use an agent and an ontological description for
each system model. Based on the ontological repre-
sentation of the models, they define consistency rules,
which must be fulfilled. The rules are verified by
the agents automatically when one or more models
are changed. The consistency checking approach is
adapted and evolved to be used inside the agent-based
test management system. Consistency rules will be
generated and verified using information from actu-
ally performed tests.

4.2 Further Recommendations to
Improve the Data

Faulty or poorly chosen parameters, which don’t vi-
olate plausibility rules, are harder to find. Neverthe-
less, recommendations can be generated, which indi-
cate that the data should be checked manually. In the
evaluation study, the developer misjudged the com-
plexity of several software modules. After applying

Improving�Proceeding�Test�Case�Prioritization�with�Learning�Software�Agents

297



the genetic algorithm, the weight of the complexity
rules was lowered significantly. Instead of lowering
the weight, the misjudged values can be corrected. If
a lot of faults are found in a module, which has a quite
low complexity, this value might be reassessed and
changed.

5 SWARM LEARNING

The test case prioritization system consist of a set of
individual software agents. Currently, the agents are
acting widely independent in order to calculate the
fault-proneness or the fault-revealing probability. The
implemented learning algorithm improves the fault-
proneness calculation for each agent individually. By
adding swarm intelligence features to the agents, they
will be capable to generate further information collec-
tively. By comparing learning results of a parameter,
the agents can distinguish if a learned characteristic
is valid in the whole project, in a specific part of the
software ore only in a single module. If the character-
istic of the single module is different to all others, this
is a hint to a possibly wrong parameter value.

Characteristics, which are common in the whole
project, can be abstracted and used as basic knowl-
edge for newly introduced modules or test cases. The
agents, which represent these modules or test cases
don’t need to learn the common characteristics and
can provide a better result earlier. The comparison
of the learning results also helps to identify wrongly
learned relations. Strong deviations and fluctuations
can be detected and corrected.

6 CONCLUSIONS

In this article, we introduced a learning agent-based
test case prioritization system. The system uses a ge-
netic algorithm to improve the test case prioritization
with growing knowledge from the proceeding devel-
opment and test process. Our analysis with a learn-
ing fault-proneness calculation as a base for the test
case prioritization showed that the learning agents are
able to improve the prioritization significantly. Espe-
cially if the evaluated information is wrong or impre-
cise, e.g. because of a misjudgment of the developers
in the complexity of a module, the learning algorithm
helps to reduce the effect of this inaccurate parame-
ters.

In our future work, we will extend the used genetic
algorithm to the fault-revealing calculation of the test
cases. In parallel, we investigate further techniques,

which may help improving the test case prioritiza-
tion, for example by the realization of the consistency
checking and swarm intelligence described in chap-
ters 4 and 5.

REFERENCES

Bellini, P., Bruno, I., Nesi, P., and Rogai, D. (2005).
Comparing fault-proneness estimation models. In
10th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS’05), pages
205–214.

Chittimalli, P. and Harrold, M.-J. (2009). Recomputing cov-
erage information to assist regression testing. IEEE
Transactions on Software Engineering, 35(4):452–
469.

Engström, E., Runeson, P., and Skoglund, M. (2010). A sys-
tematic review on regression test selection techniques.
Information and Software Technology, 52(1):14–30.

Fenton, N. and Neil, M. (1999). A critique of software de-
fect prediction models. IEEE Transactions on Soft-
ware Engineering, 25(5):675–689.

Kim, S., Zimmermann, T., Whitehead Jr., E. J., and Zeller,
A. (2007). Predicting faults from cached history. In
Proceedings of the 29th International Conference on
Software Engineering, pages 489–498, Los Alamitos.
IEEE Computer Society.

Malz, C. and Göhner, P. (2011). Agent-based test case pri-
oritization. In IEEE Fourth International Conference
on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 149–152.

Malz, C., Jazdi, N., and Göhner, P. (2012). Prioritiza-
tion of test cases using software agents and fuzzy
logic. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation (ICST),
pages 483–486.

Mubarak, H. (2008). Developing flexible software using
agent-oriented software engineering. IEEE Software,
25(5):12–15.

Pech, S. and Goehner, P. (2010). Multi-agent information
retrieval in heterogeneous industrial automation envi-
ronments. In Agents and Data Mining Interaction,
volume 5980 of Lecture Notes in Computer Science,
pages 27–39. Springer, Berlin and Heidelberg.

Rauscher, M. and Göhner, P. (2013). Agent-based con-
sistency check in early mechatronic design phase.
In Proceedings of the 19th International Conference
on Engineering Design (ICED13), Design for Har-
monies, volume 9, pages 289–396. Design Society,
Seoul.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent
agents: theory and practice. The Knowledge Engi-
neering Review, 10(02):115–152.

Yoo, S. and Harman, M. (2012). Regression testing mini-
mization, selection and prioritization: a survey. Soft-
ware Testing, Verification and Reliability, 22(2):67–
120.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

298


