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1 STAGE OF THE RESEARCH 

Speech communication has been and still is the 
dominant mode of human-human communication 
and information exchange. Therefore, an interface 
based on speech allows people to interact with 
machines in a more natural and effective way 
(Teixeira et al., 2009) and, for this reason, spoken 
language technology has suffered a significant 
evolution in the last years. However, conventional 
automatic speech recognition (ASR) systems use 
only a single source of information – the audio 
signal. When this audio signal becomes corrupted in 
the presence of environmental noise or assumes 
particular patterns, like the ones verified in elderly 
speech, speech recognition performance degrades, 
leading users to opt by a different modality or to not 
use the system at all. This type of systems have also 
revealed to be inadequate in situations where privacy 
is required, for users without the ability to produce 
an audible acoustic signal (e.g. users who have 
undergone a laryngectomy) and users with speaking 
difficulties and speech impairments. 

To tackle these problems and being speech a 
privileged interface for Human-Computer 
Interaction (HCI), a novel Silent Speech Interface 
(SSI) based on multiple modalities is envisioned. 
We propose an SSI for European Portuguese (EP), a 
language for which no SSI has yet been developed. 
In our in depth state-of-the-art critical assessment, 
we have identified several modalities to convey 
silent speech data and address the issues raised by 
adapting existing work on SSIs to EP such as, the 
recognition of nasal vowels. From this analysis 
several modalities with low-invasiveness were 
selected and a set of preliminary experiments based 
on Video, Depth, Surface Electromyography 
(sEMG) and Ultrasonic Doppler Sensing (UDS) 
were conducted. Taking in consideration the results 
from the literature review and the experiments, we 
have decided to develop a multimodal SSI for EP. 
Results have also show recognition problems 
between minimal pairs of words that only differ on a 

nasal sound using the visual and the sEMG 
approach, supporting our planned development of an 
SSI based on the fusion of multiple modalities and 
motivating the investigation of the detection of nasal 
sounds using less invasive approaches. We are 
presently collecting the necessary corpora for 
developing a prototype and analysing the use of an 
additional sEMG sensor to capture the myoelectric 
signal coming from the muscles related with the 
nasality phenomena. 

2 OUTLINE OF OBJECTIVES 

The objectives defined for this PhD thesis are the 
following: 

European Portuguese Adoption – The adaptation 
of SSIs to a new language and the procedures 
involved constitute by itself an extension to the 
current scientific knowledge in this area. With this 
work we will address the challenges of developing a 
SSI for EP, the first approach for this language in the 
Portuguese and international academia. Using the 
techniques described in literature and adapting them 
to a new language will provide novel information 
towards language independence and language 
adoption techniques.  

Identify and Address Problems caused by 
Nasality – Motivated by the EP adoption, one of the 
areas of research to address is the problem of 
recognizing nasal sounds, as pointed out in (Denby 
et al., 2010). Considering the particular nasal 
characteristics associated with EP, we have noticed 
performance deterioration in terms of recognition 
rates and accuracy using existent approaches. When 
this occurs, the root of the system performance 
deterioration cause needs to be identified and new 
techniques based on that information need to be 
thought. For example, adding a sensor that that can 
provide complementary information. This will allow 
concluding particular aspects that influence language 
expansion, language independency and limitations 
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of SSIs for the EP case.  

Multi-sensor Analysis - An SSI can be 
implemented using several types of sensors working 
separately or a multimodal combination of them in 
order to achieve better results. For this work we will 
preferably adopt the less invasive approaches and 
sensors that are able to work both in silent and noisy 
environments. Further investigation will also be 
conducted on silent speech processing, respectively 
on data acquisition, feature extraction, and 
classification, as well as, on combining techniques 
through multiple sensor devices, data fusion and 
solving asynchrony issues verified in different 
signals (Srinivasan et al., 2010) in order to 
complement and overcome the inherent 
shortcomings of some approaches without 
decreasing the usability of the system. 

User Requirements and Scenarios Definition - 
After determining the different possibilities for each 
type of SSI, a hybrid and minimally invasive 
solution will be envisioned, specified, developed and 
tested, including existing hardware components and 
new software solutions, and targeting a universal 
interface that includes elderly people. The specific 
limitations and requirements imposed by an elderly 
speaker need to be stipulated based on a pre-defined 
user profile in order to provide an efficient use of the 
interface. During the full span of the project 
duration, close contact with end-users will be 
sought, starting from user requirements’ capture to 
the adoption of a full usability evaluation 
methodology, which will collect feedback and draw 
conclusions based on real subjects while interacting 
(using SSI) with computing systems and 
smartphones, respectively, in real case indoor home 
scenarios and in mobility environments. 

Usability Evaluation - Usability evaluation will be 
conducted, considering different groups of users. 
The usability evaluation will be focused on real case 
indoor home scenarios. This evaluation will also 
include a comparison study, similar to the ones 
described in (Freitas et al., 2009) towards traditional 
interfaces such as, mouse and keyboard. 

Fulfilling these objectives, even partially, will 
contribute to expanding knowledge in different areas 
of research. The used methodology will be based in 
state-of-the-art assessment, analytical modelling of 
the proposed solutions, specification, development, 
test and concrete deployment of algorithms and 
software systems, including also external sourcing of 
hardware components in the specified use cases and 
usability evaluation of such cases with end-users. 

3 RESEARCH PROBLEM 

An SSI performs ASR in the absence of an 
intelligible acoustic signal and can be used as a 
human-computer input modality in high-
background-noise environments such as, living 
rooms, or in aiding speech-impaired individuals 
which are unable to benefit from the current HCI 
systems based on speech. By acquiring sensor data 
from elements of the human speech production 
process – from glottal and articulators activity, their 
neural pathways or the brain itself – an SSI produces 
an alternative digital representation of speech, which 
can be recognized and interpreted as data, 
synthesized directly or routed into a communications 
network. Informally, one can say that a SSI extends 
the human speech production model by the signal 
data of electrodes, ultrasonic receivers, cameras and 
other sources. This provides a more natural  
approach than currently available speech pathology 
solutions like, electrolarynx, tracheo-oesophageal 
speech, and cursor-based text-to-speech systems 
(Denby et al., 2010). 

Since they are still at an early stage SSI systems 
aimed at HCI present several problems: 

Currently, and to our knowledge, no SSI system 
exists for European Portuguese, leaving European 
Portuguese users with speech impairments unable to 
interact with HCI systems based on speech. 
Furthermore, no study or analysis has been made 
regarding the adoption of a new language with 
distinctive characteristics to this kind of systems, 
and the problems that may arise from applying 
existent work to EP are unknown. A particularly 
relevant characteristic of EP are the nasal sounds, 
which may pose problems to several SSI modalities. 

Another problem with the current SSI modalities 
is how to achieve satisfactory accuracy rates without 
a high degree of invasiveness. The notion of a SSI 
system entails that no audible acoustic signal is 
available, requiring speech information to be 
extracted from articulators, facial muscle movement 
and brain activity. Considering a real world scenario, 
this often leads to unpractical and invasive solutions 
due to the difficulty in extracting silent speech 
information using current technologies. 

SSI systems are also not directed for all types of 
users, especially the elderly, which impose several 
limitations and requirements. Elderly population 
individuals have developed resistance to 
conventional forms of human-computer interaction 
(Phang et al., 2006) like the keyboard and mouse, 
therefore making it necessary to test new natural 
forms of interaction such as silent speech. In 
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addition, elder people often have difficulties with 
motor skills due to health problems such as arthritis, 
so the absence of small and difficult to handle 
equipment may be presented as an advantage over 
current solutions. It is also known that due to ageing, 
senses like vision become less accurate, hence 
difficulties in the perception of details or important 
information in conventional graphical interfaces may 
arise, since current interfaces, most notably in the 
mobility area, are not designed with these 
difficulties in mind. 

In summary, our research problem addresses 
SSIs aimed at HCI and four concrete hypothesis can 
be extracted, as follows: 

1. Is it possible to extend/adapt the work on SSI for 
languages such as English to European 
Portuguese? 

2. Do nasal sounds, particularly relevant in EP, 
poses problems to most, if not all, of the 
modalities, and is their detection possible using 
less invasive SSIs? 

3. Does a multimodal approach has the potential to 
improve state-of-the-art results using several less 
invasive modalities? 

4. Can an SSI be used in a real world scenario, 
robust enough to be usable, with sufficient user 
satisfaction, by all users including the elderly? 

4 STATE OF THE ART 

Several SSI based on different sensory types of data 
have been proposed in the literature and a detailed 
overviews can be found in Denby et al., (2009) and 
Freitas et al., (2011). In this section we summarize 
the existent approaches grouped according to the 
human speech production model.  

The speech production model can be divided into 
several stages. According to Levelt (1989), the 
communicative intention is the first phase of each 
speech act and consists in converting patterns of 
goals into messages followed by the grammatical 
encoding of the preverbal message to surface 
structure. The next phase of the speech production is 
the passage from the surface structure to the 
phonetic plan, which, informally speaking is the 
sequence of phones that are fed to the articulators. 
This can be divided between the electrical impulse 
fed into the articulators and the actual process of 
articulating. The final phase consists on the 
consequent effects of the previous phases.  

The existent experimental SSI systems described 
in the literature, cover information extraction from 

all the stages of speech production, from intention to 
articulation effects, as depicted on Figure 1. The 
current approaches can then be divided as follows: 

 Intention level (brain / Central Nerve System): 
Interpretation of signals from implants in the 
speech-motor cortex (Brumberg et al., 2010), 
Interpretation of signals from electro-
encephalographic (EEG) sensors (Porbadnigk et 
al., 2009);  

 Articulation control (muscles): Surface 
Electromyography of the articulator muscles 
(Schultz and Wand, 2010);  

 Articulation (articulators): Capture of the 
movement of fixed points on the articulators 
using Electromagnetic Articulography (EMA) 
sensors (Fagan et al., 2008); Real-time 
characterization of the vocal tract using ultra-
sound (US) and optical imaging of the tongue 
and lips (Florescu et al., 2010); Capture 
movements of a talker’s face through ultrasonic 
Doppler sensing (Srinivasan et al., 2010).  

 Articulation effects: Digital transformation of 
signals from a Non-Audible Murmur (NAM) 
microphone (Toda et al., 2009); Analysis of 
glottal activity using electromagnetic (Quatieri et 
al., 2006), or vibration (Patil and Hansen, 2010) 
sensors. 

 

 

Figure 1: Phased speech production model with the 
correspondent SSI technologies. 

4.1 SSIs for Portuguese 

The existing SSI research has been mainly 
developed for English, with some exceptions for 
French (Tran et al., 2009) and Japanese (Toda et al., 
2009). There was no published work prior to this 
thesis for European Portuguese in the area of SSIs, 
although there are previous research on related 
areas, such as the use of EMA (Teixeira and Vaz, 
2001), Electroglotograph and MRI (Martins et al., 
2008) for speech production studies, articulatory 
synthesis (Teixeira and Vaz, 2000) and multimodal 
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interfaces involving speech (Ferreira et al., 2013). 
There are also some studies on lip reading systems 
for EP that aim at robust speech recognition based 
on audio and visual streams (Pêra et al., 2004); (Sá 
et al., 2003). However, none of these addresses EP 
distinctive characteristics, such as nasality. 

4.2 Multimodal SSIs 

In 2004, Denby and Stone (2004), presented a first 
experiment where 2 input modalities, in addition to 
speech audio, were used to develop an SSI. Denby 
and Stone employed ultrasound imaging of the 
tongue area, lip profile video and acoustic speech 
data with the goal of developing an SSI. More 
recently, Florescu et al., (2010), using these same 
modalities achieved a 65.3% recognition rate only 
considering silent word articulation in an isolated 
word recognition scenario with a 50-word 
vocabulary using a DTW-based classifier. The 
reported approach also attributes substantially more 
importance to the tongue information, only 
considering a 30% weight during classification for 
the lip information. In 2008, Tran et al. (2008), also 
reported a preliminary approach using information 
from 2 modalities: whispered speech acquired using 
a NAM and visual information of the face using the 
3D position of 142 coloured beads glued to the 
speakers face. Later, using the same modalities, the 
same author, achieved an absolute improvement of 
13.2% when adding the visual information to the 
NAM data stream. The use of visual facial 
information combined with sEMG signals has also 
been proposed by Yau et al., (2008). In this study 
Yau et al. presents an SSI that analyses the 
possibility of using sEMG for unvoiced vowels 
recognition and a vision-based technique for 
consonant recognition. When looking at the chosen 
modalities, recent work using video plus depth 
information has been presented by Galatas et al., 
(2012), showing that the depth facial information 
can improve the system performance over audio-
only and traditional audio-visual systems. In the area 
of sEMG-based SSIs, recent research on has been 
focused on the differences between audible and 
silent speech and how to decrease the impact of 
different speaking modes (Wand and Schultz, 
2011a); the importance of acoustic feedback (Herff 
et al., 2011); EMG-based phone classification 
(Wand and Schultz, 2011b); and session-
independent training methods (Wand and Schultz, 
2011c). For what UDS is concerned, it has been 
applied to several areas (e.g. voice activity detection 
(Kalgaonkar et al., 2007), speaker identification 

(Kalgaonkar et al., 2008), synthesis (Toth et al., 
2010) and speech recognition with promising results 
(Srinivasan et al., 2010); (Freitas et al., 2012). 

4.3 Nasality Detection 

The production of a nasal sound involves air 
flow through the oral and nasal cavities. This air 
passage for the nasal cavity is essentially controlled 
by the velum that, when lowered, allows for the 
velopharyngeal port to be open, enabling resonance 
in the nasal cavity and the sound to be perceived 
nasal. The production of oral sounds occurs when 
the velum is raised and the access to the nasal cavity 
is closed (Beddor, 1993). The process of moving the 
soft palate involves the several muscles (Fritzell, 
1969); (Hardcastle, 1976); (Seikel et al., 2010), as 
depicted in Figure 2. 

  

Figure 2: Muscles of the soft palate from posterior (left), 
and the side (right) view (Seikel et al., 2010). 

In previous studies, the application of EMG to 
measure the level of activity of these muscles has 
been performed by means of intramuscular 
electrodes (Fritzell, 1969); (Bell-Berti, 1976) and 
surface electrodes positioned directly on the oral 
surface of the soft palate (Lubker, 1968); (Kuehn, 
1982). Our work differs from the cited papers, since 
none of them uses surface electrodes placed in the 
face and neck regions, a significantly less invasive 
approach and quite more realistic and representative 
of the SSIs case scenarios. Also, although 
intramuscular electrodes may offer more reliable 
myoelectric signals, they also require considerable 
medical skills and, for both reasons, intramuscular 
electrodes were discarded for this study.  

No literature exists in terms of detecting the 
muscles involved in the velopharyngeal function 
with surface EMG electrodes placed on the face and 
neck. Previous studies in the lumbar spine region 
have shown that if proper electrode positioning is 
considered a representation of deeper muscles can be 
acquired (McGill et al., 1996) thus raising a question 
that is currently unanswered: is surface EMG 
positioned in the face and neck regions able to detect 
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activity of the muscles related to nasal port 
opening/closing and consequently detect the nasality 
phenomena? Another related question that can be 
raised is how we can show, with some confidence, 
that the signal we are seeing is in fact the 
myoelectric signal generated by the velum 
movement and not spurious movements caused by 
neighbouring muscles unrelated to the 
velopharyngeal function. 

5 METHODOLOGY 

The chosen approach to the mentioned research 
problems can be divided into 4 main stages, as 
depicted in Figure 3. The following subsections 
describes each stage in more detail. 
 

 

Figure 3: Stages of the chosen methodology. 

5.1 Modalities Selection 

In the initial stage of the PhD, an in depth study of 
related work and preliminary evaluation of different 
types of SSIs was made, the major problems were 
identified and the aim of the thesis was defined. This 
initial study contributed to determine which SSI or 
SSIs were more suited to the problem and what were 
the available resources. Results of this work include 
a state-of-the-art assessment as well as the main 
issues to be solved. Then by conducting preliminary 
experiments with non-invasive and recent modalities 
such as Ultrasonic Doppler (Freitas et al., 2012), we 
have selected several HCI technologies based on: the 
possibility of being used in a natural manner without 
complex medical procedures from the ethical and 
clinical perspectives, low cost, tolerance to noisy 
environments and be able to work with speech-
handicapped users or elderly people, for whom 
speaking requires a substantial effort. 

5.2 Adapt to European Portuguese 

In the second stage of the PhD we chosen to address 
a known challenge in SSIs – the detection of 
nasality. This decision was motivated by the fact that 
nasality is an important characteristic of EP and an 
eventual solution for this problem would allow the 

development of a more adapted SSI for EP, and also 
because preliminary studies have shown current 
techniques for silent speech recognition based on 
sEMG will present a degraded performance when 
dealing with languages with nasal characteristics. 
Thus, we started by exploring the existence of useful 
information about the velum movement and also by 
assessing if deeper muscles could be sensed using 
surface electrodes in the regions of the face and neck 
and the best electrode location to do so. To 
accomplish these tasks, we have applied a procedure 
that uses Real-Time Magnetic Resonance Imaging 
(RT-MRI), collected from the same speakers, 
providing a method to interpret EMG data. 

The main idea behind this approach consists in 
crossing two types of data containing information 
about the velum movement: (1) images collected 
using RT-MRI and (2) the myoelectric signal 
collected using surface EMG sensors. By combining 
these two sources, ensuring compatible scenario 
conditions and proper time alignment, we are able to 
accurately estimate the time when the velum moves 
and the type of movement (i.e. ascending or 
descending) under a nasality phenomenon, and 
establish the differences between nasal and oral 
vowels using surface EMG. Also, we need to know 
when the velum is moving, to avoid that signals 
coming from other muscles, artefacts and noise be 
misinterpreted as signals coming from the target 
muscles. To overcome this problem we take 
advantage of a previous data collection based on 
RT-MRI (Teixeira et al., 2012), which provides an 
excellent method to interpret EMG data and estimate 
when velum is moving.  

Recent advances in MRI technology allow real-
time visualization of the vocal tract with an 
acceptable spatial and temporal resolution. This 
sensing technology enables us to have access to real 
time images with relevant articulatory information 
for our study, including velum raising and lowering. 
In order to make the correlation between the two 
signals, audio recordings were performed in both 
data collections by the same speakers. Notice that 
EMG and RT-MRI data can't be collected together, 
so the best option is to collect the same corpus for 
the same set of speakers, at different times, reading 
the same prompts in EMG and RT-MRI. 

For the EMG and RT-MRI signals 
synchronization we start by aligning both EMG and 
the information extracted from the RT-MRI with the 
corresponding audio recordings. Next, we apply 
Dynamic Time Warping (DTW) to the signals, 
finding the optimal match between the two 
sequences. Based on the DTW result we map the 
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information extracted from RT-MRI from the 
original production to the EMG time axis, 
establishing the needed correspondence between the 
EMG and the RT-MRI information, as depicted in 
Figure 4. 

 

Figure 4: Exemplification of the warped signal 
representing the nasal information extracted from RT-MRI 
(dashed red line) superimposed on the speech recorded 
during the corresponding RT-MRI and EMG acquisition, 
for the sentence [ɐ̃pɐ, pɐ̃pɐ, pɐ̃]. 

5.3 Multimodal Ssi 

The third stage consists in the development of a 
multimodal SSI prototype based on the conclusions 
of the previous stages. Since no SSI of this kind 
exists the first step is to collect data from the 
selected modalities in a synchronized way. Having 
collected the necessary data a feature selection 
analysis must be conducted due to the high number 
of information streams (5 if we consider audio) in 
order to avoid an excessively high dimensionality 
space. During this analysis it is also necessary to 
understand how we are going to combine all these 
streams and what type of fusion should be used (i.e. 
feature or decision fusion, or both) in our pipeline. 
Finally, it is necessary to understand what classifier 
(or classifiers) is most appropriate for this case. 
Since not much data exists for this novel interface, 
our aim is to explore example-based methods such 
as Dynamic Time Warping. 

To the current time we have collected data from 
four modalities with the following specifications: (1) 
video input, which captures the RGB colour of each 
image pixel of the speakers’ mouth region and its 
surroundings, including chin and cheeks; (2) depth 
input, which captures depth information of each 
pixel for the same areas, providing useful 
information about the mouth opening and tongue 
position, in the sensor reference frame, in some 
cases; (3) surface EMG sensory data, which 
provides information about the myoelectric signal 
produced by the targeted facial muscles during 

speech movements; (4) Ultrasonic Doppler Sensing, 
a technique which is based on the emission of a pure 
tone in the ultrasound range towards the speaker’s 
face, that is received by an ultrasound sensor tuned 
to the transmitted frequency. The reflected signal 
then contains Doppler frequency shifts that correlate 
with the movements of the speaker’s face 
(Srinivasan et al., 2010). To the best of our 
knowledge, this is the first silent speech corpus that 
combines more than two input data types and the 
first to synchronously combine the corresponding 
four modalities, thus, providing the necessary 
information for future studies on multimodal SSIs. 

After assembling all the necessary data collection 
equipment which, in the case of ultrasound, led us to 
the development of custom built equipment based on 
the work of Zhu (2008), we needed to create the 
necessary conditions to record all signals with 
adequate synchronization. The challenge of 
synchronizing all signals resided in the fact that a 
potential synchronization event would need to be 
captured simultaneously by all (four) input 
modalities. To that purpose, we have selected the 
EMG recording device, which had an available I/O 
channel, as the source that generates the alignment 
pulse for all the remaining modalities. After the data 
collection system setup was ready, a proof-of-
concept database, was collected for further analysis. 

The devices employed in this data collection 
were: (1) a Microsoft Kinect (2013) that acquires 
visual and depth information; (2) an sEMG sensor 
acquisition system from Plux (2013), that captures 
the myoelectric signal from the facial muscles; (3) a 
custom built dedicated circuit board (referred to as 
UDS device), that includes: 2 ultrasound transducers 
(400ST and 400SR working at 40 kHz), a crystal 
oscillator at 7.2 MHz and frequency dividers to 
obtain 40 kHz and 36 kHz, and all amplifiers and 
linear filters needed to process the echo signal 
(Freitas et al., 2012).  

The Kinect sensor was placed at approximately 
0.7m from the speaker. It was configured, using 
Kinect SDK 1.5, to capture a colour video stream 
with a resolution of 640x480 pixel, 24-bit RGB at 30 
frames per second and a depth stream, with a 
resolution of 640x480 pixel, 11-bit at 30 frames per 
second. 

The sEMG acquisition system consisted of 5 
pairs of EMG surface electrodes connected to a 
device that communicates with a computer via 
Bluetooth. As depicted in Figure 5 the sensors were 
attached to the skin using a single use 2.50 cm 
diameter clear plastic self-adhesive surfaces and 
considering an approximate 2.00 cm spacing 
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between the electrodes center for bipolar 
configurations. Before placing the surface EMG 
sensors, the sensor location was previously cleaned 
with alcohol. While uttering the prompts no other 
movement, besides the one associated with speech 
production, was made. The five electrode pairs were 
placed in order to capture the myoelectric signal 
from the following muscles: the levator angulis oris 
(channel 2); zygomaticus major (channel 2); the 
tongue (channel 1 and 5), the anterior belly of the 
digastric (channel 1); the platysma (channel 4) and 
the last electrode pair was placed below the ear 
between the mastoid process and the mandible. The 
sEMG channels 1 and 4 used a monopolar 
configuration (i.e. placed one of the electrodes from 
the respective pair in a location with low or 
negligible muscle activity), being the reference 
electrodes placed on the mastoid portion of the 
temporal bone. The positioning of the EMG 
electrodes 1, 2, 4 and 5 was based on previous work 
(e.g. Schultz and Wand, 2010) and sEMG electrode 
3 was placed according to recent findings by the 
authors about the detection of nasality in SSIs 
(Freitas et al., 2014). 

 

Figure 5: sEMG electrodes positioning and the respective 
channels (1 to 5) plus the reference electrode (R). 

The UDS device was placed at approximately 
40.0 cm from the speaker and was connected to an 
external sound board (Roland, UA-25 EX) which in 
turn is connected to the laptop through a USB 
connection. The two supported recording channels 
of the external sound board were connected to the 
I/O channel of the sEMG recording device and to the 
UDS device. The Doppler echo and the 
synchronization signals were sampled at 44.1 kHz 
and to facilitate signal processing, a frequency 
translation was applied to the carrier by modulating 
the echo signal by a sine wave and low passing the 
result, obtaining a similar frequency modulated 
signal centered at 4 kHz. 

In order to register all input modalities via time 
alignment between all corresponding four input 
streams, we have used an I/O bit flag in the sEMG 
recording device, which has one input switch for 
debugging purposes and two output connections, as 

depicted in Figure 6. Synchronization occurs when 
the output of a synch signal, programmed to be 
automatically emitted by the sEMG device at the 
beginning of each prompt, is used to drive a led and 
to provide an additional channel in an external sound 
card. Registration between the video and depth 
streams is ensured by the Kinect SDK. Using the 
information from the led and the auxiliary audio 
channel with synch info, the signals were time 
aligned offline. To align the RGB video and the 
depth streams with the remaining modalities, we 
have used an image template matching technique 
that automatically detects the led position on each 
colour frame. For the UDS acquisition system, the 
activation of the output I/O flag of the sEMG 
recording device, generates a small voltage peak on 
the signal of the first channel. To enhance and detect 
that peak, a second degree derivative is applied to 
the signal followed by an amplitude threshold. To be 
able to detect this peak, we have previously 
configured the external sound board channel with 
maximum input sensitivity.  The time-alignment of 
the EMG signals is ensured by the sEMG recording 
device, since the I/O flag is recorded in a 
synchronous way with the samples of each channel. 

 

Figure 6: Diagram of the time alignment scheme showing 
the I/O channel connected to the three outputs – debug 
switch, external sound card and a directional led. 

5.4 Usability Evaluation 

The last stage of the PhD will be focused on 
evaluating the interface usability. Here, usability 
evaluation tests using the proposed SSI prototype 
will be conducted, allowing to identify 
shortcomings, refine previously established user 
requirements and improve the existent prototype. In 
a first phase of the usability tests, the features 
provided by the interface will be tested in the form 
of a task that the user must accomplish. For each 
subject it will be analysed if the task was 
accomplished; how many tries were required; if the 
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application flow ran smoothly and how long the user 
took to adapt to the system. In these tests, usability 
should be evaluated in terms of efficiency, 
effectiveness and satisfaction. Concerning 
efficiency, the required time to execute a task using 
the system, the number of actions and the time spent 
with application instructions, should be considered. 
In terms of effectiveness, it should be measured if 
the task was completed with success, how frequent it 
recurs to application features and the quality of the 
output. Finally, one should assess if the user enjoyed 
and presented a positive attitude towards the system. 

6 EXPECTED OUTCOME 

So far, this PhD thesis have spawned the following 
contributions:   

 A new taxonomy that associates each type of SSI 
to a stage of the human speech production 
model.  

 A state-of-the-art overview of SSIs, which 
includes the latest related research.  

 SSI technologies and techniques applied for the 
first time to EP (e.g. sEMG and UDS) 

 Results that indicate the difficulty on 
distinguishing minimal pairs of words that only 
differ on nasal sounds when using surface EMG 
or Video. 

 Analysis of velum movement detection using 
surface electrodes in the regions of the face and 
neck and the best electrode location to do so. 

 A silent speech corpus that combines more than 
two input data types and the first to 
synchronously combine the corresponding 
modalities. 

Upon completion we expect to obtain the following 
outcomes: 

 Development of a multimodal SSI prototype 
based on Video, Depth, UDS, and sEMG where 
eventually the weakest points of one modality 
can be minored by other(s). 

 A careful analysis of what modalities to fuse, 
when and how, in order to provide adequate 
response to users’ goals and context, striving for 
additional robustness in situations, such as noisy 
environments, or where privacy issues and 
existing disabilities might hinder single modality 
interaction. 

 Assess the usability of the proposed system in 
real-world scenarios. 
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