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1 STAGE OF THE RESEARCH 

The MIPS Laboratory (Modelling, Intelligence, 
Process and Systems) is an interdisciplinary research 
laboratory hosted by the Haute Alsace University. It 
is involved in several research projects that deal with 
signal processing, software engineering, microscopy 
imaging and modeling and identification in 
automatic and mechanic. 

Since March 2012, the MIPS laboratory is 
involved in the telemedicine project E-care 
(www.projet-e-care.fr) piloted by the NEWEL 
society. This project rallied economics and scientific 
community to keep patients in the comfort of their 
own home with a higher level of care and all this 
with reduction cost.    

The E-care project aims to develop best practices 
and a platform for awareness raising, knowledge 
exchange and policy making in this field. The 
project is closely linked to the thesis contribution of 
Ali Moukadem (Moukadem, 2011). Indeed, this 
thesis fulfilled in MIPS laboratory and HUS 
“Hôpitaux Universitaires de Strasbourg” co-financed 
by “region Alsace” and ANR ASAP TLOG 06 
project, became interested in development of robust 
methods for heart sound analysis which can be used 
for auto-diagnosis and telemedicine applications. 

Diagnosis based PhonoCardioGram (PCG) 
signals alone cannot detect all cases of heart 
symptoms (Ahlstrom et al., 2008). In this work, we 
are recommended for using an EleCtrocardioGram 
(ECG) signal besides a PCG signal for heart disease 
investigation. The advantage of the proposed system 
is that a heart’s diagnosis system based on the ECG 
and PCG signals can lead to high performance heart 
diagnostics (Ping and Zhigang, 1998). 

This thesis project, brings economic and 
scientific partners together, is financially supported 

by “Caisse des Dépots” and “region Alsace” and 
seeks to improve the use of telemedicine for life 
saving. The activities planned focus on providing 
good practices and improving the quality of services 
offered to patients.  

2 OUTLINE OF THE E-CARE 
PROJECT 

Despite considerable advances in medical therapy, 
heart failure remains a substantial burden of 
mortality and economic cost 
(EUROPEAN.COMMISSION, 2012). These trends 
underline the growing fiscal and medical imperative 
to develop better strategies to improve care delivery 
to heart failure patients and reduce rehospitalization 
rates.  

The healthcare reform in many countries 
generates new approaches to care delivery and to 
provide high quality. The main reflect is the need for 
improving the access of a growing aging population 
in order to contain the costs (Zannad et al., 2009). 

At the present, the societal and economic 
benefits from wider use of telemedicine are far from 
being achieved (Weinstein et al.). Then politicians 
and healthcare leaders are realizing that telemedicine 
is clearly a buttress of the solution. This is tangibly 
seen by the soaring number of healthcare systems 
that are adopting telemedicine, by the development 
of industry investments in telemedicine products and 
involvement of government in project delivery.  
There common goals is to initiate the citizens on 
keeping them healthy, partly by encouraging them to 
become more active participants in their own health 
management.  

Telemedicine provides healthcare services 
through use secure transmission of medical data and 
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information for the diagnosis, prevention, treatment 
and following up patients focusing in benefits of 
advanced current technologies and the advance in 
signal processing field. 

Heart failure (HF) is among the major causes of 
hospitalization for elderly citizens (Zannad et al., 
2009). The New York Heart Association (NYHA) 
(www.heart.org) functional classification of HF is 
widely used classification system relating HF 
symptoms. The NYHA classification consists of four 
categories that range from no symptoms (class I) to 
severe at rest (class IV). 

The E-care project’s, through telemedicine, main 
objective is to greatly contribute to the enhancement 
of the remote patient monitoring, expanding the 
possibilities for lifesaving care. In this project, a 
smart platform is adopted for home monitoring using 
noninvasive sensors to HF patients with NYHA 
(class III) severity. This platform is open and 
extensible to integrate data sources, to complete the 
patient knowledge which will help in diagnostic and 
report the risk at an early stage. 

Our contribution in this project, with our 
partners, is to enhance the signal processing part for 
accurate diagnostic. Although ECG and PCG signals 
play important roles in heart abnormality detection, 
diagnosis based alone on ECG signal or PCG signal 
cannot detect most cases of heart symptoms. Hence, 
some research has focused on diagnosing heart 
defects based on the intercourse between ECG and 
PCG signals (Jabloun et al., 2013); (Phanphaisarn et 
al., 2011); (Ahlstrom et al., 2008) which can bring 
high performance heart diagnostics. 

Unlike the time or frequency methods, the time-
frequency analysis has the advantage of being robust 
in heart sounds segmentation (Moukadem et al., 
2013). Thanks to this advantage, we want during this 
thesis to expand the scope applications to ECG 
signals and see also to find common features 
between the two signals. 

3 HARDWARE AND DATA 
ACQUISITION 

Chosen sensor are from the market and validated 
“Continua” to ensure the compatibility with E-care 
platform. A lot of new system will come on the 
marquet on the feature, but we focus our attention 
only on commercialized product so we work with 
aquared signal from system that could be  used by 
cardiologist. 

A laptop will be used as data acquisition for the 
proposed analysis. A measurement campaign will be 

carried out in the cardiology department of the HUS 
of Strasbourg. Heart sound will be captured using 
the electronic stethoscope (Littmann Electronic 
Stethoscope Model 3200), figure 1. An ECG (éolys), 
figure 2, amplifier circuit will be used to capture and 
amplify the ECG of patients. Both are wirelessly 
connected to the laptop. 

3.1 Phonocardiogram Signals 

Phonocardiogram (PCG) is the acoustic recording of 
mechanical activity of the heart. It facilitates the 
measurement of the instantaneous heart rate, beat-to-
beat differences and duration of systolic and 
diastolic phases. These measures provide 
information about the cardiac function.  

 

 

Figure 1: 3M™ Littmann® Electronic stethoscope model 
3200. 

The Littmann electronic stethoscope, figure 1, is 
intended for medical diagnostic purposes. It is used 
for the detection and amplification of internal sounds 
in human body such as from the heart, arteries, 
veins, and other internal organs using selective 
frequency ranges. It is designed to be used by 
anyone who wishes to listen to a sound which is 
known, in medical terms, as auscultation. 

Using its Bluetooth wireless link, the stethoscope 
exchange audio data with an external device in real 
time, permitting their visual presentation, recording, 
and analysis by applications software. 

3.2 Electrocardiogram Signals 

The heart produces tiny electrical impulses which 
spread through the heart muscle to make the heart 
contract. 

 

Figure 2: Electrogradiogram éolys®. 
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The éolys® electrocardiogram (ECG), figure 2, 
record the electrical activity of the heart from 
electrodes on the body surface. To measure the rate 
and regularity of heartbeats, the ECG includes 12 
self-adhesive electrodes attached to selected 
locations of the skin on the arms, legs and chest. 

There is for wirelessly transmitting a 3-/6- or 12-
channel ECG to a monitor, e.g. a PC or a regular 
patient monitor. 

4 SIGNAL PROCESSING 
METHODS 

In this experiment, the two physiological signals 
(ECG and PCG) will be collected simultaneously but 
without electronically controlled synchronization of 
the measures. 

Advanced methods and techniques of signal 
processing and artificial intelligence will be applied 
to extract relevant features, after the acquisition, 
from the two physiological signals. These signals are 
non-stationary by nature. The classical Fourier 
transform analyzes the frequency content of signal 
without any time information. Therefore, the 
importance of time-frequency transforms to detect 
the frequency changes of signal over time and to 
extract pertinent features form the two physiological 
signals.  

4.1 S-Transform Challenges 

In recent years, joint time and frequency 
representation provide a better description of signals 
in time-frequency planes. Therefore, the time-
frequency analysis for non-stationary signals is of 
great interest and importance in evaluation of signal 
characteristics. Mathematical tools of time-
frequency analysis include short-time Fourier 
transform (STFT), Wigner-Ville distribution 
(WVD), wavelet transform (WT) (Daubechies, 
1990) and recently Stockwell Transform (S-
Transform) (Stockwell et al., 1996). S-Transform 
leads to multiresolution signal processing, which is 
considered as a variable sliding window STFT or as 
phase corrected WT.  

Stockwell et al., introduced in 1996 the S-
Transform. It combines the potential of the Short 
Time Fourier Transform (STFT) and continuous 
wavelet transform (CWT) and provides an 
alternative approach to process the non-stationary 
signals. It employs a moving and scalable localizing 
window length. The frequency dependent window 
function produces sharper time localization at higher 

frequencies and higher frequency resolution at lower 
frequencies. Furthermore, the S-Transform has an 
advantage, even at the presence of high level of 
noise (Stockwell et al., 1996,); (Mansinha et al., 
1997), in that it provides multi-resolution analysis 
while it is capable of obtaining reasonably accurate 
amplitude and phase spectrum of the analyzed 
signals. 

The S-Transform of a time series  h t  is defined 

as 
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where f is the frequency, t and   are both time. 

The continuous wavelet transform  ,W d  of a 

function  h t  is defined as 
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The S-Transform of the function  h t  can also be 

defined as a wavelet transform with a specific 
mother wavelet multiplied by a phase factor 
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where the mother wavelet  ,w t d  is defined as 
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where the dilation d  function is the inverse of f. the 
inverse of S-Transform is given by 
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and, since  ,S f  is complex, can be written as 
 

      , , exp ,S f A f i f     (5)
 

where  ,A f and  , f  are the amplitude and the 

phase of the S-spectrum respectively. The phase 
spectrum is an improvement on the wavelet 
transform in that the average of all the local spectra 
does indeed give the same result as the Fourier 
transform. 
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The S-Transform is a useful time-frequency 
analysis algorithm. However, it still suffers from 
poor energy concentration for the most classes of 
signals. An optimization to the existing S-Transform 
can enhance the energy concentration in the time-
frequency domain. 

In this perspective, as part of my thesis, the first 
line of work can be articulated on two theoretical 
approaches presented in the following two 
paragraphs. 

4.1.1 Windows Width Algorithms 

Modification of the window width of the S-
Transform enhances the energy concentration in the 
time-frequency domain. Djurović et al., (2008) 
proposed an algorithm to optimize the window width 
in the S-Transform based on the measure of 
concentration (Stanković, 2001), which 
quantitatively evaluates the energy concentration. 
Sejdić et al., (2007) use the Kaiser windows for 
improving the energy concentration of the S-
Transform.  

4.1.2 Time-frequency Reassignment and 
Synchrosqueezing 

The Heisenberg uncertainty principle limits the 
resolution that can be attained in the time-frequency 
plane; different trade-offs can be achieved by the 
choice of time-frequency family transform, but none 
is ideal. Then the representation can influence the 
interpretation given on the time-frequency plane in 
order to deduce properties of the signal. 

To overcome this difficulty, new techniques, 
reassignment (Auger and Flandrin, 1995) and 
synchrosqueezing (Daubechies and Maes, 1996), are 
recently emerged as a powerful signal processing 
tool in non-stationary signal processing. Its basic 
objective is to provide a sharper representation of 
signals in the time-frequency plane and extract the 
individual components of a non-stationary multi-
component signal. These techniques are widely used 
in several of new domains, such as audio (Fulop and 
Fitz, 2006), physics (Kotte et al., 2006), ecology 
(Dugnol et al., 2007), or physiology (Auger et al., 
2013). 

4.2 Features Extraction by 
Time-frequency Correlation 

Some heart problem know as mitral stenosis, 
manifested through a heart sound known as the 
Opening Snap (OS), is very similar to the third heart 
sound (S3). Then, it is very difficult to distinguish 

these two sounds without going through proper 
training (Erikson, 1997). 

In the E-care project we are interested by 
detecting the fourth heart sound (S4). The fourth 
heart sound is a low-pitched sound and it occurs 
shortly before the first heart sound that makes it 
detection difficult. For the purpose to study the 
fourth heart sound we explore two methods based on 
correlation with optimized S-Transform. These 
methods can make the detection most effective.   

The first method includes a cross-spectral 
analysis to study the source localization and phase 
synchrony of non-stationary signals (Assous and 
Boashash, 2012); (Stockwel, 2007). Since the S-
Transform localizes spectral components in time, the 
cross correlation of specific events gives the phase 
difference and the amplitude of the cross S-
Transform indicates coincident signals. As the local 
phase information can be extracted from the S-
Transform, we can use the cross S-Transform 
function to analyze the in-phase and the out-of-phase 
components in time-frequency space. This is a very 
useful characteristic for cross-spectral and phase 
synchrony.  

The second method consists on pattern 
recognition. The basic idea is to correlate the signal 
being analyzed with known template and make 
decisions based on the magnitude of the correlation 
coefficients, which is between 0 and 1. The process 
of correlation is essential to determine the degree of 
similarity between the signal being analyzed and the 
template. A proposed scheme (Sejdic and Jin, 2007) 
known as Selective Regional Correlation (SRC) has 
been developed for band limited nonstationary 
signals. The preprocessing is carried out by 
converting a one-dimensional (1D) time-domain 
signal into a two-dimensional (2D) time-frequency 
domain representation. The redundant representation 
of a (1D) signal in a (2D) time-frequency domain 
can provide an additional degree of freedom for 
signal analysis to overcome the intertwined time 
domain features of the signal and allowing more 
importance in the time-frequency domain, resulting 
more effective pattern matching.  

5 EXPECTED OUTCOME 

Using time-frequency reassignment, 
synchrosqueezing and correlation function could 
makes detection method more effective and accurate 
in complex condition with heavy background noise.  

In order to perform the knowledge of the heart 
activity for automated heart diagnosis and heart 
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disease investigation, we think that using two 
physiological signals (ECG and PCG) could be 
efficient. Both ECG and PCG signals can thus be 
used together for early stage detection of heart 
disease into E-care platform. 

In this work, an automated system for 
preliminary heart defect detection is proposed. This 
system is based on the concept of time-frequency 
signal analysis.  
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