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1 STAGE OF THE RESEARCH 

Forecasting of building thermal and cooling loads, 
without the use of simulation software, can be 
achieved using data from Building Energy 
Management Systems (BEMS). Experience in 
building modelling has shown that data analysis is a 
key factor in order to produce accurate results. 
Commercial buildings incorporate BEMS to control 
the Heating Ventilation and Air-Conditioning 
(HVAC) system and to monitor the indoor 
environment conditions. Measurements of 
temperature, humidity and energy consumption are 
typically stored within BEMS. These measurements 
include underlying information regarding buildings’ 
thermal response. Data Mining is utilised to explore 
the data, to search for consistent patterns and/or 
systematic relationships between variables, and then 
to validate the findings by applying the detected 
patterns to new subsets of data. The process of data 
mining within the current research project consists 
of three stages: (1) the initial exploration, (2) model 
building or pattern identification with 
validation/verification, and (3) deployment (i.e., the 
application of the model to new data in order to 
generate predictions). The data used for the purposes 
of this research project has been gathered from two 
commercial buildings, located in Dublin and Cork, 
Ireland.  

The research described in this paper is at its 
initial stage, where an extensive literature review of 
building energy modelling has been conducted, the 
research plan is defined, the research skills are being 
developed and original research work is initiated. In 
February 2014, the first year of the three-year 
programme will be completed. 

2 OUTLINE OF OBJECTIVES 

This project focuses on a novel approach for cost-
effective modelling of actual data from commercial 
buildings, with models that can be assembled rapidly 

and deployed easily. This approach will constitute a 
practical research testbed to optimise multiple 
objectives related to the buildings’ energy modelling 
research area: i) development of a novel approach 
for predicting thermal and cooling loads of 
commercial buildings; ii) highly accurate predictions 
in terms of thermal and cooling loads; iii) scalability 
of the new approach to any commercial building and 
iv) minimum commissioning and maintenance effort 
requirements.  

3 RESEARCH PROBLEM 

Predictions of building thermal and cooling load can 
be obtained using appropriate simulation software. 
Building simulation software require detailed 
building geometry as well as physical data, such as 
construction elements, U-values, etc. in order to 
simulate the operation of a building. These 
parameters are often unknown, especially for older 
buildings, thus introducing rough estimations and 
significant commissioning effort in real-world 
applications. 

An alternative way to forecast these loads is to 
take advantage of the data recorder within BEMS. 
As already mentioned measurements of temperature, 
humidity and energy consumption are the ones 
stored within BEMS. Useful information regarding 
the thermal response of buildings are contained in 
these measurements.  

Utilization of measured data can produce 
predictions of buildings energy consumption. These 
predictions can be used to improve the efficiency of 
the HVAC system and hence reduce the amount of 
energy consumed. The accuracy of the prediction is 
a crucial factor regarding the maximization of 
energy savings. This project will attempt to answer 
the following research questions: 

 Can historical measured data of buildings be 
used to predict thermal and cooling load? 

 Which is the best methodology to adopt for 
model development? 
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 What is the innovation and novelty of the new 
model? 

 How accurate and scalable is the new model? 

 Which are the commissioning requirements of 
the new model? 

4 STATE OF THE ART 

American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) classify 
building analytical methods into dynamic and steady 
state approaches, as summarised in Figure 1 
(ASHRAE, 2009). The difference between steady-
state and dynamic methods is the consideration of 
effects such as thermal mass and/or capacitance. 
Steady-state methods do not take into account 
effects that cause temperature transients. 
Conversely, building transient behaviour, which 
includes effects such as building warm-up or cool-
down periods, is captured using the dynamic 
methods.  

Figure 2 illustrates another way to classify the 
methods outlined in Figure 1. The key difference is 
that the analytical methods are classified based on 
the underlying computational methodology rather 
than a transient/steady-state demarcation. Three 
categories can be observed using this classification, 
namely, “White”, “Grey” and “Black” box models. 
“White-box” models use physical principles to 
calculate the thermodynamics and energy behaviour 
of the whole building level or of sub-level 
components (Zhao and Magoulès, 2012). The 
second category “black-box” models, includes the 
data-mining methods, which utilises extensive 
measurement of input and output variables in order 
to determine correlated relationships between 
different variable combinations. The third category 
includes models that use both physical and data-
mining methods and are called hybrid or “Grey-box” 
models. One can observe that the two different 
approaches for classifying the existing 
methodologies are two different aspects of the same 
issue. 

All methods use physical principles or data-
mining techniques and at the same time are either 
dynamic or steady-state. This point becomes clearer 
while using a colour coding as shown in Figure 1 
and Figure 2. White, grey and black colours are used 
in Figure 1 to discriminate the white, grey and black 
box models. Steady-state methods are coloured with 
blue and dynamic methods with orange in Figure 2. 

White-box methods do not meet the basic 

requirement of this project, which is the use of 
historical data and avoidance of detailed building 
geometry and construction data. 

 

 
Figure 1: Categorization of methods used to estimate 
building energy performance based on ASHRAE 
Handbook (ASHRAE, 2009). 

 
Figure 2: Categorization of analytical methods to estimate 
building energy performance based on the underlying 
methodology. 

Hence, they are not included in a detailed 
manner in this research. Furthermore, grey-box 
methods combine the use of white- and black-box 
methods thus it is reasonable to eliminate them as 
well, due to the presence of white-box methods. 

Based on the literature review for black-box 
methods regression, support vector machine (SVM) 
and artificial neural network (ANN) models seem 
suitable for generating predictions. Their 
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performance and accuracy will be explored further 
to determine which one is the most appropriate for 
this specific application. Genetic algorithms are 
mainly used for optimization rather than forecasting 
and for that reason are excluded from deeper 
investigation. 

An overview of regression, SVM and ANN 
methods including their advantages and 
disadvantages alongside interesting case-studies 
follows. 

4.1 Regression Models 

The correlation of energy consumption with all 
influencing variables can be achieved with the use of 
regression models. Development of these empirical 
models is based on historical performance data, 
which need to be collected prior to the training of 
the models. The main objectives of these models are 
the prediction of energy usage, prediction of energy 
indices and estimation of important parameters of 
energy usage. Examples of these parameters are the 
total heat capacity, total heat loss coefficient and 
gain factors (Zhao and Magoulès, 2012). 

In general, regression models can be divided into 
simple and multiple regression. Simple regression 
models were frequently used in the late ’90s to 
correlate energy consumption with climatic 
parameters, to obtain building energy behaviour 
(Bauer and Scrartezzini, 1998); (Westergren et al., 
1999). Multiple regression analysis is used to predict 
a single dependent variable, such as heating demand, 
by a set of independent variables, such as shape 
factor, building time constant, etc. Multiple 
regression shares assumes: linearity of relationships, 
same level of relationship throughout the range of 
the independent variable, interval or near-interval 
data, absence of outliers and data whose range is not 
truncated (Catalina et al., 2008). Multiple regression 
models can be separated in two major categories, 
multiple linear regression models and multiple non-
linear regression models. 

4.1.1 Multiple Linear Regression 

Multiple linear regression models are also known as 
conditional demand analysis (CDA) models and are 
usually applied to the building energy forecasting 
area (Foucquier et al., 2013). The idea of using the 
linear regression for the prediction of energy 
consumption in buildings was first proposed by Parti 
(1980). The deduction of the energy demand from 
the sum of several end-use consumptions added to a 
noise term which was the innovation regarding this 
method.  

The underlying principle of multivariate linear 
regression is the prediction of an output variable Y as 
a linear combination of input variables (X1,X2,…,Xp) 
plus an error term εi (Foucquier et al., 2013). 

0 1 1 2 2 ... , [1, ]i i p ip iY x x x i n             (1)

In Equation (1), n is the number of sample data, p is 
the number of variables and α0 a bias. For instance, 
when the output variable is internal temperature the 
external temperature, humidity, solar radiation and 
lighting equipment can be considered as input 
variables (Foucquier, et al., 2013). 

Essentially, multiple linear regression models 
can be applied both for predicting or forecasting 
energy consumption and for data-mining. The main 
advantage of these methods is the simplicity of 
implementation by non-expert users, since no 
parameter needs to be tuned. Nevertheless, multiple 
linear regression models imply a major drawback 
due to their inability to solve nonlinear problems. 
This causes limitations to the flexibility of the 
prediction and at the same time presents difficulties 
to manage the correlation between several variables.  

4.1.2 Multiple Non-linear Regression 

Non-linear regression models are of the same basic 
form as linear regression models: 

( ),ii if X aY    (2)

The error terms are usually assumed to have a value 
of zero, constant variance and to be uncorrelated, 
just as for linear regression models. Often, a normal 
error model is utilized which assumes that the error 
terms are independent normal random variables with 
constant variance. The correlation between the input 
and output variables can take different forms in 
order to fit the available data series. Two examples 
of non-linear regression models widely applied in 
practice are exponential and polynomial regression 
models.  

4.1.3 Case Studies 

In this section interesting case-studies of regression 
models are given. At first, two case-studies which 
applied multiple linear regression models are stated 
followed by multiple non-linear regression case-
studies. 

Lam et al., (2010) developed multiple linear 
regression models for office buildings for the five 
major climates in China. These models can be used 
to estimate the potential energy savings during the 
initial design stage when different building schemes 
and concepts are being examined. A total of 12 key 
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building variables were identified through 
parametric and sensitivity analysis and considered as 
inputs in the regression models. More recently, 
Aranda et al., (2012) used multiple linear regression 
models to predict the annual energy consumption in 
the Spanish banking sector. The energy consumption 
of a bank branch was predicted as a function of its 
construction characteristics, climatic area and energy 
performance. Three models were finally obtained. 
The first one was used to make predictions for the 
whole banking sector, while the rest estimated the 
energy consumption for branches with low winter 
climate severity (Model 2) and high winter climate 
severity (Model 3). 

Catalina et al., (2008) worked on the 
development and validation of multiple regression 
models to predict monthly heating demand for 
single-family residential buildings in temperate 
climates. The inputs for the regression models were 
the building shape factor, building envelope U-
value, window to floor area ratio, building time 
constant and climate, which was defined as a 
function of temperature and heating set-point. It was 
found that quadratic (second-order) polynomial 
models were the most appropriate solution for the 
problem. In order to validate the models, 270 
different scenarios were analysed. The average error 
was 2% between the predicted and simulated values.  

An update to the aforementioned work was 
published by Catalina et al., (2013). A new model to 
predict the heating energy demand, based on the 
main factors that influence the building heat 
consumption, was introduced. Influencing factors 
were: the building global heat loss coefficient, south 
equivalent surface and difference between indoor set 
point temperature and “sol-air temperature”. Once 
again, polynomial multiple regression models were 
used and a three input model was found to be the 
most appropriate for this problem. The model was 
tested and demonstrated relativly good accuracy 
considering its simplicity and generality. Human 
behaviour was also taken into account in the creation 
of this model, improving the accuracy of the 
predictions. 

4.2 Support Vector Machine 

The SVM is an artificial intelligence technique that 
is usually used to solve classification and regression 
problems. It was introduced by Vapnik and Cortes 
(1995). As already described, the regression method 
is used to characterise a set of data with a specific 
equation. The type of the regression equation is 
determined by the user. The technique which allows 

the demarcation of a set of data in several categories 
is called classification. Once again, the 
characteristics of each category are given by the 
user. 

SVM is mainly used with a regression method to 
predict the energy consumption of buildings. The 
determination of the optimal generalisation of the 
model to promote sparsity is the basic principle of 
the SVM for regression. A given training dataset 
from a nonlinear problem is [(x1,y1),..,(xn,yn)], where 
xi and yi is the input and output space respectively. 
The approach to solve this problem is to overcome 
the nonlinearity by transforming the nonlinear 
relation between x and y in a linear map. To achieve 
that, the nonlinear problem must be sent to a high-
dimensional space called the feature space. The aim 
is to determine the function f(x) that best fits the 
behaviour of the problem as with all the known 
regression techniques. A special feature of the SVM 
is that it authorises an error or an uncertainty ε 
around the regression function (Foucquier et al., 
2013). The form of the f(x) function is the following: 

, (( ) )x x bf      (3)

where, Φ represents a variable in the high-
dimensional feature space and <,> is a scalar 
product, ω and b are estimated by the following 
optimisation problem.  
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where, C is a regularisation parameter, which 
introduces a trade-off between the flatness of f(x) 
and the maximal tolerated deviation larger than ε, 
given by users, ξi and ξi

* are two slack variables, 
which allow the constraints to be flexible. In 
addition, a kernel function defined as a dot product 
in the feature space k(x,x’)= <Φ(x),Φ(x’)> is created 
to allow the substitution of the complex nonlinear 
map with a linear problem without having to 
evaluate Φ(x). Examples of kernel function used in 
regression by SVM are the linear [k(xi,x) = xi·x], 
polynomial [k(xi,x)= (xi·x+c)d] and radial basis 
function (RBF) kernel (Foucquier et al., 2013).  

One of the main advantages of the SVM model is 
the fact that the optimisation problem is based on the 
structural risk minimisation principle. The 
minimisation of an upper bound of the 
generalization error consisting of the sum of the 
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training error is the objective of this method. This 
principle is usually encountered at the empirical risk 
minimisation which only minimises the training 
error. An additional advantage is that with this 
method there are fewer free parameters of 
optimisation. Application of the SVM technique 
requires the adjustment of the regularisation constant 
C and the margin ε. At the same time, this 
adjustment is one of the hardest steps of this method. 
The main drawback of the SVM method is the 
selection of the best kernel function corresponding 
to a dot product in the feature space and the 
parameters of this kernel (Foucquier et al., 2013).  

4.2.1 Case Studies 

Support vector machine models have been used for 
predicting energy consumption in buildings quite 
recently. Dong et al., (2005) were the first to 
introduce the use of SVM for prediction of the 
building energy consumption. The objective of their 
work was to examine the feasibility and applicability 
of SVM in building load forecasting area. In order to 
test the developed SVM model, four commercial 
buildings in Singapore were selected randomly as 
case studies. The input variables were the mean 
outdoor dry-bulb temperature, the relative humidity 
and the global solar radiation. The kernel function 
used was the radial basis function kernel. The 
obtained results were found to have coefficients of 
variance less than 3% and percentage of error within 
4%. 

Li et al., (2009) used the SVM model in 
regression to predict hourly building cooling load for 
an office building in Guangzhou, China. The 
outdoor dry-bulb temperature and the solar radiation 
intensity were the input parameters for this model. 
Results indicated that the SVM method can achieve 
accurate predictions and that it is effective for 
building cooling load prediction. A comparison of 
the newly developed SVM model against different 
artificial neural networks was published by the same 
research group later the same year (Li et al., 2009). 
The SVM model was compared with the traditional 
back propagation neural network, the radial basis 
function neural network and the general regression 
neural network. All prediction models were applied 
at the same office building in Guangzhou, China. 
The models were evaluated based on the root mean 
square error and mean relative error. Simulation 
results showed that these models were effective for 
building cooling load prediction. The SVM and 
general regression neural network methods achieved 
better accuracy and generalisation than the back 

propagation neural network and radial basis function 
neural network methods.  

Hou and Lian (2009) also used a SVM model for 
predicting cooling load of a HVAC system in a 
building in Nanzhou, China. The performance of the 
SVM with respect to two parameters, C and ε, was 
explored using stepwise searching method based on 
radial-basis function kernel. Actual prediction 
results showed that the SVM forecasting model, 
whose relative error was about 4%, may perform 
better than autoregressive integrated moving average 
ones. 

4.3 Artificial Neural Networks 

Artificial neural network (ANN) is a generic 
denomination for several simple mathematical 
models that try to simulate the way a biological 
neural network (for instance human brain) works.  

The main characteristic of such models is the 
capability of learning the ‘‘rule’’ that controls a 
physical phenomenon under consideration from 
previously known situations and extrapolate results 
for new situations. This learning process is called 
network training. The development of artificial 
neural networks is based on the observation of the 
biological neural network behaviour (Neto and 
Fiorelli, 2008).  

Several possible arrangements for artificial 
network have been suggested, generating different 
and distinct network models, since it is not well 
known how a biological neuron is arranged (Fausett, 
1994). The feed-forward model is the most known 
and simple network arrangement, illustrated in 
Figure 3. In this model, the neurons are placed in 
several layers. The first one is the input layer, which 
receives inputs from outside. The last layer, called 
output layer, supplies the result evaluated by the 
network. Between these two layers, a network can 
have none, one or more intermediate layers called 
the hidden layers. The input layer is usually 
considered a distributor for incoming signal, hidden 
layers are signal classifiers, and output layer is the 
organizer of obtained responses (Neto and Fiorelli, 
2008).  

An important detail about the feed-forward 
model is that the neurons of a given layer are only 
connected with the previous layer and the next one. 
Other possible more sophisticated network 
arrangements are possible as well, for instance the 
Self-Organising Maps creates models in which the 
network itself changes its arrangement during the 
training phase.  
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Figure 3: Typical structure of an artificial neural network. 

One of the advantages of this method is that it 
does not need to detect the potential co-linearity 
included in the problem. Another advantage of the 
artificial neural networks is its ability to deduce 
from data the relationship between different 
variables without any assumptions or any postulate 
of a model. Moreover, it overcomes the 
discretisation problem and is able to manage data 
unreliability. This method suggests a large 
variability of the predicted variable form (binary 0 
or 1, yes/no, continuous value, etc.) and an efficient 
simulation time.  

Conversely, artificial neural networks are 
significantly limited by the fact that a relevant 
database should be available in order to be applied. 
In fact, it is of vital importance to train the network 
with an exhaustive learning basis, which consists of 
representative and complete samples. For instance, 
samples in different seasons or in different moments 
of the day or during weekend or holidays etc. as well 
as samples, which contain the same amount of 
information. An additional disadvantage of the 
artificial neural network is its large number of 
undetermined parameters, for which there are no 
rules to determine (Foucquier et al., 2013). 

4.3.1 Case Studies 

Artificial neural networks have been applied by 
researchers to analyse various types of building 
energy consumption, such as heating and cooling 
load, under different conditions.  

Kalogirou et al., (1997) implemented back 
propagation neural networks at an early design stage 
in order to predict the required heating load of 
buildings. The network was trained based on 250 
known cases of heating load, varying from large 
spaces of 100 m2 floor area to very small rooms. 
Input data included the areas of windows, walls, 
partitions and floors, the type of windows and walls, 
classification on whether the space has a roof or 

ceiling, and the design room temperature. Another 
artificial neural network for the estimation of daily 
heating and cooling loads was developed by the 
same group of researchers (Kalogirou et al., 2001). 
A multi-slab feed-forward architecture having 3 
hidden slabs was used and each slab comprised of 36 
neurons. The accuracy of this network was within 
the acceptable level (relative error 3.5%).  

The predictions of an artificial neural network 
can be made on an hourly basis as well. Gonzalez 
and Zamarreno (2005) were based on a special kind 
of artificial neural network, which feeds back part of 
its outputs, to predict the hourly energy consumption 
in buildings. The network was trained by means of a 
hybrid algorithm. The inputs of the network were 
current and forecasted values of temperature, the 
current load and the hour and the day. The achieved 
results demonstrated high precision. 

The performance of adaptive ANN models that 
are capable of adapting themselves to unexpected 
pattern changes in the incoming data was evaluated 
by Yang et al., (2005). Two adaptive models were 
proposed and evaluated, accumulative training and 
sliding window training. These models can be used 
for real-time on-line building energy prediction. 
Moreover, they used both simulated (synthetic) and 
measured datasets. When synthetic data was used 
the two models appeared to have equal performance 
in terms of coefficient of variation (CV). On the 
other hand, when real measurements were used the 
sliding window training performed better than 
accumulative training, CV of 0.26 compared to 2.53 
respectively. 

More recently, Ekici and Aksoy (2009) used an 
ANN to predict building energy needs benefitting 
from orientation, insulation thickness and 
transparency ratio. A back propagation network was 
preferred and available data were normalised before 
being presented to the network. The calculated 
values compared to the outputs of the network gave 
satisfactory results with a deviation of 3.4%.  

Dombayci (2010) developed an artificial neural 
network model in order to forecast hourly heating 
energy consumption of a model house. The hourly 
heating energy consumption of the model house was 
calculated with degree-hour method. The model was 
trained with heating energy consumption values of 
years 2004–2007 and tested with heating energy 
consumption values for the year 2008. Best estimate 
was found with 29 neurons and a good coherence 
was observed between calculated and predicted 
values.  

A comparison between detailed model 
simulation and artificial neural network for 
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forecasting building energy consumption was 
published by Neto and Fiorelli in 2008. EnergyPlus 
was used as the model based on physical principles. 
Results of this study indicate that EnergyPlus 
consumption forecasts present an error range of 
±13% for 80% of the tested database. Major source 
of uncertainties in the detailed model predictions are 
the improper evaluation of lighting, equipment and 
occupancy schedules. The artificial neural network 
model results had an average error of about 10% 
when different networks for working days and 
weekends were implemented. The outcome of this 
study was that both models are suitable for energy 
consumption forecast.  

In the same year Aydinalp-Koksal and Ugursal 
(2008) compared the use of neural network against 
conditional demand analysis (CDA) and engineering 
approaches for modelling the end-use consumption 
in the residential sector in Canada. The prediction 
performance and the ability to characterise the 
consumption of the aforementioned methods were 
compared in this study. The results indicated that 
neural networks and CDA are capable of accurately 
predicting the energy consumption in the residential 
sector as well as energy simulation programs. 
Moreover, the effects of socio-economic factors 
were estimated using the neural network and the 
CDA model, where possible. Neural network model 
was proved to have higher capability of evaluating 
these effects compared to the CDA model. 

5 METHODOLOGY 

Based on the methodologies described earlier new 
models will be developed taking account of the key 
principles outlined in the objectives. In order to 
achieve this, the sequence presented below will be 
followed: 
 Acquisition of real measured data of a 

commercial building (testbed 1) from installed 
sensors; 

 Data analysis; 
 Development of the new models; 
 Improvement of models accuracy; 
 Evaluation of new models based on accuracy and 

on-line training capability; 
 Selection of the most suitable model; 
 Examination of model scalability with the use of 

another commercial building (testbed 2); 
 Determination of commissioning and 

maintenance effort for the implementation of the 
model. 

The methodology that is described in this 
sequence is also illustrated in Figure 4. 

 

Figure 4: Development of methodology. 

The first step of this methodology is to acquire as 
much data as possible from BEMS already installed 
in a commercial building. Afterwards, data analysis 
is employed to replace missing data and correlate 
variables to obtain a complete and comprehensive 
dataset. The ultimate goal of this data mining 
process is to assist with building load prediction, 
where incomplete data is available.  

Data Mining is utilised to explore the data, to 
search for consistent patterns and/or systematic 
relationships between variables, and then to validate 
the findings by applying the detected patterns to new 
subsets of data. 

In order to determine the new model the 
selection of the optimum model between regression, 
SVM and ANN models is required. Different 
multiple regression models will be developed 
alongside numerous SVM models and several 
architectures of ANN and tested in order to reach the 
optimum one. The chosen model amongst the 
aforementioned will be selected based on its 
accuracy and tested for its ability to train on-line. 

The scalability of the model will be the next 
thing under examination. Data from a second 
commercial building will be introduced to the model 
and its ability for accurate predictions will be tested 
once again.  

Finally, commissioning and maintenance effort 
for the implementation of the new model will be 
determined. Hence, the model will be evaluated 
based on its ability to meet the necessary 
requirements. 
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6 EXPECTED OUTCOME 

The expected outcome of this project is the 
development of a novel whole-building energy 
model. The model will take advantage of historical 
measured data of commercial buildings in order to 
generate accurate prediction of heating and cooling 
load. Data analysis will be one of the milestones of 
this project, since usually measurements include 
missing values due to equipment malfunction, 
maintenance, etc. An efficient method of dealing 
with missing values related with acquired datasets 
will be the first outcome of the project.  

Once a comprehensive dataset is obtained, the 
most suitable methodology for this application is 
going to be selected between regression, SVM and 
ANN models. An evaluation of the developed 
models will take place based on the accuracy of each 
model and its ability to train on-line or not. The 
selection of the most appropriate model will be the 
second outcome. 

After the selection process, the chosen model 
will be evaluated based on its scalability. The ability 
of forecasting heating and cooling loads of two 
different given building within the same level of 
accuracy will be the criterion. If the chosen model 
does not have the desired scalability, then another 
model will be selected from the previous procedure 
and examined based on its scalability. Finally, the 
effort required for commissioning and maintenance 
of the model should be as little as possible. The final 
outcome should be a scalable model with minimum 
commissioning and maintenance requirements. 

Ideally, this novel approach of estimating the 
thermal and cooling load of commercial buildings 
could be implemented to the control of the BEMS. 
In this way, the efficiency of the HVAC systems of 
the building could be improved reducing the energy 
consumption at the same time. This will also lead to 
a reduction of the energy cost of commercial 
buildings. 
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