
Teaching Computer Programming in Online Courses
How Unit Tests Allow for Automated Feedback and Grading

Edgar Seemann
Furtwangen University, Villingen-Schwenningen, Germany

Keywords: Online Courses, Computer Programming, Assessment, Grading, Teaching, Tutoring, Unit Testing.

Abstract: Online courses raise many new challenges. It is particularly difficult to teach subjects, which focus on techni-
cal principles and require students to practice. In order to motivate and support students we need to provide
assistance and feedback. When the number of students in online courses increases to several thousand partic-
ipants this assistance and feedback cannot be handled by the teaching staff alone. In this paper we propose
a system, which allows to automatically validate programming exercises at a fine-grained level using unit
tests. Thus, students get immediate feedback, which helps them understanding the encountered problems.
The proposed system offers a wide range of possible exercise types for programming exercises. These range
from exercises where students need to provide only code snippets to exercises including complex algorithms.
Moreover, the system allows teachers to grade student exercises automatically. Unlike common grading tools
for programming exercises, it can deal with partial solutions and avoids an all-or-nothing style grading.

1 INTRODUCTION

Basic programming is part of the syllabus of any en-
gineering discipline. In fact, programming skills are
required for many tasks ranging from automation to
data analysis. There is a common consensus, that
programming skills cannot be learned from books
or lectures alone (Milne and Rowe, 2002). Conse-
quently, programming courses are often accompanied
with laboratory classes where students practice pro-
gramming in front of a computer. Many courses also
require students to hand in results of programming
projects. Usually teaching assistants supervise stu-
dents during these laboratory classes and projects.

For online courses we have to cope with new
challenges in programming education. Firstly, direct
interaction and assistance is more difficult. Online
courses mostly use forums to answer student ques-
tions. This communication is tedious and since an-
swers are often delayed by hours or days inhibit the
learning process.

Even though desktop sharing software would al-
low for real-time assistance, we are not aware of
any educational institution using this technology to a
larger extent. In particular since online courses are
usually designed for a large student audience, where
individual assistance would be too time-consuming
for the teaching staff.

When dealing with hundreds or even thousands of
students it is also difficult to grade exercise sheets.
Revising such an amount of source code manually is
no longer feasible. Online universities like Udacity
(Thrun et al., 2012) or Coursera (Ng and Koller, 2012)
try to remedy this situation by using simple quizzes in
their courses. These quizzes are often based on mul-
tiple choice questions and are graded automatically.
Thus, allowing immediate feedback to the students.
For some special courses e.g. (Thrun, 2013) cus-
tomized tools are used to allow students to hand-in
small computer programs. Currently there are, to our
knowledge, no general concepts or available frame-
works to deal with programming exercises of vary-
ing complexity, i.e. ranging from simple code snip-
pets, class and interface implementations to medium
or large programming projects.

In this paper we propose a software tool to evalu-
ate different types of programming exercises in online
courses. We leverage the capabilities of unit testing
frameworks to analyze source code snippets or whole
computer programs. Our tool allows teachers to easily
create custom electronic exercise sheets which may
be automatically analyzed and graded. Students re-
ceive individual feedback on their implementations
via a web-based user interface. Consequently, they
are able to evaluate their own learning process and
success.

421Seemann E..
Teaching Computer Programming in Online Courses - How Unit Tests Allow for Automated Feedback and Grading.
DOI: 10.5220/0004939304210426
In Proceedings of the 6th International Conference on Computer Supported Education (CSEDU-2014), pages 421-426
ISBN: 978-989-758-020-8
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 RELATED WORK

For the purpose of this paper, we divide educational
software supporting programming education into two
categories. The first category are intelligent tutoring
systems tailored to support the understanding of fun-
damental programming concepts. The other category
are automated grading tools which are also often used
in the context of programming contests.

Intelligent Tutoring Systems. Tutoring tools for
programming education date back to the early 1980’s
(Johnson and Soloway, 1984; Soloway, 1986). The
goal of a tutoring system is to analyse student re-
sponses and gather information about the learning
process (Brusilovsky, 1995; Corbett and Anderson,
2008). Thus, they are able to assist students, point
out weaknesses and strength and suggest further study
material.

Tutoring systems typically present learning units
in small cognitive accessible exercises or dialogs
(Lane and VanLehn, 2004). They may also coach
students with hints, tips and additional information
throughout the study process (Lane and VanLehn,
2003). This step-by-step process is not always ap-
propriate. Teachers also want students to engage in
more complex problem solving tasks without or with
less guidance. These types of exercises often cannot
be properly covered with tutoring systems.

The progress in research on intelligent tutoring
systems has also been accompanied by the evolution
of new programming concepts and languages. Partic-
ularly, the rise of object oriented programming lan-
guages has changed how programming is taught and
how tutoring systems are implemented (Sykes and
Franek, 2003). While object orientation is certainly
the main focus of today’s programming education,
there are tutors for other popular concepts as e.g.
functional programming (Xu and Sarrafzadeh, 2004).
Modern tutoring systems are often web-based (Butz
et al., 2004) with a central server analyzing source
code, building student models and offering help and
assistance to students.

Automated Grading Systems. The development of
grading tools happened along two different paths.
One motivation for their use were large scale pro-
gramming contests, where students compete in solv-
ing algorithmic problems (Leal and Silva, 2003).
Usually, problems are designed to require complex
program logic, but to produce simple output (e.g. find
the shortest route to escape a maze). Some contest
software also evaluates source code and program met-
rics, e.g. number of lines of the implementation or

program speed (Leal and Silva, 2008).
In recent years, grading tools have also become

more popular as learning support tools, allowing
teachers to spend more time working with students
and less time grading course assignments (Tiantian
et al., 2009; Hukk et al., 2011; Foxley et al., 2001).

Grading tools usually evaluate the correctness of
a complete computer program. That is, a complex
exercise is either correct or incorrect. For students
this is often frustrating. A tiny error and their almost
working solution is not accepted. When using such
a system at our university we observed that it works
well for the top students in a class. Weaker students,
however, quickly loose their motivation and do worse
than with conventional assignment sheets.

3 ASSESSMENT STRATEGIES
FOR ONLINE COURSES

For online courses, we need elements from both tutor-
ing systems and automated grading tools. That is, we
want to support and guide students when new con-
cepts are introduced. On the other hand, we want
them to solve more complex exercises and evaluate
these automatically.

In this paper, we propose a first step in this di-
rection. Our system makes it possible to define ex-
ercises of varying complexity. We allow teachers to
define exercises with step-by-step instructions simi-
lar to quizzes. But we also allow them to define more
comprehensive exercises where students may practice
algorithmic problem solving skills.

In order to accomplish this goal, we analyze the
source code using a unit testing framework. With unit
tests, we can test both program parts (e.g. a single
method or function) or the program as a whole. Unit
tests are on the one hand a familiar tool to any pro-
grammer and thus to any computer science teacher.
On the other hand, they allow teachers lots of flexibil-
ity when designing their exercises.

The idea is to define many unit tests for a single
exercise and test program parts instead of the over-
all functionality. As a consequence, we can return
a more fine-grained feedback. Not only is this feed-
back helpful for students when solving the exercises,
unit test also allow to attribute points to the individual
parts of an exercise. We are convinced that this leads
to a more transparent and fair grading result.

In the following sections we will show two small
sample exercises as they have been implemented in
our system.

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

422

3.1 Simple Exercise

A simple exercise is often used as part of a step-by-
step learning process. It requires students to complete
only a very small task or a subpart of a larger task. For
programming exercises students are often required to
fill in a small code snippet, e.g. a specific command.

In the example presented in Figure 1, the student
has to insert a snippet for a mathematic operation. We
will discuss the validation process for such a code
snippet in section 4. Students receive feedback in
the form of points, when the code is correct and error
messages and hints are displayed if the snippet does
not properly solve the exercise.

Figure 1: A simple exercise requiring students to enter a
small code snippet.

3.2 Complex Exercise

For more complex problems, students typically need
to fulfill multiple requirements. Even if the solution is
a single class, method or computer program, we want
to check for these requirements separately.

In Figure 2 a more elaborate exercise is shown.
In this specific example a solution has to satisfy three
requirements. It needs to implement a correct method
signature with appropriate parameters. The method
needs to return a correct return value and finally it
has to produce a specific console output by extracting
sentences from a text.

In order to check these requirements three unit
tests have been implemented. Figure 2 displays a
student solution, where only one requirement is met.
For the other requirements meaningful error messages
and hints are displayed. Thus, we avoid the all-or-
nothing style grading and help students to build their
solution incrementally.

4 IMPLEMENTATION AND
EXERCISE TYPES

Most grading tools for programming courses only
consider the final output of a computer program. This

Figure 2: A complex exercise requiring students to imple-
ment an algorithm with a specified interface.

behaviour has serious disadvantages. Checking of
console output is susceptible to small typos or differ-
ing whitespace characters (e.g. spaces, line breaks or
tabulators). These little mistakes can be a source of
frustration for students and we would like to avoid
penalties for such errors.

Unit tests allow to check programs at a much more
detailed level. In fact, we can check individual parts
of the program in a type-safe manner. Thus, it is pos-
sible to define a much wider range of possible exer-
cises. In the following we systematically present the
most common types of exercises and the correspond-
ing solutions.

Code Snippet. A programming exercise may re-
quire students to provide a small code snippet (see
e.g. Figure 1).

In order to test such a code snippet with a unit test,
it needs to be inserted into a surrounding main pro-
gram. In most cases, this surrounding program de-
fines a method, which returns a value that has been
computed in the code snippet. Consequently, we
check the return value and return type of this func-
tion.

For the example in Figure 1 a main program could

Teaching�Computer�Programming�in�Online�Courses�-�How�Unit�Tests�Allow�for�Automated�Feedback�and�Grading

423

look like this:

1 class Power {

2 static double pow(double x, double a) {

3 // CODE SNIPPET IS INSERTED HERE

4 return r;

5 }

6 }

Note that it would not be feasible to use simple
string matching to compare a snippet to a pre-defined
solution. There are many ways to rewrite code in
an equivalent manner. E.g. the shorter expression
double r = Math.pow(x,a); would work as a so-
lution, too.

Method/Function. Exercises where students need
to implement a specific method are naturally suited
for unit tests. Again the student’s implementation
is inserted into a surrounding main program and
checked via an appropriate test.

A unit test checking for a method with a computed
return value could be implemented in the following
manner (compare Figure 2).

1 class TextProcessingTest {

2 @Test

3 public void checkReturnValue() {

4 int c1, c2;

5 c1 = Sol.findFamilyName("f1.txt","Hill");

6 c2 = Ref.findFamilyName("f1.txt","Hill");

7 assertEquals(c1, c2);

8 c1 = Sol.findFamilyName("f2.txt","Lee");

9 c2 = Ref.findFamilyName("f2.txt","Lee");

10 assertEquals(c1, c2);

11 }

12 }

For the above example Java along with the JU-
nit testing framework has been used. For other lan-
guages and frameworks this would work in a similar
way. Here we check the student solution inserted in
the class Sol with the reference implementation in the
class Ref. We compare the results for two different
test cases.

Most algorithmic exercises can be tested using
tests for one or multiple methods. Also note, that unit
tests allow type-safe testing. Thus, we can also pro-
cess and compare structured data types (i.e. objects)
in parameters and return types.

Class with Interface When learning object ori-
ented programming, students need to implement their
own classes and data types. This includes the defi-
nition of appropriate member variables, constructors
and methods.

Often an implementation has to conform to a spe-
cific interface, which then may be tested with the help

of unit tests. The unit tests create instances of the de-
fined classes and check the public member variables
and methods.

While testing the interface of a class is mostly suf-
ficient, some programming languages even allow us
to inspect the classes and objects. This inspection
is called type introspection or reflection (Forman and
Forman, 2005) and it allows us to analyze a program
at a very fine-grained level. Using this technology we
can easily check the types of private member variables
and signatures of class and member methods.

In the example below, we depict a unit test, which
compares the return type of each implemented inter-
face method with a reference type stored in a pre-
defined array returnTypes. If the types do not
match, the test fails and an error message is returned:

1 class PlayerInterfaceTest {

2 @Test

3 public void checkReturnTypes() {

4 Method[] methods = \

5 Player.class.getDeclaredMethods();

6 for(Method m : methods) {

7 Type t = m.getReturnType();

8 if (t.equals(returnTypes[m.getName()]))

9 fail("Return type of method " \

10 +m.getName()+" is wrong");

11 }

12 }

13 }

Console Output. Finally, we can use unit tests to
compare console output. Console output may be used
to compare simple programs e.g. a Hello World pro-
gram or the output of complex algorithms.

One way to do this with unit test, is to redirect
the standard output to a string and then do a string
comparison. For Java e.g. output redirection can be
achieved by providing a new PrintStream object:

1 System.setOut(printStreamObject);

As pointed out earlier, comparing of console out-
put is not type-safe and susceptible to typos and
whitespace errors. This type of checking should
therefore only be used for exercises which are de-
signed to practice how to do console output. Other
programs should be tested in a type-safe way using
unit tests for methods and classes (see above).

5 EXERCISE WORK-FLOW

A practice and learning tool for students should be
easy to use. The heavy-lifting of our implementation
is therefore done on the server side and is transparent
to the user.

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

424

The work-flow of an exercise is split into 4 parts:

1. Write and test in an IDE

2. Submit via web-based UI

3. Compile and validate on server

4. Feedback

Write and Test in IDE Students write their imple-
mentations in an integrated development environment
(IDE). On the hand, we want students to learn how
to use IDEs and their convenience features (e.g. code
completion). On the other hand, this allows students
to compile and run their code on their own test data
before submitting it.

Submission. In our implementation exercise sheets
are presented in a web-based user interface. In this
same user interface submission fields are integrated
(see Figure 1 and Figure 2). To support syntax high-
lighting of source code, we use the ACE Javascript ed-
itor 1 allowing students to have a convenient overview
over the exercises and their respective responses.

Compile and Validate. Students results are re-
ceived on a central validation server. The server pre-
processes the input (e.g. inserting of code snippet in
a main program) and handles the compilation. Com-
pilation errors are reported back to the user interface
via AJAX.

Once the compilation succeeds the code is
checked via unit tests. For security reasons the com-
pilation and testing is done in a sandbox. Addition-
ally, the server makes sure that no endless loops occur
in the student code. This is accomplished by a time-
out setting defined in the unit tests. In JUnit this is
achieved in the following way:

1 @Test(timeout =1000)

2 public void testMethod() {

3 // some test code

4 }

Here, the test fails, when its execution takes longer
than 1000 milliseconds.

Feedback. As unit tests allow a more fine-grained
analysis of the submitted code, we can also provide
more detailed feedback to the students. In fact, mean-
ingful feedback is particularly important for online
courses, since asking questions in a forum and receiv-
ing an answer usually takes a long time.

The proposed system provides feedback to every
defined unit test and of course run-time exceptions.

1http://ace.c9.io

This feedback is displayed along with the achieved
points directly below the input in the web-based user
interface. A teacher can customize this feedback and
add additional assistance and hints (see Figure 2 and
Section 6).

6 CONTENT GENERATION

For teachers it has to be easy to create custom con-
tent. Interactive exercises therefore may be defined in
a simple text format inspired by Markdown (Gruber,
2004). Input fields with their properties are specified
with XML tags.

The example in Figure 1 may be created with the
following text:
??? Math functions
Given two *double* variables *x* and *a*,
compute the value of $xˆa$ and store the
result in the variable *r*.
<field:java file="Power.java">

<test="CheckValueOfR" points="2"
fail="The value of ’r’ is incorrect.
Make sure that the variable ’a’
is the exponent.">

</field> .
The character sequence ??? starts a new exercise

with the title Math functions. The stars highlight
the enclosed terms. The more structured XML part
specifies which unit test to use and which feedback to
return when the unit test fails.

From the above text format an HTML page for the
web-based user interface is generated. Additionally,
the unit test needs to be implemented e.g. as shown in
Section 4.

7 CONCLUSION

In this paper we have presented an interactive learn-
ing and grading tool for online courses. The tool lets
teachers create programming exercises, which are au-
tomatically validated. Students on the other hand get
immediate feedback to their solutions and can there-
fore incrementally improve their abilities.

The proposed system implements a general con-
cept on how to handle programming exercises of vary-
ing complexity. Our system allows teachers to use
a much wider range of exercises and checks as it is
possible with existing tutoring and grading tools. It
allows to validate both small code snippets and com-
plex algorithms via unit tests. These unit tests enable
a more fine-grained analysis of the source code and a
more detailed feedback.

Teaching�Computer�Programming�in�Online�Courses�-�How�Unit�Tests�Allow�for�Automated�Feedback�and�Grading

425

We believe that this improved validation helps stu-
dent to learn programming in a more efficient way
compared to existing online courses. Moreover, the
developed tools allow teachers to automatically grade
large amounts of student submissions without having
to rephrase exercises in the form of multiple choice
questions.

REFERENCES

Brusilovsky, P. (1995). Intelligent learning environments
for programming. In Proceedings 7th World Confer-
ence on Artificial Intelligence in Education, pages 1–
8.

Butz, C., Hua, S., and Maguire, R. (2004). A web-based in-
telligent tutoring system for computer programming.
In IEEE/WIC/ACM Conference on Web Intelligence
(WI04), pages 159–165.

Corbett, A. and Anderson, J. (2008). Student modeling and
mastery learning in a computer-based programming
tutor. In Department of Psychology, Carnegie Mellon
University. http://repository.cmu.edu/psychology/18.

Forman, I. and Forman, N. (2005). Java reflection in action.
ISBN 1-932394-18-4.

Foxley, E., Higgins, C., Hegazy, T., Symeonidis, P., and
Tsintsifas, A. (2001). The coursemaster cba system:
Improvements over ceilidh. In Fifth International
Computer Assisted Assessment Conference.

Gruber, J. (2004). Markdown text-to-HTML conversion
tool. http://daringfireball.net/.

Hukk, M., Powell, D., and Klein, E. (2011). Infandango:
Automated grading for student programming. In 16th
Annual Joint Conference on Innovation and Technol-
ogy in Computer Science Education.

Johnson, W. and Soloway, E. (1984). Proust: Knowledge-
based program understanding. In 7th international
Conference on Software Engineering, pages 369 –
380.

Lane, H. and VanLehn, K. (2003). Coached program
planning: Dialogue-based support for novice pro-
gram design. In Proceedings of the Thirty-Fourth
Technical Symposium on Computer Science Educa-
tion (SIGCSE), pages 148–152.

Lane, H. and VanLehn, K. (2004). A dialogue-based tutor-
ing system for beginning programming. In Proceed-
ings of the Seventeenth International Florida Artificial
Intelligence Research Society Conference (FLAIRS),
pages 449–454.

Leal, J. and Silva, F. (2003). Mooshak: a web-based multi-
site programming contest system. In Software: Prac-
tice and Experience, volume 33, pages 567–581.

Leal, J. and Silva, F. (2008). Using mooshak as a compet-
itive learning tool. In Competitive Learning Institute
Symposium.

Milne, I. and Rowe, G. (2002). Difficulties in learning and
teaching programmingviews of students and tutors. In
Education and Information technologies.

Ng, A. and Koller, D. (2012). Coursera — Take the World’s
Best Courses, Online, For Free. https://www.coursera.
org.

Soloway, E. (1986). Learning to program = learning to con-
struct mechanisms and explanations. In Communica-
tions of the ACM archive, volume 20 Issue 9, pages
850 – 858.

Sykes, E. and Franek, F. (2003). A prototype for an intelli-
gent tutoring system for students learning to program
in java. In IASTED International Conference on Com-
puters and Advanced Technology in Education, pages
78–83.

Thrun, S. (2013). Artificial intelligence for robotics. In
Udacity. https://www.udacity.com/course/cs373.

Thrun, S., Sokolsky, M., and Stavens, D. (2012). Udacity
— Learn. Think. Do. https://www.udacity.com.

Tiantian, W., Xiaohong, S., Peijun, M., Yuying, W., and
Kuanquan, W. (2009). Autolep: An automated learn-
ing and examination system for programming and its
application in programming course. In First Interna-
tional Workshop on Education Technology and Com-
puter Science, pages 43–46.

Xu, L. and Sarrafzadeh, A. (2004). Haskell-tutor: An intel-
ligent tutoring system for haskell programming lan-
guage. In Institute of Information and Mathematical
Sciences Postgraduate Conference.

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

426

