
Everest: A Cloud Platform for Computational Web Services

Oleg Sukhoroslov and Alexander Afanasiev
 Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow, Russia

Keywords: Service-Oriented Computing, Computational Web Services, Web Service API, REST, Service Framework,
Cloud Platform, Platform as a Service.

Abstract: The ability to effortlessly reuse and combine existing computational tools is an important factor influencing
research productivity in many scientific domains. While the service-oriented approach proved to be essen-
tial in order to enable wide-scale sharing of applications, we argue that its full potential in scientific compu-
ting is still not realized. In this paper, we present Everest, a cloud platform that supports publication, sharing
and reuse of scientific applications as web services. The underlying approach is based on a uniform repre-
sentation of computational web services and its implementation using REST architectural style. In compari-
son with existing work, Everest has a number of novel features such as the use of PaaS model, flexible bind-
ing of services with externally provisioned computing resources and remotely accessible API.

1 INTRODUCTION

Modern scientific research is often associated with
complex computations and use of high performance
computing resources. In their research scientists
actively use software applications that implement
computational algorithms, methods and models.

The ability to reuse existing computational tools
is one of important factors influencing research
productivity. However, such software often requires
specific expertise in order to install, configure and
run it that is beyond the expertise of an ordinary
researcher. This also applies to configuration and
use of high performance computing resources to run
the software. Finally, researchers increasingly need
to combine multiple tools in order to solve a com-
plex problem, which brings an important issue of
application composition.

The aforementioned problems can be addressed
by provision of scientific applications in the form of
remotely accessible, interoperable services. The use
of service-oriented approach can enable wide-scale
sharing, publication and reuse of applications, as
well as automation of scientific tasks and composi-
tion of applications into new services (Foster, 2005).
While the underlying principles of this approach are
well-known, it is still an open question how to im-
plement it in scientific computing in order to realize
its full potential.

So far, most efforts in this area were focused on

the provision of remote access to scientific tools via
convenient web user interfaces. Examples of such
approach include grid portals (Kacsuk, 2011), sci-
ence gateways (Miller et al., 2010) and scientific
hubs (McLennan and Kennell, 2010). While being
successful among unskilled users, such systems do
not actually expose applications as web services or
provide programming interfaces thus limiting oppor-
tunities for application reuse, composition and inte-
gration with external applications.

This approach is in stark contrast to Web 2.0 ap-
plications and cloud computing services that support
programmatic access via web service based APIs
(Programmable Web, 2013). The proliferation of
Web APIs has spawned development of mashups
(Yu et al., 2008) that combine data, presentation and
functionality from multiple services. Web service
composition tools, such as Yahoo! Pipes, provided
convenient interfaces for building mashups and
making them available to everyone as new services.

This aspect is largely ignored in existing web-
based scientific environments. As a rule, such sys-
tems do not provide tools for application composi-
tion or support workflows only on the level of com-
putational jobs. The notable exception is Galaxy
platform (Afgan et al., 2011) that supports tool com-
position and sharing of produced workflows. At the
same time, Galaxy also doesn’t expose tools and
workflows as services thus limiting their use outside
the platform.

411Sukhoroslov O. and Afanasiev A..
Everest: A Cloud Platform for Computational Web Services.
DOI: 10.5220/0004941404110416
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 411-416
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Other efforts were focused on building tools for
transformation of scientific applications into web
services (Delaitre et al., 2005; Krishnan et al., 2009).
These tools don’t provide user interfaces beyond
basic web forms for service invocation and rely on
existing solutions for web service composition.
While more powerful and well-aligned with SOA
principles, this approach requires more effort in
order to build a convenient environment for scien-
tists. Service developers need an infrastructure to
host services. The environment should provide
mechanisms for service discovery, invocation and
composition taking into account security require-
ments. These mechanisms should be accessible via
convenient user interfaces facilitating the use of
services for problem solving.

Both approaches also require considerable efforts
to integrate an environment with high performance
computing resources and grid infrastructures needed
to run applications. As a rule, existing systems are
tied to a single computing infrastructure and doesn’t
allow users to attach external resources.

The paper presents Everest, a cloud platform for
computational web services that addresses discussed
issues. It combines both approaches discussed above
by exposing computational applications as web ser-
vices with a uniform interface and implementing a
web user interface for creating, sharing and access-
ing services. In contrast to previous work (Afana-
siev et al., 2013), all functionality of the platform is
provided remotely using the Platform as a Service
model.

The paper is structured as follows. Section 2 dis-
cusses the model, interface and implementation of
computational web services that underpin the pro-
posed approach. Section 3 describes architecture and
components of Everest platform in its current im-
plementation. Section 4 concludes and discusses
future work.

2 COMPUTATIONAL WEB
SERVICES

2.1 Service Model

Computational web services (CWS) are the main
entities managed by Everest. On the conceptual
level, CWS represent a special type of web services
targeted at processing computationally intensive
requests. Such services should support management
of long-running jobs and transfer of job data.

In contrast to generic web service interfaces to
computing infrastructures, such as grids, CWS are

specialized in running specific applications, i.e.,
solving specific classes of problems. Therefore a
request to CWS normally doesn’t contain an execut-
able, but instead represents a set of input parameters
describing a problem to be solved. We will refer to
such requests as service-level jobs or just jobs. The
job results can be represented as a set of output pa-
rameters in the same fashion.

It is responsibility of a CWS implementation to
translate service-level jobs to one or more compute
jobs submitted to underlying computing infrastruc-
ture in order to obtain desired results. Therefore
CWS implement more specialized and high level
interfaces than computing infrastructures. This
makes it possible to hide the complexity of running
compute jobs from service users and to enable trans-
parent use of resources from multiple infrastructures.

In contrast to stateful web services typically
found in enterprise systems, CWS process each in-
coming job in isolation. The only state managed by
CWS is the state of processed jobs, so all data need-
ed for a job should be provided in a request. While
such restriction leaves out interactive session-based
applications, it aligns well with the majority of com-
putational tools such as solvers. This restriction also
contributes to scalability properties of CWS.

The above description of CWS is rather general
and can be related to a large class of services found
not only in the scientific computing domain. Never-
theless, it explains the motivation and reasons be-
hind implementation of CWS in Everest.

2.2 Service Interface

In technical terms, CWS can be implemented using
any web service technology or style. Such freedom
and lack of standards for implementation of CWS
led to a multitude of approaches introduced by dif-
ferent systems. In order to facilitate reuse and com-
position of CWS implemented by different parties it
is crucial to unify service interfaces.

The described model of CWS makes it possible
to introduce a uniform service interface consisting of
four operations:
 Job submission (as a set of input parameters);
 Retrieval of job state and results (as a set of

output parameters);
 Job cancellation;
 Retrieval of service description (including de-

scription of input and output parameters).
All services implementing this interface support

the same set of operations but can accept and return
different sets of parameters. The last operation ena-
bles introspection of service parameters in order to

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

412

facilitate construction of job submission requests
and processing of job results.

The described uniform interface follows an ap-
proach used by the HTTP protocol (Fielding et al.,
1999) which defines a standard set of methods to
indicate the desired action to be performed on the
web resource identified by URI. This approach and
the underlying REST architectural style (Fielding,
2000) proved to be essential to make the Web suc-
cessful. In contrast, SOAP-based web services
(Curbera et al., 2002) encourage creation of special-
ized interfaces and operations which provides a
greater flexibility but complicates service reuse.

2.3 Interface Implementation

Using the REST architectural style the described
uniform interface can be implemented as follows
(Afanasiev et al., 2013). CWS represents a RESTful
web service (Richardson and Ruby, 2008) identified
by a Service URL. A job managed by the service is
identified by a Job URL.

The Service resource supports the following
HTTP methods:
 GET, which returns service description;
 POST, which performs job submission and

returns a Job URL.
The Job resource created during job submission

supports the following methods:
 GET, which returns the job state and results (if

any available);
 PUT, which enables changing of the job state

(e.g., job cancellation);
 DELETE, which destroys the job resource and

deletes its data.
An additional File resource can be introduced to

identify files passed to or returned by a service via
its parameters. In such case parameter value contains
a file URL. This enables passing large amount of
data, which is particularly important for scientific
computing, via appropriate data transfer mecha-
nisms, such as HTTP, FTP or GridFTP.

Consider resource representation formats and
means of describing service parameters.

The most widely used data representation for-
mats for web services are XML and JSON. Among
these JSON has been chosen for the following rea-
sons. First, JSON provides more compact and reada-
ble representation of data structures, while XML is
focused on representation of arbitrary documents.
Second, JSON supports native integration with Ja-
vaScript language facilitating creation of web user
interfaces for CWS.

The description and validation of service pa

rameters can be accomplished by means of JSON
Schema (JSON Schema, 2013), a de facto standard
for defining the structure of JSON data.

2.4 Service Implementation

Consider an implementation of computational web
service. Just like its interface, the inner workings of
CWS follow a common pattern. A service listens to
incoming job requests over HTTP and performs the
following steps for each request:
 Authenticate and authorize the client;
 Parse and validate input parameters from the

request;
 Translate input parameters to a compute job

specification (executable, arguments, input
and output files, etc.);

 Submit the compute job to configured compu-
ting resource;

 Monitor compute job state and provide this
information to the client;

 Retrieve compute job results upon job com-
pletion;

 Translate compute job results to output pa-
rameters;

 Pass output parameters to the client.
Most of these steps can be implemented in the

same fashion for any service disregarding its appli-
cation domain. The only application specific parts
are the ones that deal with processing of input and
generation of output parameters. This makes it pos-
sible to implement a software framework, which
provides a generic service skeleton that can be con-
figured with the application specific parts (Afana-
siev et al., 2013).

3 EVEREST PLATFORM

Everest is a cloud platform for computational web
services that is based on considerations presented in
the previous section. It implements a development
framework and a hosting environment for CWS that
adhere to the described uniform interface.

In contrast to traditional service development
tools, Everest follows the Platform as a Service
cloud delivery model by providing all its functionali-
ty via remote interfaces. A single instance of the
platform can be accessed by many users in order to
create, run and share services with each other with-
out the need to install additional software on users’
computers.

Another distinct feature of Everest is the ability
to connect services with external computing

Everest:�A�Cloud�Platform�for�Computational�Web�Services

413

Figure 1: Architecture of Everest platform.

resources. That means that service developer can
provide computing resource for running service jobs.
This feature is useful in situations when platform’s
computing infrastructure has limited capacity or
service developers need more control over an execu-
tion environment. A service user can also override
the default resource by providing another resource
for running her jobs.

The architecture of Everest is represented in Fig-
ure 1. Consider each of the platform’s components
in detail.

3.1 REST API

REST API is the platform’s application program-
ming interface implemented as a RESTful web ser-
vice. It serves as a single entry point for all clients,
including the web user interface.

The API includes operations for accessing and
manipulating entities managed by the platform such
as users, user groups, services, jobs and resources. In
particular, the API implements operations from the
uniform interface of CWS described in Section 2. It
also provides additional operations related to ser-
vices, such as service configuration and service dis-
covery.

For each incoming request the API performs au-
thentication of a client. The default authentication
mechanism is implemented by means of OAuth
bearer tokens (Jones and Hardt, 2012). A client can
obtain a token by providing user credentials, i.e.,
username and password.

Upon successful authentication, the API also per-
forms authorization of the requested action. Each
entity managed by the platform has its’ owner. The
default security policy allows access to the entity
only to its’ owner. An owner can modify this policy,
e.g., a service owner can specify a white list of users
or user groups that are allowed to use the service.

The API relies on the data storage component to
read and write information about platform entities. It
also communicates with the compute bridge by pass-
ing it incoming job requests.

3.2 Web User Interface

Web user interface (Web UI) provides a convenient
graphical interface for interaction with the platform.
It is implemented as a JavaScript application that
can run in any modern web browser without installa-
tion of additional software.

Web UI provides access to all functionality of
the platform. It is built directly on top of the REST
API, i.e., it uses the same interface as all other plat-
form clients. While technically more challenging
than traditional server-side web interface generation,
this approach allowed us to reduce the server com-
plexity and directly test the REST API.

The most important parts of Web UI are service
configuration and job submission interfaces.

Service configuration interface is used to create
new and edit existing services. It is implemented as
a set of web forms that enable a user to specify all
required information about a service including:

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

414

 Service metadata (name, description, etc.);
 Input parameters;
 Output parameters;
 Job template;
 Required files;
 Computing resource to run service jobs;
 Security configuration (white list, etc.).

Job template represents an application specific
part of service configuration that is used by the plat-
form to translate service requests to compute jobs. It
includes the following information:
 Job command template that supports input pa-

rameter substitution;
 Mapping of input parameters to job input files;
 Mapping of job output files to output parame-

ters.
Job submission interface is used to submit job

requests to services. This interface is dynamically
generated for each service according to the descrip-
tion of its input parameters. This information is also
used to validate the request before its submission to
the API. The implemented approach frees service
developer from manual implementation of job sub-
mission forms.

3.3 Compute Bridge

Compute bridge is the core component of Everest
that performs translation of service requests (ser-
vice-level jobs) to compute jobs. It acts as a media-
tor between REST API and Compute subsystem that
manages execution of compute jobs.

All job requests coming to REST API are asyn-
chronously forwarded to the bridge. For each request
the bridge performs translation of input parameters
to a compute job specification according to the ser-
vice configuration. The bridge also downloads input
files that are referenced in the request.

A compute job specification produced by the
bridge includes a command to be run, a list of job
input files, a list of output files and a resource to run
the job. The job specification is passed to the Com-
pute subsystem for execution. The bridge also sub-
scribes to notifications about the job state changes
and translates these changes to the data storage.

Upon the job completion the bridge performs
translation of job output files to output parameters
according to the service configuration and saves the
final result in the data storage.

3.4 Compute

Compute subsystem manages execution of compute
jobs received from the bridge on computing re-

sources attached to the platform. It performs all rou-
tine tasks related to staging of input files, submitting
a job, monitoring a job state and downloading job
results. All job state changes are translated to the
bridge. Compute subsystem also monitors the state
of all resources attached to the platform.

A computing resource can be attached to the
platform by any user. A resource owner can config-
ure a policy for accessing the resource. Any allowed
user can bind the resource to any service.

Currently two approaches for integration with
computing resources have been implemented. These
approaches represent different tradeoffs between
ease of integration and resource protection.

The first approach relies on existing remote ac-
cess mechanisms supported by resources, such as
SSH. In this case such mechanism is configured to
accept credentials provided by the platform, e.g.,
SSH keypair. This enables the platform to directly
execute any commands on the attached resource.
Such approach makes it easy to attach computing
servers or clusters without the need to install addi-
tional software on a resource. However, it also
brings some issues. For example, sometimes it can
be desirable to restrict commands that can be run by
the platform, or a user can’t provide full access to its
account due to resource usage policy. This approach
also doesn’t support integration with resources that
are not accessible remotely, such as desktop com-
puters or resources behind a firewall.

The second approach addresses the mentioned is-
sues by running a special agent on each attached
resource. The agent acts as a mediator between the
platform and the resource. This approach requires
deployment of additional software on resources, but
enables implementation of arbitrary security policies
on the agent level and integration with resources
behind a firewall. The communication between an
agent and the platform is implemented through the
WebSocket protocol (Fette and Melnikov, 2011).
Upon startup an agent initiates connection with the
platform to establish a bidirectional communication
channel. This channel is used only for control and
status messages. Job data transfer is performed by an
agent via the HTTP protocol.

Currently the Compute subsystem doesn’t per-
form resource selection during the submission of
compute job. It is assumed that each service has only
one resource linked with it. A user can override this
resource with another one in a job request. In any
case, the job specification passed to the Compute
contains a single resource reference.

Everest:�A�Cloud�Platform�for�Computational�Web�Services

415

3.5 Data Storage

Data storage component implements long-term stor-
age of information related to all entities managed by
the platform. It is based on MongoDB (MongoDB,
2013), a document-oriented database system. Native
support for JSON data structures with dynamic
schemas proved to be useful during the platform
development. The data storage also relies on GridFS
feature of MongoDB for storing job data and other
files.

4 CONCLUSIONS

The paper presented Everest, a cloud platform that
supports development and hosting of computational
web services. In comparison with existing work,
Everest has a number of novel features such as the
use of PaaS model, flexible binding of services with
externally provisioned computing resources and
remotely accessible API. While the platform doesn’t
provide its own infrastructure to run compute jobs as
classic PaaS examples, it can handle the problems of
resource allocation, job management, data transfer
and so on without the interference of users.

Everest is work in progress. The platform is cur-
rently undergoing experimental evaluation and pilot
deployment. The results of this work and application
case studies will be presented in future publications.
Future work will also address remaining gaps in
platform’s functionality and other challenges, such
as development of programming APIs, supporting
service composition, implementation of job schedul-
ing mechanism enabling binding of multiple re-
sources to a service, integration with grid infrastruc-
tures, and optimization of data transfer for services
handling large amounts of data.

ACKNOWLEDGEMENTS

The work is supported by the Russian Foundation
for Basic Research (grant No. 14-07-00309 А).

REFERENCES

Foster, I. (2005). Service-Oriented Science. Science,
308(5723), 814-817.

Kacsuk, P. (2011). P-GRADE portal family for grid infra-
structures. Concurrency and Computation: Practice
and Experience, 23(3), 235-245.

Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creat-
ing the CIPRES Science Gateway for inference of
large phylogenetic trees. In Gateway Computing Envi-
ronments Workshop (GCE), 2010 (pp. 1-8). IEEE.

McLennan, M., Kennell, R. (2010). HUBzero: A Platform
for Dissemination and Collaboration in Computational
Science and Engineering. Computing in Science and
Engineering, 12(2), pp. 48-52.

ProgrammableWeb (2013). ProgrammableWeb -
Mashups, APIs, and the Web as Platform.
http://www.programmableweb.com/.

Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008).
Understanding mashup development. Internet Compu-
ting, IEEE, 12(5), 44-52.

Afgan, E., Goecks, J., Baker, D., Coraor, N., Nekrutenko,
A., Taylor, J. (2011). Galaxy - a Gateway to Tools in
e-Science. In: K. Yang, Ed. (ed) Guide to e-Science:
Next Generation Scientific Research and Discovery,
Springer, pp. 145-177.

Delaitre, T., Kiss, T., Goyeneche, A., Terstyanszky, G.,
Winter, S., Kacsuk, P. (2005). GEMLCA: Running
Legacy Code Applications as Grid Services. Journal
of Grid Computing, Vol. 3. No. 1-2, pp. 75-90.

Krishnan, S., Clementi, L., Ren, J., Papadopoulos, P., Li,
W. (2009). Design and Evaluation of Opal2: A Toolkit
for Scientific Software as a Service. In 2009 IEEE
Congress on Services (SERVICES-1 2009), pp.709-
716.

Afanasiev, A., Sukhoroslov, O., Voloshinov, V. (2013).
MathCloud: Publication and Reuse of Scientific Ap-
plications as RESTful Web Services. In Parallel
Computing Technologies (PaCT 2013). Lecture Notes
in Computer Science, Vol. 7979, Springer, pp. 394-
408.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., & Berners-Lee, T. (1999). Hypertext
transfer protocol—HTTP/1.1. Internet RFC 2616.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. Ph.D. dis-
sertation, University of California, Irvine.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N.,
& Weerawarana, S. (2002). Unraveling the Web ser-
vices web: an introduction to SOAP, WSDL, and
UDDI. Internet Computing, IEEE, 6(2), 86-93.

Richardson, L., & Ruby, S. (2008). RESTful Web Services,
O’Reilly.

JSON Schema (2013). JSON Schema and Hyper-Schema.
http://json-schema.org/.

Jones, M., & Hardt, D. (2012). The OAuth 2.0 Authoriza-
tion Framework: Bearer Token Usage. RFC 6750.

Fette, I., & Melnikov, A. (2011) The WebSocket Protocol.
RFC 6455, Internet Engineering Task Force.

MongoDB (2013). MongoDB. http://www.mongodb.org/

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

416

