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Abstract: The ability to effortlessly reuse and combine existing computational tools is an important factor influencing 
research productivity in many scientific domains. While the service-oriented approach proved to be essen-
tial in order to enable wide-scale sharing of applications, we argue that its full potential in scientific compu-
ting is still not realized. In this paper, we present Everest, a cloud platform that supports publication, sharing 
and reuse of scientific applications as web services. The underlying approach is based on a uniform repre-
sentation of computational web services and its implementation using REST architectural style. In compari-
son with existing work, Everest has a number of novel features such as the use of PaaS model, flexible bind-
ing of services with externally provisioned computing resources and remotely accessible API. 

1 INTRODUCTION 

Modern scientific research is often associated with 
complex computations and use of high performance 
computing resources. In their research scientists 
actively use software applications that implement 
computational algorithms, methods and models.  

The ability to reuse existing computational tools 
is one of important factors influencing research 
productivity. However, such software often requires 
specific expertise in order to install, configure and 
run it that is beyond the expertise of an ordinary 
researcher. This also applies to configuration and 
use of high performance computing resources to run 
the software. Finally, researchers increasingly need 
to combine multiple tools in order to solve a com-
plex problem, which brings an important issue of 
application composition. 

The aforementioned problems can be addressed 
by provision of scientific applications in the form of 
remotely accessible, interoperable services. The use 
of service-oriented approach can enable wide-scale 
sharing, publication and reuse of applications, as 
well as automation of scientific tasks and composi-
tion of applications into new services (Foster, 2005). 
While the underlying principles of this approach are 
well-known, it is still an open question how to im-
plement it in scientific computing in order to realize 
its full potential. 

So far, most efforts in this area were focused on 

the provision of remote access to scientific tools via 
convenient web user interfaces. Examples of such 
approach include grid portals (Kacsuk, 2011), sci-
ence gateways (Miller et al., 2010) and scientific 
hubs (McLennan and Kennell, 2010). While being 
successful among unskilled users, such systems do 
not actually expose applications as web services or 
provide programming interfaces thus limiting oppor-
tunities for application reuse, composition and inte-
gration with external applications.  

This approach is in stark contrast to Web 2.0 ap-
plications and cloud computing services that support 
programmatic access via web service based APIs 
(Programmable Web, 2013). The proliferation of 
Web APIs has spawned development of mashups 
(Yu et al., 2008) that combine data, presentation and 
functionality from multiple services. Web service 
composition tools, such as Yahoo! Pipes, provided 
convenient interfaces for building mashups and 
making them available to everyone as new services.  

This aspect is largely ignored in existing web-
based scientific environments. As a rule, such sys-
tems do not provide tools for application composi-
tion or support workflows only on the level of com-
putational jobs. The notable exception is Galaxy 
platform (Afgan et al., 2011) that supports tool com-
position and sharing of produced workflows. At the 
same time, Galaxy also doesn’t expose tools and 
workflows as services thus limiting their use outside 
the platform. 
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Other efforts were focused on building tools for 
transformation of scientific applications into web 
services (Delaitre et al., 2005; Krishnan et al., 2009). 
These tools don’t provide user interfaces beyond 
basic web forms for service invocation and rely on 
existing solutions for web service composition. 
While more powerful and well-aligned with SOA 
principles, this approach requires more effort in 
order to build a convenient environment for scien-
tists. Service developers need an infrastructure to 
host services. The environment should provide 
mechanisms for service discovery, invocation and 
composition taking into account security require-
ments. These mechanisms should be accessible via 
convenient user interfaces facilitating the use of 
services for problem solving. 

Both approaches also require considerable efforts 
to integrate an environment with high performance 
computing resources and grid infrastructures needed 
to run applications. As a rule, existing systems are 
tied to a single computing infrastructure and doesn’t 
allow users to attach external resources. 

The paper presents Everest, a cloud platform for 
computational web services that addresses discussed 
issues. It combines both approaches discussed above 
by exposing computational applications as web ser-
vices with a uniform interface and implementing a 
web user interface for creating, sharing and access-
ing services.  In contrast to previous work (Afana-
siev et al., 2013), all functionality of the platform is 
provided remotely using the Platform as a Service 
model. 

The paper is structured as follows. Section 2 dis-
cusses the model, interface and implementation of 
computational web services that underpin the pro-
posed approach. Section 3 describes architecture and 
components of Everest platform in its current im-
plementation. Section 4 concludes and discusses 
future work. 

2 COMPUTATIONAL WEB 
SERVICES 

2.1 Service Model 

Computational web services (CWS) are the main 
entities managed by Everest. On the conceptual 
level, CWS represent a special type of web services 
targeted at processing computationally intensive 
requests. Such services should support management 
of long-running jobs and transfer of job data. 

In contrast to generic web service interfaces to 
computing infrastructures, such as grids, CWS are 

specialized in running specific applications, i.e., 
solving specific classes of problems. Therefore a 
request to CWS normally doesn’t contain an execut-
able, but instead represents a set of input parameters 
describing a problem to be solved. We will refer to 
such requests as service-level jobs or just jobs. The 
job results can be represented as a set of output pa-
rameters in the same fashion. 

It is responsibility of a CWS implementation to 
translate service-level jobs to one or more compute 
jobs submitted to underlying computing infrastruc-
ture in order to obtain desired results. Therefore 
CWS implement more specialized and high level 
interfaces than computing infrastructures. This 
makes it possible to hide the complexity of running 
compute jobs from service users and to enable trans-
parent use of resources from multiple infrastructures. 

In contrast to stateful web services typically 
found in enterprise systems, CWS process each in-
coming job in isolation. The only state managed by 
CWS is the state of processed jobs, so all data need-
ed for a job should be provided in a request. While 
such restriction leaves out interactive session-based 
applications, it aligns well with the majority of com-
putational tools such as solvers. This restriction also 
contributes to scalability properties of CWS. 

The above description of CWS is rather general 
and can be related to a large class of services found 
not only in the scientific computing domain. Never-
theless, it explains the motivation and reasons be-
hind implementation of CWS in Everest. 

2.2 Service Interface 

In technical terms, CWS can be implemented using 
any web service technology or style. Such freedom 
and lack of standards for implementation of CWS 
led to a multitude of approaches introduced by dif-
ferent systems. In order to facilitate reuse and com-
position of CWS implemented by different parties it 
is crucial to unify service interfaces.  

The described model of CWS makes it possible 
to introduce a uniform service interface consisting of 
four operations: 
 Job submission (as a set of input parameters); 
 Retrieval of job state and results (as a set of 

output parameters); 
 Job cancellation; 
 Retrieval of service description (including de-

scription of input and output parameters). 
All services implementing this interface support 

the same set of operations but can accept and return 
different sets of parameters. The last operation ena-
bles introspection of service parameters in order to 
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facilitate construction of job submission requests 
and processing of job results.  

The described uniform interface follows an ap-
proach used by the HTTP protocol (Fielding et al., 
1999) which defines a standard set of methods to 
indicate the desired action to be performed on the 
web resource identified by URI. This approach and 
the underlying REST architectural style (Fielding, 
2000) proved to be essential to make the Web suc-
cessful. In contrast, SOAP-based web services 
(Curbera et al., 2002) encourage creation of special-
ized interfaces and operations which provides a 
greater flexibility but complicates service reuse. 

2.3 Interface Implementation 

Using the REST architectural style the described 
uniform interface can be implemented as follows 
(Afanasiev et al., 2013). CWS represents a RESTful 
web service (Richardson and Ruby, 2008) identified 
by a Service URL. A job managed by the service is 
identified by a Job URL. 

The Service resource supports the following 
HTTP methods: 
 GET, which returns service description; 
 POST, which performs job submission and 

returns a Job URL. 
The Job resource created during job submission 

supports the following methods: 
 GET, which returns the job state and results (if 

any available); 
 PUT, which enables changing of the job state 

(e.g., job cancellation); 
 DELETE, which destroys the job resource and 

deletes its data. 
An additional File resource can be introduced to 

identify files passed to or returned by a service via 
its parameters. In such case parameter value contains 
a file URL. This enables passing large amount of 
data, which is particularly important for scientific 
computing, via appropriate data transfer mecha-
nisms, such as HTTP, FTP or GridFTP. 

Consider resource representation formats and 
means of describing service parameters.  

The most widely used data representation for-
mats for web services are XML and JSON. Among 
these JSON has been chosen for the following rea-
sons. First, JSON provides more compact and reada-
ble representation of data structures, while XML is 
focused on representation of arbitrary documents. 
Second, JSON supports native integration with Ja-
vaScript language facilitating creation of web user 
interfaces for CWS. 

The description and validation of service pa

rameters can be accomplished by means of JSON 
Schema (JSON Schema, 2013), a de facto standard 
for defining the structure of JSON data. 

2.4 Service Implementation 

Consider an implementation of computational web 
service. Just like its interface, the inner workings of 
CWS follow a common pattern. A service listens to 
incoming job requests over HTTP and performs the 
following steps for each request: 
 Authenticate and authorize the client; 
 Parse and validate input parameters from the 

request; 
 Translate input parameters to a compute job 

specification (executable, arguments, input 
and output files, etc.); 

 Submit the compute job to configured compu-
ting resource; 

 Monitor compute job state and provide this 
information to the client; 

 Retrieve compute job results upon job com-
pletion; 

 Translate compute job results to output pa-
rameters; 

 Pass output parameters to the client. 
Most of these steps can be implemented in the 

same fashion for any service disregarding its appli-
cation domain. The only application specific parts 
are the ones that deal with processing of input and 
generation of output parameters. This makes it pos-
sible to implement a software framework, which 
provides a generic service skeleton that can be con-
figured with the application specific parts (Afana-
siev et al., 2013). 

3 EVEREST PLATFORM 

Everest is a cloud platform for computational web 
services that is based on considerations presented in 
the previous section. It implements a development 
framework and a hosting environment for CWS that 
adhere to the described uniform interface. 

In contrast to traditional service development 
tools, Everest follows the Platform as a Service 
cloud delivery model by providing all its functionali-
ty via remote interfaces. A single instance of the 
platform can be accessed by many users in order to 
create, run and share services with each other with-
out the need to install additional software on users’ 
computers. 

Another distinct feature of Everest is the ability 
to   connect   services   with   external   computing  
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Figure 1: Architecture of Everest platform. 

resources. That means that service developer can 
provide computing resource for running service jobs. 
This feature is useful in situations when platform’s 
computing infrastructure has limited capacity or 
service developers need more control over an execu-
tion environment. A service user can also override 
the default resource by providing another resource 
for running her jobs. 

The architecture of Everest is represented in Fig-
ure 1. Consider each of the platform’s components 
in detail. 

3.1 REST API 

REST API is the platform’s application program-
ming interface implemented as a RESTful web ser-
vice. It serves as a single entry point for all clients, 
including the web user interface. 

The API includes operations for accessing and 
manipulating entities managed by the platform such 
as users, user groups, services, jobs and resources. In 
particular, the API implements operations from the 
uniform interface of CWS described in Section 2. It 
also provides additional operations related to ser-
vices, such as service configuration and service dis-
covery. 

For each incoming request the API performs au-
thentication of a client. The default authentication 
mechanism is implemented by means of OAuth 
bearer tokens (Jones and Hardt, 2012). A client can 
obtain a token by providing user credentials, i.e., 
username and password. 

Upon successful authentication, the API also per-
forms authorization of the requested action. Each 
entity managed by the platform has its’ owner. The 
default security policy allows access to the entity 
only to its’ owner. An owner can modify this policy, 
e.g., a service owner can specify a white list of users 
or user groups that are allowed to use the service. 

The API relies on the data storage component to 
read and write information about platform entities. It 
also communicates with the compute bridge by pass-
ing it incoming job requests. 

3.2 Web User Interface 

Web user interface (Web UI) provides a convenient 
graphical interface for interaction with the platform. 
It is implemented as a JavaScript application that 
can run in any modern web browser without installa-
tion of additional software. 

Web UI provides access to all functionality of 
the platform. It is built directly on top of the REST 
API, i.e., it uses the same interface as all other plat-
form clients. While technically more challenging 
than traditional server-side web interface generation, 
this approach allowed us to reduce the server com-
plexity and directly test the REST API. 

The most important parts of Web UI are service 
configuration and job submission interfaces. 

Service configuration interface is used to create 
new and edit existing services. It is implemented as 
a set of web forms that enable a user to specify all 
required information about a service including: 
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 Service metadata (name, description, etc.); 
 Input parameters; 
 Output parameters; 
 Job template; 
 Required files; 
 Computing resource to run service jobs; 
 Security configuration (white list, etc.). 

Job template represents an application specific 
part of service configuration that is used by the plat-
form to translate service requests to compute jobs. It 
includes the following information: 
 Job command template that supports input pa-

rameter substitution; 
 Mapping of input parameters to job input files; 
 Mapping of job output files to output parame-

ters. 
Job submission interface is used to submit job 

requests to services. This interface is dynamically 
generated for each service according to the descrip-
tion of its input parameters. This information is also 
used to validate the request before its submission to 
the API. The implemented approach frees service 
developer from manual implementation of job sub-
mission forms.  

3.3 Compute Bridge 

Compute bridge is the core component of Everest 
that performs translation of service requests (ser-
vice-level jobs) to compute jobs. It acts as a media-
tor between REST API and Compute subsystem that 
manages execution of compute jobs.  

All job requests coming to REST API are asyn-
chronously forwarded to the bridge. For each request 
the bridge performs translation of input parameters 
to a compute job specification according to the ser-
vice configuration. The bridge also downloads input 
files that are referenced in the request.  

A compute job specification produced by the 
bridge includes a command to be run, a list of job 
input files, a list of output files and a resource to run 
the job. The job specification is passed to the Com-
pute subsystem for execution. The bridge also sub-
scribes to notifications about the job state changes 
and translates these changes to the data storage. 

Upon the job completion the bridge performs 
translation of job output files to output parameters 
according to the service configuration and saves the 
final result in the data storage. 

3.4 Compute 

Compute subsystem manages execution of compute 
jobs received from the bridge on computing re-

sources attached to the platform. It performs all rou-
tine tasks related to staging of input files, submitting 
a job, monitoring a job state and downloading job 
results. All job state changes are translated to the 
bridge. Compute subsystem also monitors the state 
of all resources attached to the platform. 

A computing resource can be attached to the 
platform by any user. A resource owner can config-
ure a policy for accessing the resource. Any allowed 
user can bind the resource to any service. 

Currently two approaches for integration with 
computing resources have been implemented. These 
approaches represent different tradeoffs between 
ease of integration and resource protection. 

The first approach relies on existing remote ac-
cess mechanisms supported by resources, such as 
SSH. In this case such mechanism is configured to 
accept credentials provided by the platform, e.g., 
SSH keypair. This enables the platform to directly 
execute any commands on the attached resource. 
Such approach makes it easy to attach computing 
servers or clusters without the need to install addi-
tional software on a resource. However, it also 
brings some issues. For example, sometimes it can 
be desirable to restrict commands that can be run by 
the platform, or a user can’t provide full access to its 
account due to resource usage policy. This approach 
also doesn’t support integration with resources that 
are not accessible remotely, such as desktop com-
puters or resources behind a firewall. 

The second approach addresses the mentioned is-
sues by running a special agent on each attached 
resource. The agent acts as a mediator between the 
platform and the resource. This approach requires 
deployment of additional software on resources, but 
enables implementation of arbitrary security policies 
on the agent level and integration with resources 
behind a firewall. The communication between an 
agent and the platform is implemented through the 
WebSocket protocol (Fette and Melnikov, 2011). 
Upon startup an agent initiates connection with the 
platform to establish a bidirectional communication 
channel. This channel is used only for control and 
status messages. Job data transfer is performed by an 
agent via the HTTP protocol. 

Currently the Compute subsystem doesn’t per-
form resource selection during the submission of 
compute job. It is assumed that each service has only 
one resource linked with it. A user can override this 
resource with another one in a job request. In any 
case, the job specification passed to the Compute 
contains a single resource reference.  
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3.5 Data Storage 

Data storage component implements long-term stor-
age of information related to all entities managed by 
the platform. It is based on MongoDB (MongoDB, 
2013), a document-oriented database system. Native 
support for JSON data structures with dynamic 
schemas proved to be useful during the platform 
development. The data storage also relies on GridFS 
feature of MongoDB for storing job data and other 
files. 

4 CONCLUSIONS 

The paper presented Everest, a cloud platform that 
supports development and hosting of computational 
web services. In comparison with existing work, 
Everest has a number of novel features such as the 
use of PaaS model, flexible binding of services with 
externally provisioned computing resources and 
remotely accessible API. While the platform doesn’t 
provide its own infrastructure to run compute jobs as 
classic PaaS examples, it can handle the problems of 
resource allocation, job management, data transfer 
and so on without the interference of users. 

Everest is work in progress. The platform is cur-
rently undergoing experimental evaluation and pilot 
deployment. The results of this work and application 
case studies will be presented in future publications. 
Future work will also address remaining gaps in 
platform’s functionality and other challenges, such 
as development of programming APIs, supporting 
service composition, implementation of job schedul-
ing mechanism enabling binding of multiple re-
sources to a service, integration with grid infrastruc-
tures, and optimization of data transfer for services 
handling large amounts of data. 
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