
An Self-configuration Architecture for Web-API of
Internet of Things

Eric Bernardes Chagas Barros and Admilson de Ribamar L. Ribeiro
Computing Department, Universidade Federal de Sergipe, Aracaju, Brazil

Keywords: IoT, Web-APIs, Self-configurable, Internet of Things, Web of Things, WoT, Self-configuration, REST,
Mote.

Abstract: The internet of things (IoT) is the paradigm that will dominate the computing world in the coming years. In
this way, studies should be conducted in such way to ensure its enhancement and in the quest for that
improvement is necessary to use the already existing technologies that apply to IoT. This paper's purpose is
to unite different technologies like REST, cloud computing and embedded operating system in order to
obtain mechanisms capable of self-configuration. Thus, it was possible to conclude that the architecture
proposed would increase useful techniques for the implementation of systems that want to run the self-
configuration as well as assist in setting up networks of computers that work with wireless sensors and IoT.

1 INTRODUCTION

Internet of Things (IoT) is the paradigm that until
2025 will dominate the world of computing (Atzori,
2010). The ubiquity of the Internet in less than 20
years almost connected all people in the world and
has generated new demands for space. Now people
not only need to exchange information and services,
but also objects. Although for this to occur it is still
necessary that both, the technology and society are
prepared.

The Things which refers to this paradigm are
related to devices or motes that are arranged in an
environment and have their own characteristics, how
to measure a temperature, check if the light is on, if
a window is open, the amount of milk in a
refrigerator, among many other possibilities. By
capturing the information for which they were
programmed, these devices send data through
existing Internet's services to let user become aware
that these data are stored and can provide some
useful information to him. The use of existing
resources on the web by these motes can be done
through APIs and can be characterized by the use of
cloud computing, when this happens it is customary
to call these APIs of Web-APIs (Zeng, 2011).

The configuration and installation of devices that
will integrate a large and complex systems within
the IoT is a challenge that is time consuming and
error prone, even for the great specialists (Kephart,

2003). Moreover, the large growth of network nodes
made with different technologies and different
platforms can result in a hard and repetitive work.

Therefore, to facilitate the use of such devices,
and applications' development, the use of techniques
that enables the system to adapt itself to the
environment and self-configure is a great need.
However, the Web-APIs that exists in nowadays has
not yet incorporated these concepts yet.

This paper aims to introduce a mechanism of
self-configuration for the Internet of Things, where
the main idea is to make easier the configuration of
devices and Web-APIs that will control the
environment.

This paper aims to introduce a mechanism of
self-configuration for the Internet of Things, where
the main idea is to make easier the configuration of
devices and Web-APIs that will control the
environment.

The remainder of this paper is organized as
follows. In section 2, will be shown on the existing
requirements nowadays and that contribute to the
development of Web-APIs. Section 3 talks about the
Web-APIs that exists in the market and the summary
of its main characteristics. Finally, in Section 4, the
proposed architecture will be explained and a
possible mechanism architecture that can be used in
the development of self-configurable Web APIs.
Conclusion and future research hints are given in
Section 5.

328 Bernardes Chagas Barros E. and de Ribamar L. Ribeiro A..
An Self-configuration Architecture for Web-API of Internet of Things.
DOI: 10.5220/0004944003280334
In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 328-334
ISBN: 978-989-758-024-6
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 REQUIREMENTS OF
WEB-APIS IN INTERNET OF
THINGS

Currently, the existing Web-APIs have a set of basic
characteristics that are used to carry out the
communication of devices with the Internet or for
needs of these motes due to its limitations. These
fundamental features are described in this article in
order to enumerate some of the concepts that can be
used to serve as basis for self configuration
mechanism, such as the form of communication with
Rest (Zeng, 2011), storage and standardization
communication through the use of markup data
languages (XML, YAML, JSON) (Xively 2013).

2.1 Open-source

Although this characteristic is not a specific
functionality that help directly the devices, it was
regarded as important for that in the future people
will work on top of existing Web-APIs and make
your code to be improved and become Customer
self-configurable.

This term refers to the so-called free software,
where to be held a consolidated distribution, is also
distributed its source code for that can be freely
used, modified and shared by its users.

2.2 Rest

The REST-based architecture is considered "the true
architecture of the Web" (Zeng, 2011), it is based on
the concept that everything is modeled as resource
using the HTTP URI. Thus, customers can identify
the resources they need through the URI,
manipulating them through traditional HTTP
commands like: PUT, GET, POST and DELETE.
The PUT and DELETE.

Moreover, it has self-descriptive messages, i.e,
the resources are free to make their own
representations of data format. Obviously, end-
systems must agree with this representation so that
communication can take place properly. In this way,
it is possible to use HTML, XML, text, PDF and
images as the format of data to be sent.

Another important feature is that REST works
with stateless requests, treating each request
independently, and this may not require a server to
store session information or the status as is each of
the multiple acquisitions. However, statefull
interactions can be supported in REST through the
use of hyperlinks, so the states of the resources can

be transferred by means of URIs for cookies or
hidden fields (Zeng, 2011).

2.3 Standardization

As the APIs and the devices are usually developed in
different languages, it must be pre-established a
format of data communication between the receiver
and transmitter and how they will exchange
messages to inform how the data is separated and
what the content within it represent. Consistently, to
earn this type of representation the IoT sought
markup languages known data, such as XML, JSON,
YAML or CSV.

These languages are very portable because it
does not depend on hardware or software platforms
to work and any databases can communicate with
each other through them. By having the ability to
self define data, as well as having the characteristics
described above, these languages are used for
interoperable networks, allowing objects of different
characteristics understand each other.

2.4 Centralized Architecture

Due to the limitations of the devices many of the
activities more robust need to be sent to a server that
has capacity to perform a greater load of processing
and storage. Therefore currently the Web-APIs, tend
to be centered on a server that is able perform this
type of activity. Thus, a network IoT using these
Web-APIs tend to use the REST to communicate
with a server that is receiving data and managing the
devices in the network.

2.5 Security

When the term security is mentioned, the first word
illustrated is identification. In IoT, recognition of
each device with the use of traditional IPs. Despite
this, only a network identification is not sufficient to
ensure the safety, it is necessary a profile control to
inform if this equipment has access to the service
that it is requesting. As in IoT these services are
provided by APIs, the controls of inflows are usually
made by API-Keys.

Within the API-Key are encapsulated three types
of permissions that operate in a hierarchical manner:
object key (the general key of the API), object
permissions and the permissions of features of
objects, the latter being optional. The general
permissions objects keys are created for your
applications to have access to APIs. Each
application may ask how many objects keys you

An�Self-configuration�Architecture�for�Web-API�of�Internet�of�Things

329

 need.
An object key can have multiple objects

permissions (it is mandatory at least one) and each
acquiescence of object contains a set of different
permissions. For example, a key can be created to
allow a read-only access to the entire public resource
available, in the same way, can allow a write access
to a resource responsible for supply of data by
means of a specific IP (Xively, 2013). There are still
the feature permissions that serve to restrict access
to a given resource. These permissions, as were
elucidated above, are optional.

In addition to the API-Keys which grants the
security level of access control, there is the HTTPS
that provides security at the level of sending and
receiving data throughout an encrypted and secured
channel. As the APIs’ principal way of
communication focus on HTTP (REST and SOAP)
the use of HTTPS helps to prevent the attacks of
type man-in-the-middle, seen that the HTTPS is the
implementation of HTTP on top of the SSL/TLS
protocol to provide authentication of hosts purposes
and encrypted communication between them.

2.6 Self-configuration

With the advance of network technologies, devices
shipped and software tools, the growth of
heterogeneous nodes, of great complexity and
extremely dynamic that pass to operate within the
Internet becomes something that cannot be easily
administered.

The autonomic computing is inspired in the
human being’s nervous system. Its main objective is
to develop applications that can self-according to
guidelines imposed by human beings at a high level.
Thus with the policies established at a high level it is
possible to make the systems self-reliant to self-
configure, self-healing, self-optimization and the
self-protection (Kephart, 2003).

The self-configuration is responsible for
automated configuration of system components,
with it the system will automatically adjust and it
always will adjust based on policies of self-
configuration. The self-optimizing components and
systems continually seeking opportunities to
improve their own performance and efficiency. Self-
healing the system automatically detects, diagnoses
and repairs problems of software and hardware
located. The Self-Protection system automatically if
defends against malicious attacks or cascading
failures. It uses earlier warnings to anticipate and
prevent failures in the entire system (Kephart, 2003).

2.7 Code-source Device

As each device needs to communicate with the Web-
API through the REST, many of these offer codes-
sources for which the user copy and paste in
Integrated Development Environment (IDE)
responsible for programming the device. In this way
it is possible to at least have an example that how to
program a device and if it is possible already find a
code that is applicable to the device that will enter
the network.

However it is important to realize that although
there may be a useful source code available for the
used equipment perform the copy and paste codes
for multiple appliances can be an arduous task and
subject to errors even for the great specialists, once
that may exist dozens of these to be configured in a
single environment.

2.8 Storage

The storage of data in IoT is an interesting area of
study, once the majority of devices that exist in a
network of this type do not have large storage
capacity. In contrast, the data used in the
communication are stored in a central device that
has the characteristics necessary for the recording of
relevant data to the system.

As the WEB-APIs are on a server that contains
high processing power and storage capacity, they are
usually responsible for the storage of data that is
captured and transmitted by devices. For this reason,
it is used the concept of Feeds (system risers). These
feeders are a specific part of the API that works with
the reading and writing of data from the system.

Each Feed is a set of channels (datastream) that
enables the exchange of data between the APIs and
authorized devices. These channels are designed by
programmers to separate the data by specific
characteristics. In view of this, it is possible to create
public and private channels. The first are those that
can be viewed and changed by all according to the
BCC License, already the second, it is those whose
access is permitted only to developers and those
whose admission is granted. Within channels there is
the concept of DataPoint which is the representation
of the data in a given time (timestamp) (Xively,
2013).

3 RELATED WORK

In this section will be elucidated the main existing
Web-APIs and what features they have. These

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

330

features are related to the requirements that were
previously seen.

3.1 ThingSpeak

ThingSpeak is an API for "Internet of Things" open-
source that stores and retrieves data from devices
using the Hypertext Transfer Protocol (HTTP) over
the Internet or simply of a LAN (Local Area
Network). With this API (Application Programming
Interface) it is possible to create applications in
sensors for data records in a given environment,
tracking, location and social networks of "things"
(ThingSpeak, 2013). The data manipulation occurs
by means of its channels, which have eight fields to
be fed with data numeric and alphanumeric pagers,
in addition to fields such as latitude and longitude,
elevation and status.

3.2 NimBits

It is a collection of software components designed to
record data of time series, such as for example, the
changes in temperature read by a given sensor
(NimBits, 2013). This API has the drive of events
(triggers) during the recording of data. In This way,
it is possible to perform calculations or trigger alerts
along with your receipt.

Another advantage is that it was designed to be
the first historian of world data, which means that
you can download it and install it on any server,
local or in the cloud, so that it is used the Linux
Ubuntu and Google App Engine. This approach
allows all instances of API to relate being possible to
find other feeders (feeds) of data and make possible
a connection with them (NimBits, 2013).

3.3 Open.sen

Currently in beta stage, this tool allows a rich
visualization of results, so that by SenseBoard, you
can see the incoming data in real time. The
SenseBoard is powered by applications that are
developed and installed within the API itself. These
applications are independent but can be easily
integrated with feeder (feeds) devices (Open.sen.,
2013). These feeders communicate with the API
through channels that are connected to devices. Even
so, it is possible to capture information from other
applications, not needing a direct contact with the
device.

3.4 Cosm

This tool (formerly called Pachube) was developed
to be a platform as a service (PaaS) for the Internet
of things. With it, you can manage multiple devices
through the RESTful resources, thus it is possible to
deal with all the components of the API (Feeds,
triggers, datastreams and datapoint) using
commands via HTTP URLs, as already seen, PUT,
GET, DELETE, POST. PUT is used to change the
data, GET to reading, DELETE to erase and POST
to create resources to communication or control
(Xively, 2013).

3.5 SensorCloud

The SensorCloud is a tool storage for sensors
"things". SensorCloud provides a Rest API to allow
the upload of data to the server. The API
implementation is based on patterns of HTTP
commands. Soon, it is easily adapted to any platform
(SensorCloud, 2013).

The communication between the tool and the
sensors is totally on top of HTTPS, which means the
entire communication between the channels and the
devices are encrypted.

The format for sending and receiving data is the
XDR (External Data Representation), it is not yet
possible to use the templates known JSON and
XML. The purpose of not using the formats
standards of delivery is due to the fact that the XDR
is not text but binary mode and with this it is
possible that sensors for low processing power are
able to send larger amounts of data than the
standards based on text (SensorCloud, 2013).

Their components are divided hierarchically,
where the device is at a higher level and contains the
sensors that are divided into channels and these have
the data.

3.6 Evrythng

It is a platform for powering applications or services
directed by dynamic information about physical
objects. Your goal is that all things must be
connected, thus sets a world where all 'Thng' have a
digital presence of assets on the Internet, even in
social networks if desired, allowing the rapid
development of Web applications using real-time
information flowing from, any object in the world
(Evrythng 2013).

An�Self-configuration�Architecture�for�Web-API�of�Internet�of�Things

331

3.7 iDigi

It is a platform in the cloud for managing network
devices. It offers management gateways and
endpoints on the network. It presents security
policies of leaders in the industry, and great
scalability for the exponential growth of devices on
the network (Etherios, 2013).

3.8 GroverStream

GroveStreams is one of the most powerful platforms
in clouds capable of providing real-time decision
making for millions of users and devices. Among
several of its qualities is the code generation per
device. In this API it is possible that when you
choose your device and the function that it will play
a code that can be used to synchronize the device
with the API is generated, thus there is only a need
to copy this code paste in compiler used by the
device and send to motto for which the code was
generated (GroverStream, 2013).

3.9 Comparison of Web-APIs

Until the moment when it was explained the main
features of Web-APIs, however as it can be seen in
Table 1, there are some gaps that are still not
handled by any of them. One of these characteristics
is the autoconfiguration. Although, many Web-APIs
provide examples of codes for configuring devices,
none of them provides a side focused for the weak
link in the IoT, the motes.

4 PROPOSED ARCHITECTURE

The mechanism proposes an architecture that

 addresses two types of problems. The first is the
reduction of the complexity of devices’ initial
configuration, currently this setup is done through
the provision of source code on the part of the Web-
API and the compilation and deploying into the
device by the user that is configuring the network.
Then there is he must to go to the Web-API and
configure it to receive the data according to the
settings that were made available for the device.

The second problem is the reconfiguration of
device that have already been configured and
deployed on the network. Actually, if it is required
reconfigure some devices that are already doing their
job, the user needs to go up to the place where the
mote is and remove it from the network to perform
again the setup process, passing again by the first
problem that was quoted.

The proposed mechanism will be divided into
two parts: CLIENT and SERVER. Figure 1 provides
a representation of the architecture.

The CLIENT’s side Web-API will be native in
motes and will be developed using techniques for
low power consumption and memory. Initially
intends to use the C language that can be compiled
in almost all devices and techniques of concurrent
programming and events: Protothread. The project
will be carried out using Contiki, because in addition
to being lightweight and perform the treatment of
energy control of wireless transmitters through the
ContikiMAC, it can also be run in almost all existing
devices.

Thus, the CLIENT will provide to the
SERVER’s side the initial information of itself: what
it is, what type of service it offers, what pin he uses
to read, etc. For example, to connect a device into a
network, it goes in search of Web-API for which
was previously configured. When found, it sends the
same to the information it holds about the device on
which it is hosted. For realization of this

Table 1: Characteristics of Web-APIs.

Open-
Source

REST
Markup
language

data

Centralized
Architecture

Security
Self

Configuration
Provides Code for the
device configuration

Cloud
Storage

ThingSpeak x x x x x x x

Nimbits x x x x x x x

Open.sen x x x x x x

Cosm x x x x x x

SensorCloud x x x x x

Evrythng x x x x x x

iDigi x x x x x x

Grovestreams x x x x x x

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

332

Figure 1: Proposed Architecture.

communication standard message format is also
proposed.
The CLIENT is divided into 4 parts:
 Responsible for run of the code (Player);
 Responsible for version of configurations that

are rotating (Controller);
 Responsible for sending and receiving of

configuration data (COM);
 General monitoring of all parties (Manager).

After receive the source code COM passes for
the CONTROLLER that will check the version and
validations necessary for the implementation of the
code, if it is accepted it goes to the PLAYER who
will run the code received. If not, it creates an
invalid code message and returns to the COM, which
will send to the SERVER.

The Web-API that receive the information will
check the authentication of this device (APIKEY)
and the type of configuration that it needs to be able
to carry out their functions.
As there are many repositories available for devices
within the Internet, as the github, the initial idea is to
go after the existing codes and transfer them to the
requesting device. Thus in order to go search code of
a specific device, the WEB-API first must receive a
GET with the specific characteristics of the device.

Upon receiving the search engine of the desired
settings it returns to the mote, which will start the
process of self-configuration.

When the configuration that will be passed to the
device is discovered, the Web-API will also need to
self-configure, providing new features to the code
that is being executed by the motes can send the
information. Even so, through these features
developers can also configure new applications in
the cloud that can promote the environment, such as
sharing data between Web-APIs, and integration
with social networks.

5 CONCLUSIONS

The architecture presented will initially provide two
benefits: First is the development of techniques that
may be useful for systems that want to implement
the self-configuration.
The second one is the own development a tool using
the architecture, once implemented this mechanism,
it will assist in setting up a computers’ network that
works with wireless sensors and IoT. Thus, if the
focus is the analysis of new systems of sensors,
configuration will no longer be a complicated and a

An�Self-configuration�Architecture�for�Web-API�of�Internet�of�Things

333

time consuming step, letting all the attention be
directed to the main objective of the research.

For future work there is the possibility of
developing the proposed architecture using existing
Web-APIs, stated that work like ThingSpeak and
Nimbits are great candidates for this development
since they have available for IoT good features and
they are open-source.

Another challenge is the development of a Web-
Api that will provide the self-configuration for other
existing Web-APIs. With this, besides the
implementation of the proposed architecture for IoT,
will need to draw up a technical architecture and
interoperability for the Web-APIs of the Internet of
Things and the clouds.

REFERENCES

Atzori, L; Iera, A; Morabito, G. The Internet of Things: A
survey. Computer Networks, 2010. Computer
Network.

Bandyopadhyay, S. A. Survey of Middleware for Internet
of Things. International Journal of Computer Science
& Engineering. Survey (IJCSES), 2011.

Zeng D., Guo S, and Cheng Z. The Web of Things: A
Survey. Journal of Communications, vol. 6, setembro
2011.

https://xively.com/dev/docs/api/security/keys/ last
accessed October 14, 2013.

http://www.json.org/ last accessed October 14, 2013.
http://www.w3.org/XML/ last accessed October 14, 2013.
http://www.computerworld.com/s/article/43487/Applicatio

n_Programming_Interface last accessed October 14,
2013.

https://www.thingspeak.com/ last accessed October 14,
2013.

http://www.nimbits.com/ last accessed October 14, 2013.
http://open.sen.se/apps/29/ last accessed October 14, 2013.
http://www.sensorcloud.com/sites/default/files/SensorClou

d_Open_Data_API.pdf last accessed October 14,
2013.

https://grovestreams.com/ last accessed October 14, 2013.
http://www.etherios.com// last accessed October 14, 2013.
http://www.contiki-os.org/ last accessed October 14, 2013.
Ruane, Laure. Protothread. UserGuide.

https://code.google.com/p/protothread/wiki/UsersGuid
e. 2013 last accessed October 14, 2013.

Parachar M, Hariri S. Autonomic Computing: An
Overview. Springer Berlin Heidelberg. 2005.

Kephart, Jeffrey O. The vision of Autonomic Computing.
IEEE Computer Society. 2003.

http://www.evrythng.com/ last accessed October 14, 2013.

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

334

