
Models for Mobile Application Maintenance Based on Update History

Xiaozhou Li, Zheying Zhang and Jyrki Nummenmaa
School of Information Sciences, University of Tampere, Kalevantie 4, FI-33014, Tampere, Finland

Keywords: Software Maintenance, Software Release, Mobile Application, Maintenance Model.

Abstract: Good software development and particularly maintenance practices form an important factor for success in
software business. If one wants to constantly produce new successful releases of the applications, a proper
efficient software maintenance process is the key. In this work, we study data from mobile application main-
tenance to understand and conceptualize how mobile application maintenance takes place. Based on the data
on release history, we deduce different mobile application maintenance models from the perspectives of main-
tenance scheduling and maintenance requirements.

1 INTRODUCTION

Mobile devices have evolved into multi-functional
mobile personal processors, with a wide variety of
functionalities and software. Rapid development is
often connected to fierce competition, which, con-
versely, is also the main driving force of development.
So far, together with the development of the mobile
device market, competition between mobile platforms
has brouhgt the evolution of mobile devices and their
software to a new level. The number of mobile appli-
cations has increased tremendously with the applica-
tions rapidly expanded into a wide range of domains.

Different from traditional software-intensive sys-
tems, mobile applications are often written specially
to utilize the unique features a particular mobile de-
vice offers. Most applications were developed cre-
atively satisfying unrevealed needs of users instead of
complying with a specific client’s expectations. It is
not uncommon to change requests from users’ feed-
back after the applications are brought to market. In
addition, as the mobile platforms are evolving very
quickly, an application needs some adaption or mod-
ification when new versions of operating systems are
released. All these make the maintenance and evolu-
tion of a mobile application a critical process.

Good software development and particularly
maintenance practices form an important factor for
success in software business. Software mainte-
nance in general is both time and money consum-
ing (Boehm, 1984). If one wants to constantly pro-
duce new successful releases of the applications, a
proper efficient software maintenance process is all-
important. However, current research related to mo-

bile application maintenance is still limited.
In this paper, we study data from mobile appli-

cation maintenance to understand and conceptualize
how actual maintenance occurs. The major hypoth-
esis is update history of existing mobile applications
could show processes that mobile applications share
when being maintained, and methods for mobile ap-
plication maintenance could be deduced from analy-
sis of the collected update history data. Thus, based
on the observed patterns, we propose three mainte-
nance models. With the help of conceptualization of
these initially implicit models, we expect that not only
do we better understand the mobile application main-
tenance, but the models can also be explicitly used
in conducting future mobile application maintenance.
The update history data, including update time span
and content, are collected from Apple app store.

The remainder of the paper is organized as fol-
lows. Section 2 gives some background on software
maintenance terms and process description. Section
3 introduces our data collection method and analysis
process. Section 4 presents the research findings of
three maintenance methods for mobile applications.
Section 5 contains discussion and conclusions.

2 BACKGROUND

2.1 Software Maintenance

The software maintenance phase covers the whole
procedure ranging from the delivery of the software
to its retirement. Martin and McGlure define software

212 Li X., Zhang Z. and Nummenmaa J..
Models for Mobile Application Maintenance Based on Update History.
DOI: 10.5220/0004952102120217
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 212-217
ISBN: 978-989-758-030-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



maintenance as ”Changes that have to be made to
computer programs after they have been delivered to
customer or user” (Martin and McClure, 1983). Soft-
ware maintenance is also defined as ”the modification
of a software product after delivery to correct faults,
to improve performance or other attributes, or to adapt
the product to a modified environment”(IEEE, 1998).
Software maintenance forms an increasingly impor-
tant part in the development and evolution of software
engineering theory and practice. However, it is also
expensive and time-consuming. The modification of
software product could take up a percentage ranging
from 40% to 70% of the total cost of the software life
cycle (Hunt et al., 2008).

There are four types of software maintenance
practices, i.e. Corrective maintenance, Adaptive
maintenance, Perfective maintenance, and Preventive
maintenance. Corrective maintenance refers to acts
in order to correct errors detected after software re-
lease. Adaptive maintenance is to adapt software to
newly changed system environment (Swanson, 1976).
Perfective Maintenance is to enhance existing fea-
tures and improve the general performance of soft-
ware (Singh and Goel, ).

The fourth maintenance type, Preventive mainte-
nance, defined as modification in order to prevent a
software system from future crash and enhance the
maintainability and credibility (Gerëtı̀sbakh, 1977) is
of great importance as well, however, it will not be
further discussed in this paper. This is because we
assume that preventive practices, such as refactoring
(Fowler, 1999), can not be seen as visible changes
from users’ view but should be carried out through-
out the whole maintenance process. In addition, we
define in this paper maintenance requirements as the
requirements that after software release specify how
the software should be updated. Maintenance require-
ments encompass the three types of maintenance and
also requirements for additional features.

2.2 Mobile Application Maintenance

Under the background of current competition-
intensive mobile application market, the daily in-
creasing rate of new applications is tremendously
high while numbers of applications aiming for the
same user group and sharing the same functionali-
ties. Thus the products that constantly providing con-
tinuous high quality and exciting new features from
time to time will take the leading position and be
recognized by more potential users. Concerning the
improvement of software quality, methodologies are
supposed to contribute to either the product itself or
the process (Sommerville, 2007). Maintenance for

mobile application is aiming to maintain the high
quality and stable performance. The improvement
of mobile maintenance process is therefore of great
importance accordingly. To better organize the pro-
cess of mobile application maintenance coping with
the competition and unpredictability of the market, a
maintenance schedule, which is defined as the contin-
uous planning timetable for mobile application main-
tenance process, should be used as one of the tools.

Besides coping with the maintenance require-
ments of previously mentioned types, occasionally
adding new features to existing software is of great
importance to mobile applications. We define a new
feature as a new type of service or new experience
provided by the application, such as avatars, game
themes, rewards, tasks, and so on. Despite of the
fact that adding new features is somehow considered
as part of perfective maintenance (Hatton, 2007), we
emphasize the importance of adding new features in
mobile application maintenance phase and consider it
a unique maintenance type besides the existing four.
Concerning the Kano’s model of customer satisfac-
tion (Berger et al., 1993), attractive requirements,
which provide users unexpected new features, boosts
user satisfaction most sharply. Additionally, provid-
ing one-dimensional features, results in proportional
user satisfaction increase (Sauerwein et al., 1996).
The importance of adding new features in mobile ap-
plication maintenance phase is indisputable, and the
maintenance process lasts till the software closedown.

Resulting from the variety of user feedbacks
and unpredictability of market trends, the mainte-
nance should be organized iteratively (Choudhari and
Suman, 2010). Therefore, a well-organized mainte-
nance schedule including a reasonable new feature
updating frequency is important, and that schedule
should be well planned for mobile application main-
tenance.

Considering maintenance process in general as
one stage, that stage shall contain components or
properties including objectives, inputs and outputs,
and methods (Sommerville, 2007). A mobile appli-
cation maintenance process can be simply depicted as
what is shown in Figure 1. Before the actual main-
tenance process starts, certain input conditions must
be clarified, taking into account possible influencing
factors. For example, mobile application business
models (Vannieuwenborg et al., 2012), objectives and
market trends influence the choice of maintenance re-
quirements. The situation of maintenance team and
customers, on the other hand, affects the organiza-
tion of maintenance schedule. Feedback from end
users provides simultaneously maintenance require-
ments and schedule managing guidelines.

Models�for�Mobile�Application�Maintenance�Based�on�Update�History

213



Taking all input information into account, the
maintenance process is an iterative process (Bennett
and Rajlich, 2000) of working on certain amount of
maintenance requirements (the objectives), according
to the maintenance schedule with a certain mainte-
nance method (the method of managing maintenance
requirements and schedules). Apparently, the out-
come of maintenance work comprises application re-
leases with updated content, recorded in update his-
tory. The recorded release dates suggest a mainte-
nance schedule while update content shows which
maintenance requirements are fulfilled. Thus, we
are investigating the possibilities to deduce possible
maintenance models based on the update history.

Figure 1: General Process Model of Mobile Application
Maintenance.

3 COLLECTION AND ANALYSIS
OF UPDATE HISTORY DATA

As a basis of our analysis, we will consider the re-
alized maintenance schedules of mobile applications.
We primarily try to combine the schedule information
with the information on new features in the releases,
in order to find maintenance patterns. Appropriately,
the application update history of iOS(iPhone Operat-
ing System) applications provides information con-
cerning the update content and update time of each
application, which is more accessible from Apple app
store than that from Google Play Market1. Thus, we
collected the update history data of 100 mobile ap-
plications covering different categories on iOS plat-
form. As shown in Figure 2, from the screenshot of
the update history, it is easy to identify information
concerning release date and update content.

The application market regions that we chose to
investigate are the USA and China as the application
store from the USA region contains by far the most
available applications, and China has the most rapidly
increasing number of applications on the Apple app
store. However, how cultural factors influence the
process of mobile application maintenance is not our
current focus but belongs to the future work. More-
over, the fact that the two countries differ from each

1https://play.google.com/store.

Figure 2: Update History Screenshots of NinJump HD,
Subway Surfers, and Foursqure from iTunes.

other in terms of customs and culture in many ways
means that any findings or universal patterns found
are not just a phenomena of a single country.

Taking into account the validity of data, we se-
lected applications that conform to the following re-
striction: the application should have at least five up-
dates or has been delivered in Apple app store for
at least two years if it has no less than five updates.
When there were more than 15 updates after the first
update in 2012, we considered only the updates since
2012. Based on the update history, the value of time
span (TS) of each update was calculated as the differ-
ence of two consecutive release date. The time span
standard deviation (TSSD) reflects the organizational
level of the maintenance schedule.

By analyzing the update content we can find
whether new features (NF) were implemented in a
certain update. The aim of our data analysis was to
find the correlation between the maintenance meth-

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

214



ods and the two parameters concerning the frequency
of adding new features and the consistency of update
time span. Thus, we used the value 1 for updates with
new features implemented and 0 for updates without
new features. The Average New Feature Update Fre-
quency (ANFUF) is the arithmetic mean of assigned
new feature update parameter NF (NF = 0 or 1) of
selected updates. The collected data of NF and TS
from the three sample applications is presented in Ta-
ble 1. The data representing the part of update history
in Figure 2 is marked in bold italic font.

Table 1: Update Data Examples.

NinJuam HD Subway Surfers Foursquare
TS NF TS NF TS NF
15 0 38 1 10 0
35 0 10 0 11 0
169 1 35 1 13 1

5 0 28 1 2 0
48 0 25 1 12 0
12 0 10 0 13 1
53 0 13 1 11 1
106 0 21 1 10 0
215 0 1 0 9 1
67 0 9 0 17 0
67 0 10 1 8 0
... ... 25 1 11 1

20 1 15 0
7 0 10 0
13 1 19 0
20 1 8 0
... ... 12 1

... ...

The formula for arithmetic mean is

ANFUF =
1
n

n

å
i=1

NF; where NF = 0 or 1

The other variable is the Time Span Standard Devia-
tion (TSSD), which is simply the standard deviation
of all update time spans (x) as below.

T SSD =

s
1
n

n

å
i=1

(xi�µ)2; where µ =
1
n

n

å
i=1

xi

When calculating time span, a business day calcula-
tion web application (Timeanddate, 2014) is used in
order to exclude weekends and public holidays. By
setting two variables for each mobile application, all
selected applications could be located in chart with
TSSD as x-coordinate and ANFUF as y-coordinate,
which is presented as Figure 1.

We can make some initial observations directly
from Figure 3. First of all, a majority of application
samples locate in the division where TSSD is lower

Figure 3: Statistics concerning the Relation of TSSD and
ANFUF.

than 30 and ANFUF is higher than 0.5. It shows that
the maintenance schedule of these applications are
better organized with at least one new feature imple-
mented within two updates. On the other hand, appli-
cations that locate in the down-right division have less
organized maintenance schedule with fewer new fea-
tures than other applications. They also have less than
half of the total update amounts compared to the other
applications. The other applications locate in the left-
down division where TSSD and ANFUF are both low,
which indicates these applications keep maintaining
though without as many new features. In addition, no
applications have both high TSSD and ANFUF as it
seems not highly possible that maintenance schedule
is poorly organized when many new features are up-
dated simultaneously.

4 MAINTENANCE MODELS

As shown in Figure 3, we divide the whole area into
four divisions by the lines of ANFUF = 0.5 and TSSD
= 30. Based on the analysis of the distribution of ap-
plication samples and the details in update history, we
deduce the following three mobile application main-
tenance models.

4.1 Emergency-oriented Maintenance

For mobile applications located in the down-right di-
vision of the figure, the maintenance is to deal with
various types of emergent issues within maintenance
phase, including bugs, system crashes, environment
adaption, as soon as possible without considering the
implementation of new features. The essential aim
of their maintenance phase is to maximally maintain
the stability of applications in all possible environ-
ments. We name this maintenance model Emergency-
Oriented Maintenance. The process of Emergency-

Models�for�Mobile�Application�Maintenance�Based�on�Update�History

215



Oriented Maintenance is to a large extent random
and spontaneous. The whole maintenance process is
more likely the extension of the debugging of pre-
vious development phase. Together with continuous
testing, debugging and refactoring, as well as incom-
ing user reviews, there are more potential bugs emerg-
ing. Thus, fixing bugs is of the highest priority com-
pared with other maintenance requirements. When
the maintenance starts, maintainers cover at least crit-
ical corrective maintenance requirements first, includ-
ing some perfective maintenance requirements if it
is possible. Additionally, whenever adaptive main-
tenance occurs, it should be promoted to the highest
level. Correspondingly, the release date depends on
the accomplished amount of bugs fixed and the de-
gree of urgency.

One of the typical examples of conforming to
Emergency-Oriented Maintenance is NinJump HD2,
an action adventure game. The update history of this
game is presented in the first column of Table 1. Con-
cerning the update time span of this application, it
is obvious that the time spans range from one week
to ten months, which is highly unorganized. On the
other hand, there are no new features implemented in
the whole maintenance process except for once in the
second update. Nevertheless, the stability of the game
is proven to be good according to the user feedback,
with most criticism concerning the game idea, not re-
porting critical bugs.

4.2 Feature-oriented Maintenance

The applications in the left-up division contain a high
new feature updating frequency, which shows focus
on new features. Therefore, we name the mainte-
nance model in this division Feature-Oriented Main-
tenance. Compared with Emergency-Oriented Main-
tenance, Feature-Oriented Maintenance is more orga-
nized concerning update time span. Despite of the
fact that occasionally it takes more than one month
to release an update version, the variance of the time
spans is mostly lower than 30. The main aim of ap-
plying this maintenance method is to provide constant
new features, in order to keep users attracted. Mean-
while, within each release, corrective and adaptive
maintenance requirements are included as well, tak-
ing both stability and innovation into account. How-
ever, in the case of critical bugs, an emergency release
will be delivered despite that it might to some extent
deteriorate the well-planned maintenance schedule.

Subway Surfers3 is a typical example of Feature-
Oriented Maintenance. The update history of this

2http://www.backflipstudios.com/games/ninjump/.
3http://kiloo.com/games/subway-surfers.

game and an excerpt the screenshot is briefly pre-
sented in Table 1 and Figure 2. We could easily ob-
serve that except for bug fixing minor updates, each
major update of this application contains one brand
new theme as well as relevant other new items. Con-
cerning the update span, each update takes approx-
imately one month, which is much more organized
than NinJump HD. In addition, continuously updat-
ing with new themes and features results in accord-
ingly positive feedbacks and high popularity.

4.3 Constant Maintenance

The applications located in the left-down division
have low time span variance without a high new fea-
ture implementation rate. The maintenance schedule
is like in Feature-Oriented Maintenance, but with fo-
cus on the process organization than new feature im-
plementation. We call this maintenance model Con-
stant Maintenance. Constant Maintenance model is a
regular but disciplined maintenance model that does
not consider updating new features as the first prior-
ity. The empahsis is on constantly organized main-
tenance process. Compared to the other two main-
tenance models, this maintenance model is similar
to the idea of applying agile principles (Beck et al.,
2001) in maintenance phase. The whole maintenance
process is constantly divided into maintenance itera-
tions with durations of normally 10 to 20 days. Each
of the maintenance iterations covers corrective main-
tenance requirements of highest priority as much as
possible and occasionally perfective maintenance re-
quirements and new features. Adaptive maintenance
requirements are of high priority whenever appearing.

Constant Maintenance model requires no specific
new features in each update as routines. New features
could be added when it is needed and planned in a
certain update. On the other hand, the time span of
updates is required to be short. This model will re-
sult in a maximally organized maintenance process.
However, the effort and cost spent on planning will
be higher as well.

Foursquare4 is a typical application in this cate-
gory, with it’s update history presented in the third
column of Table 1. The update history shows that
each update span lasts around 15 days. Each update
implements all possible types of maintenance require-
ments as well as new features with certain defined pri-
oritizing preference.

4https://foursquare.com/.

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

216



5 CONCLUSIONS

This paper introduces three mobile application main-
tenance models based on the analysis of mobile ap-
plication update history. We collected data to iden-
tify the new feature update frequency and standard
deviation of update time span. By studying the dis-
tributions of these two variables for sample mobile
applications, we observed the patterns of how exist-
ing mobile application maintenance works. The sum-
marized three mobile application maintenance mod-
els form the basis of future research to study explicit
and thorough definitions, instructions and guidelines,
which could be further used in maintenance practice.
The three proposed models provide promising ways
to organize better maintenance schedules and mainte-
nance requirements.

Our future research concerning mobile applica-
tion maintenance will focus on constructing mainte-
nance process model for mobile applications based
on the three maintenance methods obtained from pre-
vious findings. Traditional software maintenance
process models have been widely studied and uti-
lized (Ren et al., 2011). Considering the defects of
heavyweight maintenance practices and specific re-
quirements of current mobile applications, an agile
lightweight maintenance process model could be a
more efficient and economical solution. Related re-
search has been done concerning the result of in-
troducing XP practices to software maintenance pro-
cess. The positive results indicate it could be success-
ful introducing agile practices into software mainte-
nance process (Svensson and Host, 2005). Further-
more, concerning the construction of mobile appli-
cation maintenance models, there are also more de-
tailed research areas to be taken into account, includ-
ing methodologies of eliciting maintenance require-
ments from user feedbacks, managing maintenance
requirements, applying agile principles in mobile ap-
plication maintenance practices, and so on. Further
research should also include bigger samples with ap-
plications from other platforms.

REFERENCES

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,
Cunnimgham, W., Fowler, M., Grenning, J., High-
smith, J., Hunt, A., Jeffries, R., et al. (2001). Prin-
ciples behind the agile manifesto. Retrieved, 11:2008.

Bennett, K. H. and Rajlich, V. T. (2000). Software main-
tenance and evolution: a roadmap. In Proceedings of
the Conference on the Future of Software Engineer-
ing, pages 73–87. ACM.

Berger, C., Blauth, R., Boger, D., Bolster, C., Burchill, G.,

DuMouchel, W., Pouliot, F., Richter, R., Rubinoff, A.,
Shen, D., et al. (1993). Kano’s methods for under-
standing customer-defined quality. Center for Quality
Management Journal, 2(4):3–36.

Boehm, B. (1984). Software engineering economics.
Software Engineering, IEEE Transactions on, SE-
10(1):4–21.

Choudhari, J. and Suman, U. (2010). Iterative maintenance
life cycle using extreme programming. In Advances
in Recent Technologies in Communication and Com-
puting (ARTCom), 2010 International Conference on,
pages 401–403.

Fowler, M. (1999). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

Gerëtı̀sbakh, I. (1977). Models of preventive maintenance,
volume 23. North-Holland Pub. Co.(Amsterdam and
New York).

Hatton, L. (2007). How accurately do engineers predict
software maintenance tasks? Computer, 40(2):64–69.

Hunt, B., Turner, B., and McRitchie, K. (2008). Software
maintenance implications on cost and schedule. In
Aerospace Conference, 2008 IEEE, pages 1–6.

IEEE (1998). Ieee standard for software maintenance. IEEE
Std. 1219-1998, pages i –3.

Martin, J. and McClure, C. L. (1983). Software Mainte-
nance: The Problems and Its Solutions. Prentice Hall
Professional Technical Reference.

Ren, Y., Liu, Z., Xing, T., and Chen, X. (2011). Soft-
ware maintenance process model and contrastive anal-
ysis. In Information Management, Innovation Man-
agement and Industrial Engineering (ICIII), 2011 In-
ternational Conference on, volume 3, pages 169–172.

Sauerwein, E., Bailom, F., Matzler, K., and Hinterhuber,
H. H. (1996). The kano model: How to delight your
customers. In International Working Seminar on Pro-
duction Economics, volume 1, pages 313–327.

Singh, Y. and Goel, B. A step towards software preventive
maintenance. SIGSOFT Softw. Eng. Notes, 32.

Sommerville, I. (2007). Software Engineering. Interna-
tional computer science series. Addison-Wesley.

Svensson, H. and Host, M. (2005). Introducing an agile
process in a software maintenance and evolution orga-
nization. In Software Maintenance and Reengineer-
ing, 2005. CSMR 2005. Ninth European Conference
on, pages 256–264.

Swanson, E. B. (1976). The dimensions of maintenance. In
Proceedings of the 2Nd International Conference on
Software Engineering, ICSE ’76, pages 492–497, Los
Alamitos, CA, USA. IEEE Computer Society Press.

Timeanddate (2014). Calculate the number of days between
two dates @ONLINE.

Vannieuwenborg, F., Mainil, L., Verbrugge, S., Pickavet,
M., and Colle, D. (2012). Business models for the mo-
bile application market from a developer’s viewpoint.
In Intelligence in Next Generation Networks (ICIN),
2012 16th International Conference on.

Appendix of the mobile applications update his-
tory data available upon request.

Models�for�Mobile�Application�Maintenance�Based�on�Update�History

217


