
Beyond Grid Portals and Towards SaaS
A New Access Model for Computational Grids, in the dMRI Brain Context

Tarik Zakaria Benmerar, Mouloud Kachouane, Fatima Oulebsir-Boumghar
ParIMed Team, LRPE, USTHB, BP32, El Alia, Bab-Ezzouar, Algiers, Algeria

Keywords: Grid Computing, Grid Portals, Cloud Computing, SaaS, OAuth, MyProxy, Grid-Cloud Interoperability, dMRI
Brain, Web Worker, Canvas2D, WebGL, MarionetteJS, BackboneJS.

Abstract: Acigna-G is an ongoing research project to develop a new hybrid Grid SaaS architecture. CloudMRI is our
proof-of-concept Acigna-G based SaaS Service for the Brain dMRI field. The main objective of such architec-
ture is to provide local (Browser) and remote (Grid) intensive computational capabilities completly abstracted
to the SaaS user. The result is a combination of an in Browser Rendering and Computation engine, interop-
erable REST-SOAP Grid Services, and interoperable web-grid authentication mechanisms. Such architecture
can allow new types of SaaS Services, specifically for the dMRI Brain field.

1 INTRODUCTION

At the higher level of the Cloud Computing archi-
tecture, SaaS Services provide ubiquitous access to
hosted software stack. These softwares provide an in-
tuitive and an interactive access to user’s Cloud Data.

From the computational standpoint, we have ob-
served that the current SaaS Services do not pro-
vide the intensive computational capabilities, while
remaining highly interactive and intuitive, with rich
2D/3D rendering.

Also, the grid computational capabilities have not
been used in conjunction with SaaS Cloud Services,
to abstract the underlying job submission mecha-
nisms.

The current grid portals use somewhat intuitive
web interfaces, but still follow the job submission
paradigm, where the user is provided with job sub-
mission forms and basic visualization tools.

Through the ongoing Acigna-G project and plat-
form, we have investigated a hybrid SaaS Cloud Grid
architecture. The SaaS Cloud Service provides a
rich interactive and intuitive web interface, with in
browser 2D/3D rendering and basic computations.
The intensive computational part of the service are
delegated to the grid infrastructure, while the user is
nearly unaware of this fact.

This architecture has been developed under the
umbrella of the dMRI Brain field. CloudMRI is the
resulting SaaS Service built with this architecture.

The present paper explains the importance of such

architecture. Its remaining parts are structured as fol-
lows. In Section 2, we introduce the dMRI Brain
Tractography and related softwares. In Section 3, we
explain the importance of a Hybrid SaaS Grid Archi-
tecture. In Section 4, we present the Acigna-G Plat-
form and some parts of the its built upon CloudMRI
SaaS Service. In Section 5, we present a comparative
study. In Section 6, we conclude the paper.

2 dMRI BRAIN TRACTOGRAPHY

With the Diffusion-weighted imaging (DWI), we can
investigate a tissue microstructure in vivo and nonin-
vasively. By combining MRI diffusion with imaging
DWI became possible, enabling the mapping of both
diffusion constants and diffusion anisotropy inside the
brain and revealing valuable information about axonal
architectures (Le Bihan and Breton, 1985).

Later, describing the degree of anisotropy and the
structural orientation information quantitatively be-
came possible with the introduction of Diffusion Ten-
sor model (Basser et al., 1994). With only six parame-
ters, this Diffusion Tensor Imaging (DTI) was able to
provide a simple and elegant way to model this com-
plex neuroanatomical information.

Different regions of the brain are connected
through axons, that form the brain white matter.
White matter tracts represent a set of axons that share
a similar destination. With tractography or fiber-
tracking algorithms, major tracts can be clearly ob-

211Zakaria Benmerar T., Kachouane M. and Oulebsir-Boumghar F..
Beyond Grid Portals and Towards SaaS - A New Access Model for Computational Grids, in the dMRI Brain Context.
DOI: 10.5220/0004965302110216
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 211-216
ISBN: 978-989-758-019-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



served by DTI with 2-3 mm image (Tournier et al.,
2011) (See Figure 1).

Figure 1: Deterministic VS Probabilistic tractography
(Tournier et al., 2011).

Differing in quality and performance, there are
mainly two types of tractography:

� Deterministic Tractography: This tractography
supposes that from a starting point or seed, there
exists exactly one tract that goes out from it (See
a in Figure 1). This algorithm is fairly fast (a few
minutes to less than a hour), but produces limited
results.

� Probablistic Tractography: This tractography
supposes that from a starting point or seed, there
can be many tracts that go out from it (See b in
Figure 1). This algorithm is heavy in processing
(several hours), but produces better results.

From the dMRI Brain Software standpoint, Med-
Inria (MedInria, 2014) provides an intuitive and an in-
teractive desktop application. Neverthless, it is fairly
limited as it provides only deterministic tractography,
due to the limited ressources of a PC.

On the other hand, FSL (FSL, 2014) provides ac-
cess to advanced probablistic tractography. But, ac-
cess to such algorithms are through a non intuitive
command line, as it is required for a grid deployment.

3 HYBRID SaaS GRID
ARCHITECTURE

From the dMRI Brain Tractography algorithms and
related softwares introduced in the previous section,
we argue that the existance of a hybrid SaaS Grid ar-
chitecture is very important for the dMRI Brain field.

In fact, the current SaaS Services such as Google
Docs (Google, 2014), provide a visualization and a
manipulation tool to act on your Cloud data. These
services provide the same features as their desktop
counterparts, with the additionnal ubiquitous access
to Cloud Data hosted on the Cloud Provider infras-
tructure.

Neverthless, we have seen that the computational
axis of the software is nearly absent in the current ser-
vices. Hence, the Cloud Providers provide only data
hosting and manipulation, and no computational ca-
pabilities are provided through the software abstrac-
tion level.

In the Grid context, Grid Portals can provide all
the computational capabilities required. With a web
interface, the user can submit jobs and visualize the
end result inside a web browser.

Through the recent years, Grid Portals have tried
to cope with the evolution of the web, specifically the
web 2.0 trend (Pierce et al., 2006). RSS feeds, social
networks, wikis and visualization through interactive
maps, have been incorporated.

Neverthless, advanced interaction and 2D/3D ren-
dering that we find in SaaS services haven’t been in-
tegrated. Also, the job submission paradigm is still
the only paradigm followed, in the sense that a Grid
Portal is all about job submission and result visualiza-
tion. No advanced software abstraction exists, where
the user is totally unaware about any job submission.

Through our Acigna-G initiative (Benmerar and
Oulebsir-Boumghar, 2011) (Benmerar and Oulebsir-
Boumghar, 2012), we have tried to provide such a
hybrid architecture after issues faced with a previous
grid plaform (Oukfif and Oulebsir-Boumghar, 2009).
Through iterative improvements, the architecture has
evolved from a platform for Linux shell-like interac-
tive web access to computational tasks, to the actual
SaaS service completly abstracted from the underly-
ing grid infrastructure.

CloudMRI is our proof of concept, where we use
the Acigna-G platform to deliver a dMRI Brain SaaS.
It allows to provide the same interactive experience
as MedInria, with the additional access to advanced
processings such as probabilistic tractography, imple-
mented in FSL.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

212



4 THE ARCHITECTURE OF THE
ACIGNA-G PLATFORM AND
THE CLOUDMRI SaaS
SERVICE

In this section, we present the Acigna-G architecture
and its built upon CloudMRI SaaS Service.

The architecture is composed into four parts: In
Browser Computing and Rendering, Restful Grid Ser-
vices, Grid-Cloud Interoperable Authentication and
Computing Grid Services. We introduce each part in
the following subsections:

4.1 In Browser Computing and
Rendering

The CloudMRI web frontend has been built as a Sin-
gle Page Application (or SPA). Rather than decom-
posing the application into multiple pages, it is hosted
under one url that dynamically fetches the required
ressources using AJAX, then emulates passing from
one url to another. We usually find this technology
in modern web mail clients, we use daily. Mari-
onetteJS (Bailey, 2014) and BackboneJS (Document-
Cloud, 2014) have been used as the underlying tech-
nology for this purpose. It was required to build the
software in this way, as we wanted a high interactivity
at the frontend.

The frontend uses the Acigna-G MyThreadJS
Javascript library, to manage computations, rendering
and data sources. These different axis of the library
are explained in the following paragraphs:

Computational Management

The Compute Manager Component provides a central
entry point to local and remote job execution. The
remote jobs are delegated to the Restful Grid Service
presented in 4.2.

Locally, the Compute Manager manages threads
that execute either in the local browser thread, or
in a separated thread using Web Workers standard
(Mozilla, 2014b).

The local threads are managed in a way that avoid
blocking user browser interaction. They are built with
interruption points specified by the thread developer,
that the compute manager uses to schedule threads
execution.

Currently, our CloudMRI frontend uses particu-
larly the Computer Manager for parsing NIfti (NIMH,
2014) file format, through a threaded class called
ParserNII. This processing can be heavyweight, and
the component helped avoid any threading issues.

Rendering Management

The Render Manager Component constitutes a cen-
tral point for efficient scheduled rendering. Rather
than immediatly rendering after a user interaction, it
schedules it at a specific time interval to avoid costly
reprocessing which can be the case of 2D/3D ren-
dering using Canvas2D (Mozilla, 2014a) or WebGL
(Khronos, 2014) standards respectively.

Currently, the CloudMRI fronted uses the Ren-
der Manager to render MRI Slices with a component
called MRISliceWidget, illustrated in Figure 2.

Figure 2: MRI Slice Widget.

Data Source Management

The Source Manager component in myThreadJS li-
brary provides a central entry point to local and re-
mote data fetching, caching, persisting and locking to
the rest of the application. Two types of data are man-
aged by this component: local data and remote data.

Local data are data hold on the user file system,
that stay persistent across sessions. Remote data can
be considered as cloud data. The Indexed Database
API (W3C, 2014) is used for persisting local data, and
for caching remote data.

The data sources are referenced across the ap-
plication with a point separated string (e.g: ’pa-
tient.mri’). The point separation is used to differ-
entiate data namespaces, or for building a hierarchy
of data sources processings (e.g ’patient.mri.parsed’
has been generated from the ’patient.mri’ processing).
Such hierarchy is used to avoid later reprocessing of
data.

To avoid that two threads process the same data,
locking data sources mechanisms exist. For example,
if the first thread is processing ’patient.mri’ to gener-
ate ’patient.mri.parsed’, the later is marked as locked.
The second thread waits for the availablity of the later
data source, after the first thread processed it and un-
locked it.

The CloudMRI frontend uses the Source Manager
for the user’s Brain dMRI Images persistance.

Beyond�Grid�Portals�and�Towards�SaaS�-�A�New�Access�Model�for�Computational�Grids,�in�the�dMRI�Brain�Context

213



4.2 Restful Grid Service

To submit a job from the SaaS Front-end, we have de-
signed two types of Restful services. They are inter-
mediaries between the SaaS Front-end and the Com-
puting Grid Services. Their role is to avoid the con-
struction of a heavy weight XML SOAP envelope at
the browser side, by using JSON data format.

Restful BES Service

Restful BES Service is a REST equivalent to the
OGSA-BES (OGF, 2008) standard. This service is
based on the proposed solution in (Andreozzi and
Marzolla, 2009), but uses JSON for the JSDL doc-
ument (OGF, 2005). The JSON format construction
follows particular rules, that are illustrated in Figure
3 for sample examples.

Figure 3: Conversion examples between JSDL JSON and
JSDL XML, for sample fragments.

Task Specification Restful Service

The Task Specification Restful Service avoids the
construction of a whole JSDL document, by just re-
quiring a task name and parameters. The Restfull Ser-
vice retrieves the corresponding JSDL document and
inserts the specified parameters. This service can be
important when the SaaS service has a predefined set
of jobs that can be submitted.

4.3 Grid-Cloud Interoperable
Authentication

In the proposed architecture, we have started from the
hypothesis that the Cloud Provider is an independant
third-party, separated from the Computing Grid. The
SaaS Provider should authenticate itself to the grid,
before job submission. We have then supposed two
different scenarios: Grid User and Non-Grid User, ex-
plained in the following paragraphs.

Grid User

In such scenario, the SaaS Service provides compu-
tational capabilities of the grid infrastructure the user
has access to. The Service Provider should then have
access to the user credentials to authenticate itself.
These credentials are usually stored in a MyProxy
Credential Management Service and protected with a
login and a password.

Providing such information (login and password)
to the Service Provider is not secure, as it could lead
to user’s credentials abuse by the provider. A solu-
tion proposed in (Basney et al., 2011) for grid portals,
avoids enveiling the login and password. The archi-
tecture uses an OAuth service in front of the MyProxy
service, as depicted in Figure 4.

Figure 4: Science Gateways Using OAuth with MyProxy
(Basney et al., 2011).

Using OAuth tokens, the user provides access to
his MyProxy account, without enveiling his login and
password. At a later time, these tokens can be revoked
and the third-party will no longer have access to the
MyProxy account.

Without change, such solution can be used in our
architecture as a means to provide the required com-
putational capabilities to grid users.

Non-Grid User

In the case of a non-grid user, other mechanisms are
required for the Service Provider to be allowed to sub-
mit jobs to the underlying grid infrastructure.

Dynamic Accounts mechanism (Insley et al.,
2009) used in the grid portal context, can be inte-
grated in our architecture. With Dynamic Accounts,
the computing grid can allocate dynamically a pool of
user accounts to the grid portal. These accounts can
be mapped to the real users at runtime.

In the SaaS context, the Service Provider could
buy a pool of dynamic accounts from the computing
grid. It could then use them to provide the required
computational capabilities to the SaaS users.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

214



4.4 Computing Grid Services

At the Grid level of our architecture, a set of Python-
based grid services are deployed. These services have
been developped using the ZSI (ZSI, 2013) Python
library.

The ZSI library is a python library for web ser-
vices deployment and use. We have successfully de-
ployed a basic WS-BES Grid Service that accepts a
JSDL template for the job submitted.

But different extensions such as JSDL SPMD
(Savva, 2005) are required for parallel tasks deploy-
ment. We are currently working on such extensions,
to provide a more complete capabilities at the grid ser-
vice level.

We have privilegied the use of Python, as we
have found it easier for deployment than for exam-
ple Java based services. There is for example no
need for precompilation before deployment. Further-
more, Python-based webservices exhibit comparable
performances to Java-based ones (Santos and Koblitz,
2005).

Neverthless, the deployment required a bit of
patching on the source code, and we are planning to
support the open source project through source code
contributions.

HTCondor (HTCondor, 2014) is used as the job
submission system at the grid site level. Though other
job submissions systems can be used, an adaptor plu-
gin should be developped for each one, at this mo-
ment.

5 COMPARATIVE STUDY

NEWT (Cholia et al., 2010) is a RESTFul Service
provided by NERSC for building High Performance
Computing Web Applications. It provides an easy
API for authentication, persistance management and
job submission. It uses the lightweight JSON data for-
mat for data-exchange between the client application
and service.

Neverthless, the service is tightly-coupled to the
underlying NERSC infrastracture. When submitting a
job, a specific machine queue should be specified. In
some cases, the user should even specify the required
batch system script (e.g for PBS).

Also, the application examples using this plat-
form, still follows the job submission paradigm we
have presented. They don’t provide an interactive
software environment, abstracted from the infrastruc-
ture detail.

The BES-REST (Andreozzi and Marzolla, 2009)
exhibits the required service abstraction by providing

a Restful interface equivalent to an established Grid
Job Submission Standard (WS-BES).

This work has been the basis of our Restful
BES Service, with the difference that we use the
lightweight JSON data-format rather than XML for
the JSDL job specification. This was required for an
efficient job submission from the browser.

Cantor et al. (Cantor-Rivera and Peters, 2010)
have proposed a web application architecture for re-
mote MRI rendering, using WebGL. The architecture
doesn’t cover any local or remote computional capa-
bilities.

XTK (XTK, 2014) is a WebGL toolkit, for Scien-
tific Visualization. With XTK, medical images for-
mats can be rendered in the browser, such as NIfTI
format.

Compared to our work, XTK neglects threading
issues that we have solved with the MyThreadJS li-
brary. This constitutes a problem in a heavy software
environment.

In (Rings and Grabowski, 2012), the authors in-
vestigate the integration of Cloud and Grid infras-
tructures. The architecture tries to integrate computa-
tional ressources situated on an IaaS Cloud or a Com-
putational Grid. It differs significatly from our work,
as we have looked into SaaS (rather than IaaS) Clouds
and Grids integration.

In (Church et al., 2012), the authors investigate the
deployment of an HPC environment in a SaaS Cloud.
All the computational ressources are provided by an
underlying IaaS provider. The SaaS Service provides
a web interface to submit computational jobs in the
Cloud Infrastructure. Unlike our architecture, the ser-
vice follows the job submission paradigm and don’t
manage local computations.

6 CONCLUSION

Current SaaS Services can evolve to provide compu-
tational capabilities, beyond the data capabilities ac-
tually provided. On the other hand, Grid Portals can
evolve to provide an interactive software environment
completly abstracted from the enderlying grid infras-
tructure, that would be easier and intuitive to use.

The proposed architecture tries to fill in these ob-
served gaps. Particulary, we have emphasied the need
of such architecture in the Brain dMRI Field.

Currently, much of the functionalities of the
myThreadJS library have been developed and tested.
The results have been very satisfying with respect
to performance and interface responsiveness, and a
indepth comparaison with the XTK library is under
preparation. We have also developed and tested the

Beyond�Grid�Portals�and�Towards�SaaS�-�A�New�Access�Model�for�Computational�Grids,�in�the�dMRI�Brain�Context

215



submission of a grid job into HTCondor through a ba-
sic Restful BES and WS-BES Grid Service.

Other parts of Acigna-G are still under develop-
ment. We have also began the development of the
CloudMRI SaaS Service with the first basic user in-
terfaces being setup.

In subsequent papers, we will provide detailed re-
views of the architecture and its performances. This
is necessary as we are heading away from a develop-
ping platform to a testing, and then a production one.
This will be characterised by rich feedbacks from the
concerned users, particulary our research colleagues.

REFERENCES

Andreozzi, S. and Marzolla, M. (2009). A restful approach
to the ogsa basic execution service specification. In
Proceedings of the fourth International Conference on
Internet and Web Applications and Services ICIW ’09.

Bailey, D. (2014). Marionettejs website. Retrieved January
13, 2014. http://www.marionettejs.com.

Basney, J., Dooley, R., Gaynor, J., Marru, S., and Pierce,
M. (2011). Distributed web security for science gate-
ways. In Proceedings of the 2011 ACM workshop on
Gateway computing environments GCE ’11.

Basser, P., Mattiello, J., and Le Bihan, D. (1994). Mri dif-
fusion tensor spectroscopy and imaging. Biophysical
Journal.

Benmerar, T. Z. and Oulebsir-Boumghar, F. (2011). To-
ward a cloud architecture for medical grid applica-
tions : The acigna-g project. In Proceedings of the
10th International Symposium on Programming and
Languages ISPS ’2011.

Benmerar, T. Z. and Oulebsir-Boumghar, F. (2012). From
grids to cloud : The pathway for brain dmri cloud ser-
vices. In Proceedings of the 2nd International Con-
ference on Cloud Computing and Services Science
CLOSER ’2012.

Cantor-Rivera, D. and Peters, T. (2010). Perva-
sive medical imaging applications : current chal-
lenges and possible alternatives. Retrieved Jan-
uary 13, 2014. http://imaging.robarts.ca/ dcantor/wp-
content/uploads/2010/07/eHealth.pdf.

Cholia, S., Skinner, D., and Boverhof, J. (2010). Newt: A
restful service for building high performance comput-
ing web applications. In Proceedings of the Gateway
Computing Environments Workshop (GCE).

Church, P., Wong, A., Brock, M., and Goscinski, A. (2012).
Toward exposing and accessing hpc applications in
a saas cloud. In Proceedings of the 2012 IEEE
Nineteenth International Conference on Web Services
ICWS ’2012.

DocumentCloud (2014). Backbonejs website. Retrieved
January 13, 2014. http://www.backbonejs.org.

FSL (2014). Fsl website. Retrieved January 12, 2014.
http://www.fmrib.ox.ac.uk/fsl/.

Google (2014). Google docs. Retrieved January 10, 2014.
http://docs.google.com.

HTCondor (2014). Htcondor website. Retrieved January
13, 2014. http://research.cs.wisc.edu/htcondor/.

Insley, J. A., Leggett, T., and Papka, M. E. (2009). Us-
ing dynamic accounts to enable access to advanced re-
sources through science gateways. In Proceedings of
the 5th Grid Computing Environments Workshop GCE
’09.

Khronos (2014). Webgl website. Retrieved January 13,
2014. http://www.khronos.org/webgl/.

Le Bihan, D. and Breton, E. (1985). Imagerie de dif-
fusion in-vivo par résonance magnétique nucléaire.
Comptes-Rendus de l’Académie des Sciences.

MedInria (2014). Mediniria website. Retrieved January 12,
2014. http://med.iniria.fr.

Mozilla (2014a). Canvas. Retrieved January 13, 2014.
http://developer.mozilla.org/fr/docs/Web/HTML/.

Mozilla (2014b). Using web workers. Retrieved
January 22, 2014. http://developers.mozilla.org/en-
US/docs/DOM/Using web workers.

NIMH (2014). Nifti format. Retrieved January 13, 2014.
http://nifti.nimh.nih.gov/nifti-1/.

OGF (2005). Job submission description language
(jsdl) specification. Retrieved January 10, 2014.
http://www.ogf.org/documents/GFD.56.pdf.

OGF (2008). Ogsa basic execution service (ogsa-bes) ver-
sion 1.0 specification. Retrieved January 10, 2014.
http://www.ogf.org/documents/GFD.108.pdf.

Oukfif, K. and Oulebsir-Boumghar, F. (2009). Pré-
traitement parallèle de qsplat sous grille de calcul. In
Journées Scientifiques sur l’Informatique et ses Appli-
cations.

Pierce, M. E., Fox, G., Yuan, H., and Deng, Y. (2006). Cy-
berinfrastructure and Web 2.0., volume High Perfor-
mance Computing and Grids in Action. IOS Press.

Rings, T. and Grabowski, J. (2012). Pragmatic integration
of cloud and grid computing infrastructures. In Pro-
ceedings of the 2012 IEEE fifth International Confer-
ence on Cloud Computing CLOUD ’2012.

Santos, N. and Koblitz, B. (2005). Metadata services on
the grid. Nuclear Instruments and Methods in Physics
Research.

Savva, A. (2005). Jsdl spmd application exten-
sion, version 1.0 (draft 008). Retrieved January
10, 2014. http://www.ogf.org/Public Comment Docs/
Documents/May-2007/draft-ogf-jsdl-spmd-008.pdf.

Tournier, J.-D., Mori, S., and Leemans, A. (2011). Diffu-
sion tensor imaging and beyond. Magnetic Resonance
in Medicine, 65:1532–1556.

W3C (2014). Indexed database api. Retrieved January 13,
2014. http://www.w3.org/TR/IndexedDB/.

XTK (2014). Xtk website. Retrieved January 13, 2014.
http://www.goxtk.com.

ZSI (2013). Zsi website. Retrieved January 10, 2014.
http://pywebsvcs.sourceforge.net/zsi.html.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

216


