
Implications of the Operational Environmental on
Software Security Requirements Engineering

Christian Schmitt1 and Peter Liggesmeyer2;3

1IT Security Consultant Siemens AG, Siemens Corporate Technology,
Otto-Hahn-Ring 6, 81739 Munich, Germany

2Research Group Software Engineering, University of Kaiserslautern,
67653 Kaiserslautern, Germany

3Fraunhofer Institute for Experimental Software Engineering, 67663 Kaiserslautern, Germany

Abstract. After presenting an overview about the most commonly referred rea-
sons and issues for bad practice in software security requirements engineering,
this paper introduces a security interdependency model, illustrating the impli-
cations between software and its physical, technical and organizational environ-
ment. The model is described in detail and the mutual implication and interdepen-
dencies between software security (requirements) and the operational environ-
ment are explained, enhanced with illustrative examples. Conclusions and further
research perspectives with respect to security requirements engineering, and se-
curity in general are drawn.

1 Introduction

Poor requirements engineering and management is one of the most relevant reasons for
software project cancellations [1]. Moreover, most vulnerabilities and weaknesses in
software systems originate from inadequate or incomplete security requirements [2].

Although the actual financial damage is hard to quantify, security flaws cause a neg-
ative financial impact of several billion USD a year [3]. The costs of correcting an error
increase rapidly with each phase of the development life cycle that the correction is de-
layed [4]. In other words, errors made during the requirements engineering phase have
a high negative impact on the overall success as well as on time, budget and security of
software development project. From a security perspective these perceptions motivate
that security considerations should be done in the earlier phases of the development
lifecycle. In recent years the former paradigm to ‘penetrate and patch’ was replaced
by security software development at the design and coding stage [5], however it did
not yet reach the requirements engineering phase in many cases. Practical experience
and a recent survey [6] indicate that security requirements are seldom explicitly elicited
and documented as part of the requirements engineering phase, but instead are mostly
considered during the implementation phase.

In literature on security requirements engineering it is often stated that the applica-
tion of security requirements engineering methods and techniques in projects and the
maturity of security requirements specifications are mostly poor (e.g. [7]) or do not

Schmitt C. and Liggesmeyer P..
Implications of the Operational Environmental on Software Security Requirements Engineering.
DOI: 10.5220/0004966400630074
In Proceedings of the 11th International Workshop on Security in Information Systems (WOSIS-2014), pages 63-74
ISBN: 978-989-758-031-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



exist. “Most of the work for traditional requirements engineering fails to explicitly con-
sider security” [2]. Mead states in [8] “When security requirements are considered at
all during the system life cycle, they tend to be general lists of security features such as
password protection, firewalls, virus detection tools, and the like”.

Although much work has been done in the recent years to improve the overall ma-
turity of the security requirements engineering domain, still a lot of uncertainties and
inconsistencies exist and the practical application of existing methods and the maturity
of security requirements specifications needs improvement. Security requirements engi-
neering is still a challenging task, requiring profound security and security requirements
engineering method knowledge.

It is the objective of this paper to examine the interdependencies between software
and the environment, as one important component of security requirements engineer-
ing. In section 2 we present a summary of frequently mentioned issues leading to poor
security requirements engineering, which serve as basis to derive and explain the mo-
tivation for our focus topic about the environmental implications on security require-
ments engineering. Section 3 provides a security dependency model how to visualize
and describe the interdependencies between software and its environment, and explains
the implications (i.e. constraints, influences and assumptions) on security requirements
engineering. For a better understanding, the model is explained using two examples. In
section 4 we summarize, draw conclusions and reflect these with the associated com-
monly referred issues in security requirements engineering (as given in section 2) and
finally motivate further research work in section 5.

2 Motivation and Background

The reason for the sparse usage of security requirements engineering methods and tech-
niques in projects and the lack of maturity of security requirements specifications can
be traced back to various issues. Frequently mentioned issues related to organizational
and skill-related deficiencies are:

– Lack of security awareness [9]
– Feared negative business implications [10]
– Insufficient integration of security into development lifecycle processes [11, 6, 12]
– Lack of skills for security or security requirements engineering [10, 11].

Whilst these issues can only hardly be addressed by the research community, other
problems are related to the current state of the art of security requirements engineering.
Typically referred problems are:

Understandability and Usability of Security Requirements Engineering Methods and
Frameworks. To identify and analyze the threat, attacker and misuse perspective vari-
ous methods exist such as Microsofts STRIDE [13], Practical Threat Analysis (PTA)
[14], Attack Path Analysis [15], Abuse Cases [16], Misuse Cases [17, 18], Anti Mod-
els [19] and many more. Moreover various modeling-oriented methods such as Tropos
[20], CORAS [21], UMLSec [22] and Secure UML [23] were proposed to improve the

64



modeling of security requirements. However, all of these methods require certain secu-
rity knowledge. They will only work sufficiently, if the security requirements analyst
and the software architects know about the capabilities of attackers, available attacker
tools on the market, typical threats, weaknesses and vulnerabilities. If one does not
understand the mindset of an attacker, typical weaknesses and available exploits, the
result of a threat analysis will likely be of only limited value. Although numerous pub-
lications state that security requirements engineering is important, only little concrete
and specific advice is provided which can immediately be used in projects [24]. Secu-
rity requirements engineering approaches are mainly tested on small scale, demanding
for a broader external validation to demonstrate their effectiveness and usefulness in
developing security solutions [12]. There is a demand amongst security practitioners
that security requirements engineering methods must primarily be understandable and
useable, besides being “formally pleasing or academically correct” [24].

Heterogeneous Definitions of Security Requirements. There is no common agreement
what a security requirement is [12]. Moreover existing approaches do not agree on the
extent to which the requirements should state concrete security measures [24]. This
induces uncertainty among requirements engineering practitioners about the good prac-
tice of security requirements specifications and moreover leads to heterogeneous sets
of security requirements ranging from a small set of high level security goals up to
extensive lists of functional and non-functional security requirements or even concrete
security measures.

Missing Consideration or Documentation of (trust) Assumptions. A trust assumption
is “the firm belief in the competence of an entity to act dependably, securely and reli-
ably within a specified context” [25]. “Trust assumptions can be used by a requirements
engineer to help define and limit the scope of analysis and to document the decisions
made during the process” [26]. “The level of trust has an approximate inverse relation-
ship to the degree of risk” [25], which means that if everything and everyone is trusted
no security threats and risks need to be incorporated, and therefore no security require-
ments need to be specified to address the threats and risks (assuming that no other
external constraints or influences demand for security requirements). Unlike software-
specific security requirements, assumptions cannot be enforced by the software-to-be
[27], however they should be documented to ensure that organizations deploying the
software in an environment know them and can develop environment-specific security
requirements and measures to fulfill the trust assumptions. Unfortunately trust assump-
tion or trust relations are seldom explicitly defined [28], since most of related work
focusing on security requirements do not put much emphasis on trust [26].

Lack of Incorporation of the (intended) Operational Environment. “The system-to-be is
in essence composite; it comprises both the software and its environment” [27]. There-
fore security imposes not only constraints on software, but also on the environment [11].
If assumptions and constraints on the operational environment that have been made
during the software development are not clearly specified and documented, they cannot
be considered as input for secure deployment, operation and maintenance. Experience
shows that assumptions and constraints resulting from the software design on the envi-
ronmental (e.g. as part of a product sheet, a configuration or deployment guideline) are
seldom explicitly specified.

65



In the following we investigate the interdependencies between the software security
requirements, trust assumptions and the environment, by introducing a security depen-
dency model for later discussion.

3 Interdependencies Between Software and Its Environment

3.1 Model to Illustrate the Interdependency Between Software and Its
Environment

To sketch the interdependency between software and its environment, we use a security
dependency model as displayed in figure 1. The model consists of three scope areas
which are briefly introduced in the following. Since this paper is about software security
requirements engineering, we focus on the interdependency between software and its
environment (displayed as bold arrows) and do not explain the interdependency between
the physical and technical, and the organizational environment (displayed as dotted
arrows).

Fig. 1. Security interdependency model.

Software / Component(s). The heart of the model is the software itself. Typical soft-
ware security aspects (sometimes also referred to as security quality factors [29]) are
authentication, authorization/access control, session management, data at rest security
or data in transit security. The desired outcome of the security requirements engineering
phase is a set of security requirements and trust assumptions, which are typically part
of a software requirements specification document. Software is deployed in an opera-
tional environment. We define an operational environment (similar to the definition of
the term ‘environment’ in [30]) as procedures, conditions, and objects affecting the de-
velopment, operation, and maintenance of a system. Since this definition is generic, we
further subdivide the operational environment into a physical and technical environment
and an organizational environment. The reason to split up the operational environment
is motivated by the fact that constraints, influences and assumptions on and from soft-
ware significantly vary between the two environmental scope areas. Furthermore the
security measures being required to satisfy the security requirements can typically be
assigned to one of both environment scope areas.

66



Physical and Technical Environment. The physical and technical environment consists
of relevant physical and technical conditions and objects which are relevant for the soft-
ware. Examples for objects within the physical and technical environment are servers,
the areas, building and rooms where relevant system components are sited, client de-
vices, network(s), other neighboring systems or services relevant for the software. Fur-
thermore other security mechanisms and services protecting the infrastructure are in
scope. Security aspects related to the system in its physical and technical environment
are e.g. physical security, network security, secure software configuration, secure sys-
tem configuration and hardening, malware protection.

Organizational Environment. The organizational environment includes relevant organi-
zational aspects as well as processes and procedures required to securely set-up, op-
erate, maintain and use the software. Examples for organizational aspects are e.g. the
issuance of mandatory security policies and guidelines, the set-up of a security orga-
nization with clearly defined roles and responsibilities and the conduction of security
training and awareness activities for employees and third party personnel. Examples for
operational security related processes and procedures are user management, privilege
management, key management, vulnerability and patch management, incident manage-
ment and many more.4

Constraints / Influence on Software Security Requirements (bold inbound arrows).
During security requirements engineering for software relevant constraints and influ-
ences from both, physical and technical environment, as well as the organizational
environment need to be considered. The organizational environment constraints and
influences the software security requirements by various means, namely:

– Stakeholder related needs such as functional needs, other non-security quality needs,
business goals, asset protection needs, security goals

– Compliance obligations such as company-internal policies, legal, regulatory and
normative obligations, accreditation, certification and auditing needs

– Domain-specific obligations such as sector or domain-specific characteristics or
restrictions which specifically need to be considered)

– Threat / attacker / misuse perspective such as threats or attacks originating in the
organizational environment, commonly referred weaknesses or vulnerabilities. The
physical and technical environment constraints and influences the software security
requirements through various parameters such as:

– Intended hosting model e.g. internal / on-premise, external / off-premise, combined
– Deployment model e.g. private, public, community, hybrid
– Client component-related aspects e.g. bring your own device vs. company owned

and managed devices
– Implemented security services e.g. IDS, IPS, firewalls, network segmentation, mal-

ware protection (and many more)

Based on these characteristics the relevant threat, attacker and misuse perspective needs
to be modeled and analyzed. It must be clear which threats and risk exist due to the phys-

4 Please note that for simplicity reasons we intentionally omit non-operational security processes
such as security risk management, security policy review and update, HR-related security as-
pects, etc.

67



ical and technical environment. Furthermore it must be analyzed how well established
the assumed security mechanisms within the physical or technical environment are, and
who or what is considered trusted.

Trust Assumptions / Constraints on the Environment (bold outbound arrows). Assump-
tions and constraints from software on the environment cannot be enforced by the
software-to-be [27]. Nevertheless trust assumptions need to be fulfilled in the opera-
tional environment to guarantee that the taken software security measures are suffi-
cient. Therefore trust assumptions being made during the software development as well
as constraints on the environment must explicitly be specified, instead of simply assum-
ing or hoping that they are satisfied e.g. by organizational norms and regulations, etc.
[27]. Trust assumptions influencing the operational environment must be met by the
customer to ensure that the software security requirements and measures are sufficient.
Therefore specified trust assumptions must be handed over to and be analyzed by the
customer within the concrete environment. Security requirements and associated secu-
rity measures for the physical and operational requirement, as well as the organizational
environment must be specified in order to meet these trust assumptions.

3.2 Example 1 - Influence from the Operational Environment on Software
Security Requirements

To illustrate the influence from the operational environment on software security (re-
quirements engineering) and to motivate the need for a comprehensive security analysis,
we use a username / password-based user authentication mechanism as example.5 Good
practice and typical measures for password-based authentication are e.g. enforcement of
a good password policy, enforcement of initial password change after first login, confi-
dential transmission of passwords, etc. What might nevertheless lead to an unauthorized
access even if the software-side user authentication mechanism is implemented well? A
weakness or vulnerability in the physical or technical environment such as an unpatched
server being exploited from the internet, theft of server components due to insufficient
physical area or equipment protection. This may lead to a loss of usernames and as-
sociated passwords e.g. as part of username and passwords stored in a database and
therefore compromise the security of the user authentication mechanism. Moreover, an
attacker could exploit weaknesses in the organizational environment e.g. by using so-
cial engineering techniques to trick a service desk employee to reveal user password
via telephone. This attack is possible even if we would assume a software-side authen-
tication mechanism following good practices and a well secured physical and technical
environment. An intuitive reaction would be to address the threats and mitigate the risk
in the operational environment where they originate, but can these non-software related
threats also be addressed by the software? In some cases the mentioned threats in the
physical and technical, as well as the organizational environment can be either mitigated
directly in the respective scope areas or by software-specific countermeasures. In our

5 Please note that for simplicity reason we omit any potential stakeholder related needs, com-
pliance obligations or domain-specific obligations, but concentrate on the threat, attacker and
misuse perspective.

68



example, the risk of an unpatched system can be reduced by implementing countermea-
sures in the environment e.g. by hardening the server and protecting the physical area
and equipment from unauthorized physical access. However the impact and thus also
the risk of a hacked or stolen server component and the resulting loss of the password
table can also be treated on software-level by implementing a mechanism to store pass-
words on the server only as salted hashes. Also the risk of social engineering attacks
can be addressed on the one hand in the organizational environment, e.g. by performing
security training and awareness for employees and on the other hand by the software se-
curity mechanisms, e.g. by providing a password reset and transmission functionality, in
which passwords are never shown in clear text to a service desk employee and can only
be transmitted via an encrypted email.6 The example shows that attacks which are pri-
marily threatening the operational environment and therefore not primarily the software
can influence the software security requirements and software security mechanisms. If
one could assume that the technical and organizational environment is fully trusted,
passwords would probably not be stored as salted hashes. However this would imply
that the operational environment is considered absolutely secure and thus hack proof
and furthermore that administrators are allowed to see passwords in clear text, which
is a very unrealistic assumption. The same applies for the organizational environment.
If one could fully trust all service desk employees and they are assumed to withstand
social engineering attacks, one would not have to design a sophisticated authentication
mechanism but could verify the identity of a caller with adequate procedural measures.
Furthermore the example indicates that the less predictable the variety of potential op-
erational environments of a software-to-be are, the more difficult it becomes to specify
valid trust assumptions and proper security requirements. The reason for that is that
constraints and influences are not clear or may vary significantly. This on the one hand
affects the number of potential threats, and on the other hand other influences and con-
straints need to be incorporated in the security requirements engineering phase to come
to a proper security and trust assumption specification. The less concrete the influences
from the operational environment on software are, the higher the variability and level
of security should be.

3.3 Example 2 - Implications of Trust Assumptions / Constraints

We assume for our second example a client-server Web application using the Internet
for the exchange of sensitive information. The software security aspect in our exam-
ple that we want to focus on is ‘input validation’ in order to prevent various kinds of
injection attacks. We assume the following trust assumptions (TA):

– TA1) Legitimate users do not enter malicious input data.
– TA2) Only legitimate users can access the system.

These two trust assumption are often implicitly assumed but nevertheless unrealistic.
They limit the amount of threats and attacks which have to be considered during the
software security requirements engineering phase, since a requirements engineer would

6 Please note that of course there are multiple other countermeasures which can address the
threat and mitigate the risk.

69



not have to specify any security requirements related to input validation. How do the
trust assumptions influence the operational environment? The organization deploying
the software somehow has to ensure that the trust assumptions are met in the physical
and technical, as well as the organizational environment. One could say that trust as-
sumptions and constraints must be treated as security requirements in the operational
environment and must result in adequate organizational, physical and technical secu-
rity measures. In our example, resulting security measures to be implemented by the
customer in order to satisfy TA1 might be:7

– Conduction of security awareness and training for employees, as well as integration
of a code of conduct as part of working contracts, and / or

– Implementation of a security proxy, ensuring user data input validation before input
is forwarded to the server.

To satisfy the second trust assumption TA2, the customer might implement physical
area and equipment protection measures for client devices and server, and prevent unau-
thorized logical access by using a physically isolated, access protected network. The
example shows that trust assumptions are not only relevant for security during software
development, but also play an important role as constraints on the physical, technical
and organizational environment. Trust assumptions concerning the operational envi-
ronment being made during software security requirements engineering are constraints
that must be considered during security requirements engineering in the context of a
software integration or deployment project. Therefore trust assumptions shall be made
transparent to the software customer e.g. in a product sheet, configuration guideline,
operating instruction or some kind of security documentation. Moreover not only the
knowledge about implemented security-relevant functions in terms of ‘what’ and how
they can be configured are of interest, but also the ‘why’ and relevant scenarios for
which the security mechanism should be used. This facilitates on the one hand the eval-
uation of software security e.g. to check if a software product fits the desired purpose
and is suitable for the intended environment. On the other hand it makes it easier to
securely set-up, operate, maintain and use a software product by following the intended
purpose and configurations. It is advisable that recommendations for the use of certain
security functionality or configuration are associated with environmental constraints
such as ‘If client-server communication takes place over an untrusted network, the fol-
lowing software configuration is recommended’ or ‘Security of data in transit cannot be
guaranteed by the software but must be ensured by additional network security mecha-
nisms in the technical or physical environment.’

4 Summary and Conclusions

We started with the presentation of typical issues related to security requirements en-
gineering, followed by the introduction and explanation of a security interdependency
model. Influences from the operational environment on software security requirements,

7 Please note that the first measure belongs the organizational environment and the second mea-
sures to the technical environment.

70



as well as implications of trust assumptions on the environment were presented and
illustrated with two examples. On the basis of the security dependency model and the
given examples we can draw following conclusions:

Dependency between security requirements and Trust Assumption. Implicit and explicit
trust assumptions influence the scope of the security analysis, as well as the elicitation
and specification of security requirements. Therefore security requirements and trust
assumptions are interdependent and must be considered together to ensure an adequate
level of risk.

Constraints / Influence on Software Security Requirements (bold inbound arrows). Both,
the threats immediately affecting a software product, as well as threats in the opera-
tional environment of a software influence security requirements and associated soft-
ware security mechanisms. The less predictable the potential operational environment
of a software product is, the more difficult it becomes to specify valid trust assumptions
and proper security requirements, since constraints and influences are unclear or may
vary significantly. This lack of concrete constraints and influences from the operational
environment on software demands for a higher variability and quality of security mech-
anisms in order fit as best as possible to different fields of application.

Influences of Security Requirements and Trust Assumptions on the Operational Envi-
ronment (outbound bold arrows). Trust assumptions are not only relevant for security
during software development, but also play an important role as constraints on the phys-
ical, technical and organizational environment. The approximate inverse relationship
between the level of trust and the degree of risk might be tempting for a software de-
velopment team to specify too many or too extensive trust assumptions, since they save
a lot of effort with respect to security analysis and the specification of software secu-
rity requirements and measures. However, risks not being analyzed and mitigated on
software-level are passed on to the operational environment. Some of these risks or
shortcomings in software security can potentially be rectified by other or additional se-
curity mechanisms in the operational environment. Nevertheless there are other cases
where the rectification of security weaknesses or vulnerabilities of software cannot or
only at a very high expense be rectified.

5 Future Research Perspectives

5.1 Development of a Method for Reuse-oriented Engineering of Security
Requirements and Trust Assumptions

We believe that for many security aspects typical threats, generic requirements, and
guidelines can be elaborated and brought together into a consistent and traceable rela-
tion on a generic level. The resulting information and knowledge base is intended to be
customizable for the needs of an organization, especially with regard to the raw require-
ments, influences and constraints from their customer and environment. The resulting
structure can be reused within the organization for the elicitation and refinement of
security requirements and trust assumptions. The scope of the aspects is not only lim-
ited to software or product-related security aspects, but should also incorporate security

71



technical, physical and organizational aspects of systems in their operational environ-
ment. The research questions that we pursue regarding reuse-oriented engineering of
security requirements and trust assumptions are:

– What are suitable scope areas and the most prevalent security aspects that can be
reasonably covered in a reuse-oriented SRE method and how do they influence each
other?

– Is it possible to create a limited (but nevertheless useful) list of common threats and
weaknesses?

– How well can threats and weaknesses be associated with recommended security
requirements and/or security measures?

– How can constraints and influences between the scope areas and security aspects
be made transparent?

– How detailed can or should security requirements be?
– How can the specification of trust assumptions be incorporated into the reuse-

oriented SRE approach?
– Which information and knowledge about the solution space can / should be pro-

vided to support the support the interaction with the security architect and the re-
finement of requirements from high-level to a more detailed level?

We are fully aware that a reuse-oriented approach of security requirements engineering
can only reach a baseline security level and that it has to be on a generic level to be uni-
versally applicable. However, security requirements specification could be supported,
and effort can be reduced through the reuse and refinement of existing information and
knowledge sources.

5.2 Provisioning of a Framework or Process for the Integration of a
Reuse-oriented Method

In addition to the method for reuse-oriented security requirements, a corresponding
framework or process needs to be developed, explaining how the reuse-oriented method
needs to be customized for, and used within an organization. Besides the existing, un-
doubted security requirements activities of existing frameworks and processes, the fol-
lowing steps should be included.

– Development of an organization-specific, reuse-oriented SRE framework incorpo-
rating relevant SRE sources such as common threats and weaknesses, generic se-
curity requirements, as well as guidelines etc.

– Incorporation of the specification of trust assumptions in addition to security re-
quirements

– Recommendation or provisioning of risk-based security requirements engineering
methods to accompany or complement the reuse-oriented method

To the best of our knowledge there is no requirements engineering framework incorpo-
rating all of the before mentioned aspects.

72



Acknowledgement

We would like to thank all reviewers of this paper who provided valuable feedback,
especially Stefan Seltzsam and Steffen Fries for their support.

References

1. Khaled El Emam and A. Günes Koru. A replicated survey of it software project failures.
IEEE Software, 25(5):84–90, 2008.

2. Department of Homeland Security. Requirements analysis for secure software, 2012.
3. Andy Greenberg. A tax on buggy software, 2008. http://www.forbes.com/2008/06/26/

rice-cyber-security-tech-security-cx ag 0626rice.html. Visited on January 15th, 2014.
4. Barry W. Boehm. Software engineering economics. Prentice-Hall advances in computing

science and technology series. Prentice-Hall, Englewood Cliffs and N.J, 1981.
5. G. McGraw. Testing for security during development: why we should scrap penetrate-and-

patch. Aerospace and Electronic Systems Magazine, IEEE, 13(4):13–15, 1998.
6. Golnaz, Elahi, Yu, Eric, Tong Li, Lin Liu. Security requirements engineering in the wild: A

survey of common practices. In Proceedings of the 35th Annual IEEE International Com-
puter Software and Applications Conference, Proceedings - International Computer Software
& Applications Conference, pages 314–319, Danvers, 2011. IEEE.

7. John Wilander and Jens Gustavsson. Security requirements – a field study of current practice,
2005.

8. Nancy R. Mead. Security requirements engineering, 2006. https://buildsecurityin.
us-cert.gov/bsi/articles/best-practices/requirements/243-BSI.html. Visited on January 15th,
2014.

9. Theodore Winograd, Holly Lynne McKinley, Lyndon Oh, Michael Colon, Thomas McGib-
bon, Elaine Fedchak, and Robert Vienneau. Software security assurance: A State-of-the Art
Report (SOAR). Information Assurance Technology Analysis Center, Herndon and Virginia,
2007.

10. Donald G. Firesmith. Engineering security requirements. Journal of Object Technology, vol.
2, no. 1,, pages 53–68, 2003.

11. Haralambos Mouratidis, Paolo Giorgini, and Gordon Manson. When security meets soft-
ware engineering: a case of modelling secure information systems. Information Systems,
30(8):609–629, 2005.

12. Eric Dubois and Haralambos Mouratidis. Guest editorial: security requirements engineering:
past, present and future. Requirements Engineering, 15(1):1–5, 2010.

13. Frank Swiderski and Window Snyder. Threat modeling. Microsoft Press, Redmond and
Wash, 2004.

14. PTA Technologies. Practical threat analysis for information security experts. http://
www.ptatechnologies.com/default.htm. Visited on January 15th, 2014.

15. Yue Chen. Software security economics and threat modeling based on attack path analysis;
a stakeholder value driven approach. University of Southern California. Libraries, 2007.

16. J. McDermott and C. Fox. Using abuse case models for security requirements analysis. In
Computer Security Applications Conference, 1999. (ACSAC ’99) Proceedings. 15th Annual,
pages 55–64, 1999.

17. Ian F. Alexander. Initial industrial experience of misuse cases in trade-off analysis. In
Proceedings of the 10th Anniversary IEEE Joint International Conference on Requirements
Engineering, RE ’02, pages 61–70, Washington and DC and USA, 2002. IEEE Computer
Society.

73



18. Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements with misuse cases.
Requir. Eng, 10(1):34–44, 2005.

19. Axel van Lamsweerde. Elaborating security requirements by construction of intentional anti-
models. In Proceedings of the 26th International Conference on Software Engineering, ICSE
’04, pages 148–157, Washington and DC and USA, 2004. IEEE Computer Society.

20. Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven informa-
tion systems engineering: The tropos project. Inf. Syst., 27(6):365–389, 2002.

21. F. Braber, I. Hogganvik, M. S. Lund, K. Stølen, and F. Vraalsen. Model-based security anal-
ysis in seven steps — a guided tour to the coras method. BT Technology Journal, 25(1):101–
117, 2007.

22. Jan Jürjens. Towards development of secure systems using umlsec. Fundamental Approaches
to Software Engineering, volume 2029 of Lecture Notes in Computer Science, pages 187–
200. Springer Berlin Heidelberg, 2001.

23. Torsten Lodderstedt, David Basin, and Jürgen Doser. Secureuml: A uml-based modeling
language for model-driven security. �UML� 2002 — The Unified Modeling Language,
volume 2460 of Lecture Notes in Computer Science, pages 426–441. Springer Berlin Hei-
delberg, 2002.

24. I. A Tondel, M. G Jaatun, and P. H Meland. Security requirements for the rest of us: A
survey. Software, IEEE (Volume: 25 , Issue: 1 ), pages 20–27, 2008.

25. T. Grandison and M. Sloman. A survey of trust in internet applications. Communications
Surveys & Tutorials, IEEE, 3(4):2–16, 2000.

26. Charles B. Haley, Robin C. Laney, Jonathan D. Moffett, and Bashar Nuseibeh. Picking
battles: The impact of trust assumptions on the elaboration of security requirements. Trust
Management, volume 2995 of Lecture Notes in Computer Science, pages 347–354. Springer
Berlin Heidelberg, 2004.

27. A. van Lamsweerde. Goal-oriented requirements engineering: a guided tour. In Fifth IEEE
International Symposium on Requirements Engineering, pages 249–262, 27-31 Aug. 2001.

28. John Viega and Gary McGraw. Building secure software: How to avoid security problems the
right way. Addison-Wesley professional computing series. Addison-Wesley, Boston, 2002.

29. Donald G. Firesmith. Analyzing and specifying reusable security requirements. Journal of
Object Technology, (Vol. 3, No. 1):61–75, 2004.

30. NIST. Glossary of key information security terms. U.S. Deptartment of Commerce, National
Institute of Standards and Technology, [Gaithersburg and Md.], 1 edition, 2011.

74


