
Evolution of the Application and Database with Aspects

Rui Humberto R. Pereira1 and J. Baltasar Garcı́a Perez-Schofield2

1ISCAP, IPP, Porto, Portugal
2Departamento de Informática, Universidad de Vigo, Vigo, Spain

Keywords: Schema Evolution, Instance Adaptation, Aspect-oriented Programming, Orthogonal Persistent Systems.

Abstract: Generally, the evolution process of applications has impact on their underlining data models, thus becoming a
time-consuming problem for programmers and database administrators. In this paper we address this problem
within an aspect-oriented approach, which is based on a meta-model for orthogonal persistent programming
systems. Applying reflection techniques, our meta-model aims to be simpler than its competitors. Further-
more, it enables database multi-version schemas. We also discuss two case studies in order to demonstrate the
advantages of our approach.

1 INTRODUCTION

Applications are subject of a continuous evolution
process due to many factors such as changing re-
quirements, new functionalities or even the correc-
tion of design mistakes. Those applications refactor-
ings may have strong implications on the underlying
data model, requiring the evolution of the applica-
tion and the database, thus, becoming a very com-
plex and time-consuming problem for programmers
and database administrators.

Object-oriented databases such as db4o1 (Paterson
et al., 2006), Versant2, ObjectDB3, provide transpar-
ent schema evolution mechanisms that alleviate pro-
grammers in this burden of keeping the data and ap-
plication layer synchronized. However, in these sys-
tems, more complex schema updates such as class
movements in the inheritance hierarchy, field renam-
ing and semantic changes in the fields content, require
programmer’s intervention in order to convert the data
from the old structure to the new one.

This evolution problem, of object-oriented ap-
plications and databases, is addressed in this paper.
We present an aspect-oriented approach, which is fo-
cused on the orthogonal persistence paradigm (Atkin-
son and Morrison, 1995). We found differentiating
characteristics in the orthogonal persistent systems,
when compared to non-orthogonal ones, that enable
our aspect-oriented approach. These characteristics,

1http://www.db4o.com
2http://www.versant.com
3http://www.objectdb.com

combined with Aspect-Oriented Programming (AOP)
(Kiczales et al., 1997), provide special conditions in
order to improve the transparency of the entire evolu-
tion.

Our approach is based on a simple meta-model
and the reflective capabilities of the programming
language. This meta-model also enables the appli-
cation’s data representation in multiple schema ver-
sions. Each new schema version is incremental to the
previous one, i.e., just new class versions are added to
the database.

In the next section we discuss our approach. Sec-
tion 3 presents a short overview of the AOF4OOP
framework, a prototype that implements our meta-
model. In Section 4 we discuss a related work that in-
spired our research. Next, we present two case studies
that intend to prove the advantages of our approach,
when compared with other systems. Finally, we draw
some conclusions and indicate future directions for
new research work.

2 META-MODEL

The proposed meta-model was designed in order
to support database schemas in a multi-version ap-
proach, enabling bidirectional application compatibil-
ity. Applications, developed to a specific database
schema, can access data transparently in another
schema version, older or future. The chosen approach
to represent multi-version schemas is based on class
versioning (Monk and Sommerville, 1993). Issues

308 R. Pereira R. and García Perez-Schofield J..
Evolution of the Application and Database with Aspects.
DOI: 10.5220/0004966903080313
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 308-313
ISBN: 978-989-758-027-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

such as data consistency, integrity and object identity
also were taken into account in our meta-model pro-
posal. The meta-model also aims to be as simple as
possible. In order to achieve such goals, a set of meta-
classes were defined, as well as reflective techniques.

2.1 Meta-classes

Our meta-model was inspired in Rashid’s meta-model
that we will present in Section 4. However, it defines
a much more limited set of meta-classes. The meta-
objects are instances of meta-classes These meta-
objects represent the application’s classes, its rela-
tionships and all data required for emulating objects
in every existing schema version. In Section 2.2 we’ll
discuss how we have reduced the model’s complex-
ity by applying the reflection capabilities of the pro-
gramming language. The set of meta-classes are the
following:

� Class Version Meta-Object (CVMO) - This meta-
object supports the schema information of an ap-
plication data class in a specific version.

� Instance Meta-Object (IMO) - Logical represen-
tation of an instance of an entity data object. Each
IMO meta-object is associated to one or more
CVMO meta-objects and to one or more data ob-
jects. The set of CVMO meta-objects provides
the framework with the historical information of
its class, while the set of related data objects pro-
vides input information for the emulation process
in each of the class versions.

� Attribute Meta-Object (AMO) - Represents the re-
lationships among the data objects. Since com-
posite objects are related through their attributes,
this meta-object represents an instance variable
that points to another object instance (an IMO
meta-object). This meta-object has two distinct
forms: as a single object reference or as a refer-
ence to an array of objects.

� Root Meta-Object (RMO) - Are database starting
points, which give access to all other related ob-
jects. Each represents a root object (Atkinson and
Morrison, 1995), identified by an arbitrary string.
Like AMO meta-objects, these also have the same
two forms for objects and arrays.

� Update/Backdate Meta-Objects (UBMO) - Each
UBMO meta-object defines an explicit relation-
ship between two versions of a class. These meta-
objects, together with the default instance adapta-
tion behaviour, define the database instance adap-
tation aspect. In order to define this database as-
pect, the programmer applies pointcut/advice con-
structs which are stored in these meta-objects. In

Figure 1: System meta-model.

Section 3 we will discuss one example of these
expressions.

� Aspect meta-objects (AspMO) - To make the as-
pect code replacement more agile, this type of
meta-object represents an aspect (in terms of
AOP) which can have one of two usages: appli-
cation aspects (e.g. logging) or database manage-
ment system aspects (e.g. security).

Apart from these meta-objects, there are also the
real data objects in the database. Each data object
(application’s data entities) is under the class ver-
sion it was created in. Furthermore, it is represented
through an IMO meta-object that supports its logical
existence, as well as other meta-objects that specify
its class versions. Any implementation of this meta-
model must emulate the object version as required by
the running application. If the emulation to a specific
application version is not viable, a copy of the object
for that version will have to be maintained. Figure 1
illustrates an example of how these meta-objects are
related in order to represent a course related with its
students.

2.2 Versioning Approach

As our meta-model aims to support the application’s
schema in many of its versions by following a class
versioning strategy, the derivation path of class ver-
sions, combined with the classes’ inheritance hierar-
chy, raises the meta-model’s complexity to an unsup-
portable level if many versions exist. Thus, in order
to deal with this complexity problem, we extended the
meta-model with reflection and mapping techniques.
The classes’ inheritance hierarchy data is supported
through reflection techniques. Regarding the classes’
version derivation path, it is handled with an algo-
rithm of mapping, which is based on direct and user-
defined mapping. In order to enable the coexistence

Evolution�of�the�Application�and�Database�with�Aspects

309

of many versions of a same class, a renaming strategy
was adopted.

Inside the CVMO meta-object, the class’s byte-
code is preserved and available for reflection. How-
ever, in the class’s bytecode, its name and all its su-
perclasses are renamed following a convention. In
our implementation, a class Person in version A is
renamed to Person$A. This class versioning has two
approaches: (1) as a simple object (an object of a
primitive type, such as an Integer or a String),
or (2) as a composite object (Person or Invoice).
Composite objects can be composed by simple ob-
jects and other composite objects. Thus, simple ob-
jects are treated in a non-versioned approach, while
the composite objects follow the renaming technique.
Using reflection, this renaming technique enables our
framework to know, at runtime, the class inheritance
relationships.

Regarding the classes’ version derivation path, we
consider that in many cases an algorithm, based on
the direct mapping of classes and attributes, can es-
tablish an implicit n-to-n connection among all ver-
sions of a class. In this direct mapping, the map-
ping of class version and its attributes is based in
their names and equivalence type, by applying default
conversion functions. Just when the necessary con-
ditions are not satisfied, is a user-defined connection
then required. In these cases, our meta-model enables
explicit connections through UBMO meta-objects.
These meta-objects contain all mapping information,
which follows an aspect-oriented approach. Each
UBMO meta-object stores a pointcut/advice expres-
sion that quantifies all points in the application code
that requires instance adaptation code.

2.3 Object Identity

At the meta-model, each IMO meta-object is a logi-
cal representation of an instance of an application data
entity. As an Object Identifier (OID) identifies an ob-
ject, a Logical Object Identifier (LOID) identifies an
IMO meta-object. Thus, a LOID identifies an appli-
cation data entity that is supported in the database by
one or more objects, each one with its own physical
OID. In turn, the OID physically identifies an object
or meta-object. This approach simplifies the object
update process because it avoids the physical replace-
ment of relationships and it also enables the existence
of several versions of the same object. On the other
hand, it enables the internal mapping and caching of
the application’s data objects, which provides means
to ensure that two references of the same object share
the same identity.

Concerning arrays, these are treated as a collec-

tion of individual object references as occurs in the
running environment, according to the same program-
ming language variance rules.

2.4 Schema Consistency

Applications with a specific schema version should be
able of use objects, which reside in the database, irre-
spectively of their class versions. These requirements
raise structural , semantical and behavioural consis-
tency issues that must be addressed.

Our approach, in order to deal with these issues,
benefits from the orthogonal persistence paradigm:
(1) closed integration of application and database en-
vironments, (2) sharing the same data model and (3)
incremental schema evolution. The static type check-
ing done by the compiler, at compile time, grants
that each object instance inside the application run-
time environment unconditionally pertains to, and fol-
lows, a specific application schema. The incremen-
tal schema evolution approach enables the propaga-
tion of all new class versions to the database, making
them persistent. Likewise, all objects are created un-
der only one valid schema, ensuring structural consis-
tency.

The semantic consistency is granted through up-
date/backdate conversion code and additional meta-
data added into the application schema. Our ap-
proach, based on UBMO meta-objects (see Sec-
tions 2.1 and 2.2) was inspired in the update/backdate
methods (Monk and Sommerville, 1993). The user-
defined conversion code, inside these meta-objects,
can adapt a class that suffered a semantic update. As
an example, consider a class Product where, in ver-
sion A, the product’s weight is defined as pounds and,
in version B, kilograms is used.

Behavioural consistency must be analysed in two
contexts: (1) the application’s run-time and (2) the
framework’s conversion-time. Considering that all
objects in the application environment pertain to its
schema, naturally, behavioural consistency is always
granted. However, at conversion-time this type of
consistency can raise complex issues since two ver-
sions of a class coexist in the framework’s environ-
ment. For non-versionable data types, the problem is
not relevant. On the other hand, for versionable data
types, version conflicts must be avoided. Let C(a)
and C(b) be, respectively, class C in versions a and b,
being a the current class version. If C has a property
P, then C(b) has P(g), being g the property’s class ver-
sion. Thus, an object of class C that is being converted
is renamed to C(b) to avoid name conflicts, as well as
all its return and argument values, of its methods, and
attributes to P(g). Within this approach, we guaranty

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

310

that all class properties are synchronized with its ver-
sion state. Thus, each method respects its signature
and its code does not result in run-time errors or un-
expected results.

3 IMPLEMENTATION OF
META-MODEL

In this section we present a short overview of
the implementation of our meta-model (Pereira and
Perez-Schofield, 2010)(Pereira and Perez-Schofield,
2011)(Pereira and Perez-Schofield, 2012). This pro-
totype is an aspect-oriented Java framework capa-
ble of providing an application with persistence and
database evolution services. In the current version of
the implementation, a db4o database (Paterson et al.,
2006) is used as the object and meta-object reposi-
tory. Although this object-oriented database already
provides object persistence and also has some trans-
parent database evolution capabilities, its role is re-
duced to a simple object store.

Our framework is a persistent programming envi-
ronment that follows the three principles of orthogo-
nal persistence formulated by Atkinson (Atkinson and
Morrison, 1995). Furthermore, it applies AOP tech-
niques in its internal operations, as well as provid-
ing applications with persistence and evolution ser-
vices. The system’s aspects were modularized at two
distinct levels: application and framework/database.
Thus, aspects of an aspect were modularized in an-
other level. The system’s default instance adaptation
aspect can be extended through our pointcut/advice
constructs, which follow the (Filman and Friedman,
2000): Quantification definition posited by Filman
and Friedman: ”In programs P, whenever condition
C arises, perform action A”. Thus, each expression
is structured as two groups: trigger conditions and
action. At run-time, when the required conditions
are satisfied, user-defined code is weaved and injected
into the system, establishing an explicit mapping be-
tween two distinct class versions.

Figure 2 an example of our XML based expres-
sions that reify the instance adaptation aspect in the
database. Each <ubmo> XML node specifies an
UMBO meta-object. The XML language provides ex-
tensibility and enables easier editing, through a graph-
ical tool of the framework or using a simple text edi-
tor. Due to space restrictions were we cannot describe
the entire syntax of those constructs. However, this
example will be reused in the next sections, helping
its understanding.

The set of pointcut/advice constructs form the in-
stance adaptation aspect, which is rendered at run-

<ubmo matchClassName="rhp.aof4oop.cs.datamodel.*"

matchCurrentClassVersion="B"

matchOldClassVersion="A"

matchSuperClassName="rhp.aof4oop.cs.datamodel.Staff">

<conversion applyDefault="true"

outputClassName="rhp.aof4oop.cs.datamodel.Staff"

conversionClassName="ConvStaff$A_to_StaffB">

String[] parts=oldObj.getSurname().split(" ");

String middleName="";

for(int i=0;i<parts.length-1;i++) {

middleName+=(i>0?" ":"")+parts[i];

}

newObj.setMiddleName(middleName);

newObj.setLastName(parts[parts.length-1]);

return newObj;

</conversion>

</ubmo>

Figure 2: Pointcut/advice XML expression.

time by the framework’s weaver. In the database,
several persistent versions of a class can exist. The
framework’s classloader makes those class versions
available at conversion-time. The classes pertaining
to current schema version are defined in the applica-
tion’s source code.

4 RELATED WORK

Rashid, in the SADES system (Rashid, 1998), in-
troduced the concept of aspect in object-oriented
databases turning the system, in itself, into an aspect-
oriented database. In the SADES system and later, in
the AspOEv system (Rashid and Leidenfrost, 2004),
the aspect-oriented programming techniques were ex-
plored in order to implement database mechanisms of
schema evolution and instance adaptation. The As-
pOEv system has its own language, the Vejal (Rashid
and Leidenfrost, 2006), capable of manipulating the
objects in their multiple class versions. This research
work was inspiring to us, being the starting point for
our work.

Kuppuswami et al. (Kusspuswami et al., 2007)
have also explored AOP techniques proposing a flex-
ible instance adaptation approach.

5 CASE STUDIES AND
DISCUSSION

5.1 Meta-model Evaluation

An earlier case study (Rashid, 2002) provides a com-
parative evaluation of four different systems based on
a design correction scenario. This scenario consists of

Evolution�of�the�Application�and�Database�with�Aspects

311

Figure 3: Schema evolution (extracted from (Rashid,
2002)).

Table 1: Meta-model complexity comparation.

Studied system Affected meta-objects

Orion 33
Encore 54
TSE 56
SADES 23
AOF4OOP 10

a data structure of seven classes that are redesigned,
leading to the appearance of a new class Staff. Fig-
ure 3 presents that same structure before and after the
evolution.

We reused this scenario in order to extend the pre-
vious work with our results, enabling a direct and
easier comparison. This comparative case study was
structured into two parts: schema evolution complex-
ity and instance adaption The former analyzes the
impact on meta-objects relationships, at the schema
level, while the latter provides an analysis of the in-
stance adaptation process. Here we just discuss our
approach. A detailed comparison of those four sys-
tems can be found in that earlier case study.

Regarding the complexity in schema evolution,
we argue that the incremental approach enabled by the
orthogonal persistence paradigm and our meta-model
reduce the complexity problem leading to better re-
sults, as shown in Table 1. This table combines the
results of that work with ours, presenting the respec-
tive number of affected meta-objects for each com-
pared system.

In our approach, as schema updates are incremen-
tal, eight new CVMO meta-objects are inserted: seven
new class versions for the existing classes and the new
Staff class. Additionally, due to update/backdate
compatibility, two UBMO meta-objects provide the
conversion means in both directions: Person class
Surname attribute in the former version and the new
one with a distinct attribute called LastName. The
XML expression in Figure 2 presents one of these two

user definitions. All remaining changes are transpar-
ently treated by the default instance adaptation mech-
anism, avoiding any extra information. Thus, our ap-
proach enables a semi-transparent schema evolution.

This design correction scenario, while being very
simple, allows for a good understanding of the advan-
tages present in our approach: (1) smaller overhead in
terms of effected meta-objects and (2) avoids human
intervention at the database, providing schema evolu-
tion primitives.

Regarding instance adaptation, SADES presents
the best results when compared with the other three
systems. Since our aspect-oriented approach is in-
spired in the author’s work, their results and ours are
equivalent in terms of flexibility.

5.2 Programmers’ Productivity

In this section we will present another comparative
case study which intended to assess the framework’s
added value of its underlying object repository, a db4o
object database. The same redesign scenario of previ-
ous section was used. For that, we invited two distinct
programmers to adapt two simple applications, which
use that data model before redesign. The former ap-
plication stores data directly into a db4o database,
while the latter uses our framework to manage its
persistence. Since both applications share a com-
mon class structure, this code was implemented into a
common library. Furthermore, both base applications
must be adapted to support the occurred changes in
class Person. Given that both tasks are exactly the
same in both applications, we measure just one time
and consider the same value for both. This strategy
guarantees a fare measure, avoiding time variations.
Notice that the second application would benefit from
the programmer’s knowledge acquired during the first
application, solving the exact same problem.

After that, both programmers were concerned
with the db4o application. Their first challenge lies
in a db4o database limitation, which does not support
the following two schema changes transparently: (1)
inserting classes into an inheritance hierarchy; and
(2) removing classes from an inheritance hierarchy.
Both class transformation types occur in our study, so
an additional application is required to adapt object
instances (Student and all Staff subclasses) from
an old class version to the new one. The authors of
the db4o database suggested an eager stop-the-world
model application, which sequentially scans the en-
tire database, reads, converts and stores data in ob-
jects that pertain to a different class name. In the last
phase, the conversion application uses a db4o API to
rename all new classes to their original name.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

312

Figure 4: Effort comparison (work minutes).

In contrast to the db4o application case study, the
one based on our prototype does not require any ad-
ditional conversion application, saving programmers
time. Only the semantic consistency cannot be trans-
parently dealt with in the framework, requiring the
programmer’s intervention in order to write two XML
constructs. One of them is presented in Figure 2.

Due to performance reasons, this aspect-oriented
construct is applied just to Staff subclasses. No-
tice that, Student objects can be adapted by default
mechanism with less overhead. On the other hand, it
is applied once in the Staff class, avoiding individ-
ual definitions for its subclasses. Thus, just one meta-
object is required with the best possible performance.

The graph in Figure 4 illustrates the framework’s
benefits for the programmer in terms of work produc-
tivity in this specific scenario.

6 CONCLUSIONS

We presented a novel aspect-oriented approach based
on a meta-model in order to provide applications with
orthogonal persistence in a multi-schema database.
Enabled through orthogonal persistence and our XML
expressions, the database evolution among its schema
versions is semi-transparent. Thus, schema evolu-
tion is performed directly into the application’s source
code.

Regarding instance adaptation, it provides the
means for flexible and agile support that just requires
human intervention when semantic updates occur in
the application schema.

Our experimental results, supporting the evolu-
tion, have demonstrated the advantages of our ap-
proach over a reference system in the state-of-the-art
of object-oriented databases.

At current state of our framework the transactional
model is very simple. Object’s properties are updated
in individual transactions. Due to JVM restrictions
some classes cannot be renamed limiting its persis-
tence and the framework’s orthogonality. The over-
all framework’s performance can be improved with a

specific engine of object storing. Our research will
continue focused on these implementation issues.

REFERENCES
Atkinson, M. and Morrison, R. (1995). Orthogonally per-

sistent object systems. The VLDB Journal, 4(3):319–
402.

Filman, R. E. and Friedman, D. P. (2000). Aspect-
oriented programming is quantification and oblivious-
ness. Technical report.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-oriented programming. In Aksit, M. and Mat-
suoka, S., editors, ECOOP’97 Object-Oriented Pro-
gramming, volume 1241 of Lecture Notes in Com-
puter Science, pages 220–242. Springer Berlin Hei-
delberg.

Kusspuswami, S., Palanivel, K., and Amouda, V. (2007).
Applying aspect-oriented approach for instance adap-
tation for object-oriented databases. In Proceedings of
the 15th International Conference on Advanced Com-
puting and Communications, pages 35–40, Washing-
ton, DC, USA. IEEE Computer Society.

Monk, S. and Sommerville, I. (1993). Schema evolution in
oodbs using class versioning. SIGMOD Rec., 22:16–
22.

Paterson, J., Edlich, S., Hrning, H., and Hrning, R. (2006).
The Definitive Guide to db4o. Apress, Berkely, CA,
USA.

Pereira, R. H. and Perez-Schofield, J. (2010). An aspect-
oriented framework for orthogonal persistence. In
Information Systems and Technologies (CISTI), 2010
5th Iberian Conference, pages 1 –6.

Pereira, R. H. and Perez-Schofield, J. B. G. (2011). Orthog-
onal persistence in java supported by aspect-oriented
programming and reflection. In Information Systems
and Technologies (CISTI), 2011 6th Iberian Confer-
ence, pages 1 –6.

Pereira, R. H. and Perez-Schofield, J. B. G. (2012).
Database evolution on an orthogonal persistent pro-
gramming system - a semi-transparent approach. In
Information Systems and Technologies (CISTI), 2012
7th Iberian Conference, pages 1 –6.

Rashid, A. (1998). Sades - a semi-autonomous database
evolution system. In Workshop ion on Object-
Oriented Technology, ECOOP ’98, pages 24–25, Lon-
don, UK. Springer-Verlag.

Rashid, A. (2002). Aspect-oriented schema evolution in ob-
ject databases: A comparative case study. In Work-
shop on Unanticipated Software Evolution.

Rashid, A. and Leidenfrost, N. A. (2004). Supporting flex-
ible object database evolution with aspects. In Kar-
sai, G. and Visser, E., editors, GPCE, volume 3286
of Lecture Notes in Computer Science, pages 75–94.
Springer.

Rashid, A. and Leidenfrost, N. A. (2006). Vejal: An as-
pect language for versioned type evolution in object
databases. Workshop on Linking Aspect Technology
and Evolution (held in conjunction with AOSD).

Evolution�of�the�Application�and�Database�with�Aspects

313

