
Processes Construction and ࣊-calculus-based Execution and Tracing

Leonid Shumsky, Vladimir Roslovtsev and Viacheslav Wolfengagen
Department of Cybernetics, Moscow Engineering Physics Institute “MEPhI”, Kashirskoe sh., Moscow, Russia

Keywords: Business Process Construction, ߣ-Calculus, ߨ-Calculus, Business Process Execution Semantics, Business
Process Debugging.

Abstract: Many of the state-of-the-art business-process modelling and managing techniques rely on methods that lack
sound theoretical basement, though the latter being of advantage, as is acknowledged by more and more
people, in practical information system design and implementation. The software (and, in fact, the very
processes the software is supposed to automate) tend to become ‘properly designed’, thus ensuring higher
degrees of software (and processes) extensibility, adaptability, better verification and execution control. In
this paper we discuss a constructive approach to process design and we present process execution semantics
based on ߨ-calculus and process analysis and debugging technique based on formalized execution logs.

1 INTRODUCTION

Many of the state-of-the-art business-process
modelling and managing techniques rely on methods
that lack sound theoretical basement, though the
latter being of advantage, as is acknowledged by
more and more people, in practical information
system design and implementation. The software
(and, in fact, the very processes the software is
supposed to automate) tend to become ‘properly
designed’, thus ensuring higher degrees of software
(and processes) extensibility, adaptability, better
verification and execution control. The formalisms
in use are mostly variations of network, state
diagram (Petri Coloured Nets), document-oriented
or event-oriented models, or sometimes are a mix of
those (IDEF family, UML). Many models in use
aren’t exactly formal, or at least aren’t used
formally, acting more like an instrument for
visualization. However, symbolic models appear to
be more efficient when it comes to automated
processing.

We suggest using for this purpose ߨ-calculus and
 calculus for high-level-ߣ :calculus in conjunction-ߣ
(domain-oriented) processes internal structure
representation and ߨ-calculus to capture
(sub)processes interaction and execution semantics.
 calculus focuses on variable binding and-ߣ
substitution, while ߨ-calculus deals with names
whose sound meaning depends partly on its
occurrence context and partly on the chosen

evaluation semantics, so that a name may refer to a
data object, data transfer channel, atomic process,
variable, etc. This uniformity in ߨ-calculus is what
makes it particularly suitable to serve as a
standardized, extensible framework suitable to use
across multiple systems, each using its own specific
extension of the standard version. ߨ-calculus
features dynamic process construction, passing and
executing sub-process, higher-order functions
valuation.

We show how the main notions of the process
theory are modelled in the ߨ-calculus, and how to
benefit from using ߨ-calculus in solving the main
tasks. We show how process execution ‘formalized
logs’ may be used to debug and verify processes
(something also known as ‘process mining’).

The rest of the paper is organized as follows.
Section 2 presents an abstract machine based on ߨ-
calculus to execute processes. Section 3 discusses an
approach to build process execution logs as formal
entities that may be used for process correctness
accession. Section 4 presents a higher-level,
methodological, insight process construction

2 PI-CALCULUS AS PROCESS
EXECUTION SEMANTICS

This section presents an abstract machine based on
 calculus to execute processes, see (Milner, Parrow-ߨ

448 Shumsky L., Roslovtsev V. and Wolfengagen V..
Processes Construction and �-calculus-based Execution and Tracing.
DOI: 10.5220/0004972304480453
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 448-453
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

and Walker, 1992).

2.1 Basic Definitions

The alphabet of π-calculus contains the following
components. The first one is the set of “names”,
denoted by ࣨ, consisting of small letters. The
second one is the set of processes, denoted by capital
letters. Terms of π-calculus are constructed
inductively by adding prefixes to existing processes
or by ‘joining’ existing (complex) processes. The
available construction operations are represented by
the following grammar:

ܲ ∷ൌ 	૙	|	̅ݕݔ. .ሻݕሺݔ|	ܲ ܲ	|ሺݔሻܲ	|ሺܲ|ܳሻ	|	! ܲ

In this grammar the sign 0 stands for the empty
process. The prefix ̅ݔሾݕଵ, … , ௡ሿ describesݕ
transferring the names 	ݕଵ, … , ௡ over the linkݕ
(channel) x; the prefix ݔሺݕଵ, … , ௡ሻ describesݕ
receiving data items and binding the names ݕଵ, … , ௡ݕ
to these data items, respectively. Communication
between processes is an act of sending some data via
a certain name (channel) in one process (ݔതݖ) and
receiving them through the same name (channel) in
another one (ݔሺݕሻ. ܲ), the latter, informally
speaking, sort of ‘listening’ for any ‘messages’. In
.ሻݕሺݔ ܲ the identifier ݕ is bound, so that when a
process receives a message, a data item ݖ, this item
is being substituted instead of every unbound
occurrence of ݕ in ܲ: ܲሾݕ/ݖሿ. Another way of
bounding name in π-calculus is creating a local
name ሺݔሻܲ. This statement bounds name x in the
process P – such a name becomes locally defined in
P and no other inner process cannot interact with P
using that name. Meaning of this instruction is to
create inner, protected or temporal channels. The
grammar of calculus determines two operations for
creating new processes from existing ones – parallel
execution ሺܲ|ܳሻ and replication ! ܲ. The set ࣨ	 is
the most biggest set of identifiers in use. If it is
required for any special task, we can select subsets
of ࣨ. For example, one might describe a
(computational) process via a term of ߣ-calculus and
‘embed’ this term directly into the ߨ-calculus
process. That would require selecting a subset ࣰ of
variables in ࣨ.

Note that such an embedding takes some
additional efforts so as to bridge the gap between the
two worlds – that of the ߣ-calculus and that of ߨ-
calculus. In the next section we will address this
issue. The rest of this section describes some
prerequisites.

By definition, α conversion is renaming of each
occurrence of bound variable in term. In general, if

,ଵݔሾ݋ ௡ሿ is a prefix which bounds identifiersݔ	…
1ݔ … /ଵݕሾ݋ in some term P, then substitution ݊ݔ
,ଵݔ … , .௡ሿݔ/௡ݕ ሾݕଵ/ݔଵ, … , ௡ሿܲ is α conversion. Ifݔ/௡ݕ
term Q could be derived from term P by finite
amount of α conversions then P and Q are α
equivalent. π-calculus provides two ways to bound
names – prefix of data receive and creating local
name – but using extension could increase this
amount.

We will use Chemical Abstract Machine
(ChAM), see (Berry and Boudol, 1992), to describe
execution of processes. Execution of process with
ChAM suggests building from source process
“molecular solution” (later we will write just
“solution”) and application to this solution suitable
rules of reaction. Reactions could be either
reversible, denoted with ↔ or irreversible, denoted
by →. Chemical Abstract Machine is much more
flexible and easier to extend than simple operation
semantic, so will prefer it for our model. The
minimum set of rules required to cover basic
functionality of π-calculus grammar is:

ሼ|ܲ | ܳ|ሽ ↔ ሼ|ܲ, ܳ|ሽ Parallel execution
ሼ|! ܲ|ሽ ↔ ሼ|ܲ, ! ܲ|ሽ Replication
൛หሺݔሻܲ , ܳ1, … , ܳ݊หൟ
→ ሺݔሻ൛หܲ, ܳ1, … , ܳ݊หൟ, ݔ
∉ ,൫ܳ1ܰܨ … , ܳ݊൯

Local variable
creation

ሼ|૙, ܲ|ሽ ↔ ሼ|ܲ|ሽ Empty process
ሼ|ݔതݕ. ܲ|ሽ → ሼ|ݔതݕ, ܲ|ሽ Asynchrony
ሼ|̅ݕݔ, .ሻݖሺݔ ܳ, ܴ|ሽ → ൛หൣݕ ⁄ݖ ൧หܳ, ܴൟ Communication

2.2 Capturing Semantics Extension

We introduce the following definitions for the
mechanism of terms interpretation in a subject
domain. First, we will select a subset of available,
pairwise distinct, π-calculus names ࣦ ∈ ࣨ. The set
ࣦ ∪ ߬ we will call labels. A label is either a name of
π-calculus or the special identifier τ, which means an
unspecified label (‘label is not set’). The difference
between labels and ordinary names of the π-calculus
is their relation with names binding and α
conversion. The main feature of labels is that a label
could not be bound and hence could not be subject
for α-conversion. Adding labels changes the
grammar of term construction in the following way:

ܲ ∶≔ ,ଵݕሾݔ̅ … , .௡ሿݕ ܲ, ሼݔ, ଵݕ 	… , ௡ሽݕ ⊆ ࣨ
ܲ ∶≔ ,ଵݕሺݔ … , .௡ሻݕ ܲ, ݔ ∈ ࣨ, ሼݕଵ, … , ௡ሽݕ ⊆ ࣨ\ࣦ
ܲ ∶≔ ሺݔሻܲ, ݔ ∈ ࣨ\ࣦ ܲ ∶≔ ܲ|ܳ ܲ ∷ൌ !ܲ

We will denote this grammar by Γ௟. If a process
term P is valid in this grammar, that fact we will
denote with Γ௟ ⊢ ܲ. This grammar shows that labels
can stand for transmitted data or channel namesused
for communication.

Processes�Construction�and�PI-calculus-based�Execution�and�Tracing

449

As we have already mentioned, a regular π-
calculus term describes the structure of a process
execution, rather than a subject area process itself.
The difference lies in understanding the reduction of
corresponding terms. Reduction of a regular π-
calculus term (process execution structure term) has
no additional meaning – it shows only the order of
execution. On the other hand, reduction of a subject
area process describes the use and interaction of
subject area’s entities. Every reduction step captures
additional meaning of changing of these objects.

 We will define the notion of execution context
Δ for the term ܲ	|	Γ௟ ⊢ ܲ as a first step to building
subject area process model. This context is a map
with keys ݈ ∈ ࣦ, and values are conceptual model
objects connected with this label and represented,
using the approach from (Shumsky et al., 2013).
Structure model of a process ܯ௦ is a term of π-
calculus, which has the empty execution context or it
does not have a connected notion for every label,
used in the model. Conceptual process model ܯ஼ is
a term, which has at least one occurrence for each
label in execution context.

ܲ, Δ ∈ ஼ܯ ⇒ Γ௟ ⊢ ܲ	&	∀݊ ∈ ሺܲሻܰܨ ∩ ࣦ → ݊ ∈ Δ
Conceptual process model
ܲ, Δ ∈ ௌܯ ⇒ Γ௟ ⊢ ܲ	&		∃݊ ∈ ሺܲሻܰܨ ∩ ࣦ → ݊ ∉ Δ
Structure process model

The difference between these two types of
models is that non-redex terms in the structural
model may be reduced in the conceptual model due
to the use of the functions associated with the labels.
The functions are taken from process execution
context, and additional reduction rules for the
abstract machine are required:

ሼ|ሺ݈ଵሺݕሻ. ܲ, ܴሻሺ݈ଵ, ܿଵ; ,ݕ ܿଶ; Δሻ|ሽ →
൛หሺሾ݈ଶ/ݕሿܲ, ܴሻ൫݈ଶ, ↓ఉ ܿଵܿଶ; Δ൯หൟ

(recieving data)
൛ห൫݈ଵഥ݈ଶ, ܴ൯ሺ݈ଵ, ܿଵ; ݈ଶ, ܿଶ; Δሻหൟ → ൛ห൫↓ఉ ܿଵܿଶ, ܴ൯ሺΔሻหൟ

(sending data)

These rules describe communication of processes
with external systems by executing functions,
defined for channel-labels. Data to send are
described with label and should bу taken from
process or produced by executing inner function,
data to receive are described by template name,
which is filled by channel. There are several
approaches to execute terms of λ-calculus within
terms of π-calculus, see (Boudol, 1998) and (Milner,
1992), so we do not go in further details here.

If term ܲ ∈ ஼ܯ and ܳ ∈ ܲ ௌ andܯ ൌఈ ܳ, then
we will state that process P implements the structure
of the process Q, or just P is an implementation of
Q.

An interpretation of a π-calculus process is a
function, which maps structure model of the process
to its specific implementation in some chosen
subject area, defined by interpretation domain Δࣣ.
The similar approach is used in interpretation of
conceptual models, for example for description
models interpretation (Baader et al., 2003).

∙ࣣ∶ ௌܯ ൈ Δࣣ → ;஼ܯ Γ௟ ⊢ ܲ ∈ ௌܯ → Γ௟ ⊢ ࣣܲ ∈ ஼ܯ

Interpretation domain is a mapping with
structure similar to execution context of a process,
which contains all labels and conceptual model
entities specific to the subject area. The
interpretation function processes an input term as
follows: for each label in the term it either inserts in
processes’ context a value from the interpretation
domain, if it is possible, or replaces the label with
some regular name:

ሺ૙, Δሻࣣ ൌ ૙, Δ
ሺܲ | ܳ, Δሻࣣ ൌ ࣣܲ | ࣣܳ, Δ
ሺ! ܲ, Δሻࣣ ൌ ! ࣣܲ, Δ
ሺ̅ݔሾݕଵ, … , .௡ሿݕ ܲ, Δሻࣣ ൌ ሾݔ, ,ଵݕሿࣣതതതതതതതതሾሾߙ ,ሿࣣߙ … , ሾݕ௡, .ሿࣣሿߙ ࣣܲ, Δ ∪
Δࣣሺݔ, ,ଵݕ … , ௡ሻݕ
ሺݔሺݕଵ, … , .௡ሻݕ ܲሻࣣ ൌ ሾݔ, ,ଵݕሿࣣሺߙ … , .௡ሻݕ ࣣܲ	, Δ ∪ Δࣣሺݔሻ

Operator ሾ∙, ሿࣣ returns its first argument if itߙ
exists in interpretation domain and α-conversion of
that argument otherwise.

The ideas of this section are used to describe
processes tracing.

3 TRACING PROCESSES
EXECUTION USING
‘SEMANTIC’ LOGS

The main purpose of every modelling tool is to
provide means for adequate reflection those featires
of real objects in subject areas that are relevant in a
given context, and that includes making certain
hypotheses about these objects and their formal
verification. In process modelling a common way
for conformance checking of models are functions of
fitness, simplicity, precision, and generalization (van
der Aalst, 2013). This section focuses on applying a
precision function to process models of π-calculus.

A starting point for any measurements of models
conformance checking is the notion of a process log.
In general, a log is a set of process traces – results of
a single execution of that process represented as a
sequence of actions and action results. Models
conformance analysis is based on conformance
checking between process models and existing logs
– specifically, on checking whether or not a given
log could be obtained by execution of that model/

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

450

Other factors are: how many new traces could be
obtained from that model, which traces are
redundant, etc.

Execution log for a process conceptual model is
represented as a list of traces. Our approach involves
representation of the trace as a function with
predefined structure, which relates specified
characteristics of processes execution with ChAM.
In this paper we will use following characteristics –
type executed action (tracked reactions of chemical
machine), labels, involved in reaction (quantity of
labels is defined by reaction type and processes
structure) and conceptual model’s objects, which
connected with selected labels. We will use special
extension of our mechanism of processes execution
to define and select these trace’s characteristics. This
extension is needed to observe applied reactions of
ChAM.

The main idea of this extension is to execute
processes not directly with ChAM, but with the help
of some external tool, which allows retracing
process execution progress. This extension will be
realized with operator N with following rules of
application to ChAM solution:

ܰሺሼ|ሺ݈ଵሺݕሻ. ܲ, ܴሻሺ݈ଵ, ܿଵ; ,ݕ ܿଶ; Δሻ|ሽሻ ൌ
ሾ݁݋, ሺ݈, ,ሻݕ ሺܿଵ, ܿଶሻሿ ∷ ܰ൫൛หሺሾ݈ଶ/ݕሿܲ, ܴሻ൫݈ଶ, ↓ఉ ܿଵܿଶ; Δ൯หൟ൯
ܰ൫൛ห൫݈ଵഥ݈ଶ, ܴ൯ሺ݈ଵ, ܿଵ; ݈ଶ, ܿଶ; Δሻหൟ൯ ൌ
ሾ݁݅, ሺ݈ଵ, ݈ଶሻ, ሺܿଵ, ܿଶሻሿ ∷ ܰ൫൛ห൫↓ఉ ܿଵܿଶ, ܴ൯ሺΔሻหൟ൯
ܰሺሼ|ሺ݈̅ݔଵ, .ሻݖሺݔ ܳ, ܴሻሺ݈ଵ, ܿଵ; Δሻ|ሽሻ ൌ
ሾܿ, ሺ߬, ݈ଵሻ, ܿଵሿ ∷ ܰ	൫൛หൣ

ݕ
ൗݖ ൧หܳ, ܴൟ൯

ܰሺܵሻ ൌ ܵ	ࢌ࢏ ↓஼௛஺ெൌ ሺܵܰ	ࢋ࢙࢒ࢋ	ܵ	࢔ࢋࢎ࢚	ܵ ↓஼௛஺ெሻ

The operator N of process observation can be
implemented in any variation of process modelling
system, since it does not depend on specific aspects
of modelling. This operator maps a molecular
solution of the ChAM to a list of tracked reactions,
the last element being the process execution result
(which is a solution with no reducible reaction).
Note that π-calculus names that are not labels do not
occur in the log, the empty label τ being in their
stead. This is because a name that is not a label is
not an identifier, either, and has no interpretation
after the process being executed, so that such a name
will be redundant at best.

ChAM reduction rules are not assigned priority
rating, so that they may be executed at an arbitrary
order. The operator N helps in solving the problem,
assigning priorities to operations, so that every time
there more than one candidate rule, the one with
highest priority is preferred. That does not change
the ChAM itself, but the log depends on the process
model only.

Process execution log item is represented with a
term that follows these two rules: first, it must

contain information on process execution progress,
and second, it must contain a routine, a function, to
check its correctness. Presently, we stick to the
simplest solution (which also helps to make things
more clear):
ܶ ൌ .ݒߣ ሺݖݕݔߣ. ሾݒ. 1 ൌ .ݒ&ሾ	ሿݔ 2 ൌ .ݒሿ&ሾݕ 3 ൌ ,ݐሿሻሾݖ ݈, ܿሿ

Here, the constants t,l,c correspond to specific
values relating to the log item, and the internal
expression performs a simple parameter
correspondence. Note that this check may be of
arbitrary complexity, given that it passes the type
checking. For instance, we may take into account the
label’s and canonical model objects’ weights (van
der Aalst et al., 2011), or other data. Such
encapsulation of the checking method into the log
item results into additional flexibility allowing
various checking algorithms for each process model,
and even for each subprocesses of the same process.

A simple correspondence checking function
(routine) Ch that will be described later takes a
process execution log and a model against which the
log is to be checked. The result is either a discrete
(e.g. binary) or continuous value that shows
conformance degree. All the checking logic
encapsulated in the log entry, the checking
function’s task is simply to initiate parallel execution
of the process using the execution control operator
and to run each execution step against a current log
item object. After that, the checking function must
do the right aggregate operation and construct a
well-formed resulting object.

We will build such a function on a step-by-step
basis. First, we construct a function of parallel
execution of the process log and model, the former
being the more difficult that not every reduction step
has a corresponding log item (not all reduction steps
are logged). We overcome this difficulty by defining
an operator Գ	that applies the defined above operator
N to the process until the next logged reduction is at
last executed:

Գܵ ൌ ሺܰܵሻ݄ݐ݈݃݊݁	ࢌ࢏	 ൌ ܵܰ	ࢋ࢙࢒ࢋ	Գܵ	࢔ࢋࢎ࢚	1
Now, our function that starts parallel process and

log execution will look like this:
,ܮሾ݄ܵܥ ܲሿ ൌ
 	Գܲሻ	ሻሺ݄݁ܽ݀ܮሺ݄݀ܽ݁	ࢌ࢏
,ܮ	݈݅ܽݐሺ݄ܵܥ	࢔ࢋࢎ࢚ 	Գܲሻ	݈݅ܽݐ
݄ܵܥ	ࢋ࢙࢒ࢋ ቀܮ, ܲ ∪ ൫ܤሺ݄݁ܽ݀	Գܲሻ൯ቁ

The idea is, whenever a log item cannot be
obtained from the model, we add a new element that
strictly corresponds to the missing item and resume
the checking routine.

Parallel execution function ChS is used as a basis
for building the simple checking function Ch, and
there are three major strategies (some of their
combinations are also valid) to build it:

Processes�Construction�and�PI-calculus-based�Execution�and�Tracing

451

1. The checking routine should abort on the first
encounter of an invalid log item that cannot be
obtained from the model;

2. The routine could count all the erroneous items
in the log;

3. We could count all items additional items that
remained unchecked after the routine finished.

The checking process may be augmented to enable
correct model evaluation and increase correctness,
using a typed system (Pierce and Sangiorgi, 1993).

4 COUPLING WITH THE
APPLICATIVE APPROACH

Applicative Computing is a way of organizing and
performing computing based on compositional
construction of computational blocks out of simpler,
previously build blocks, each block being closed and
with no free variables (Wolfengagen, 2010). The
formal means of constructing those blocks are
studied in applicative computational systems (ACSs)
which focus on developing the notion of object as a
functional entity that may be applied to an argument
object or passed as an argument to another object.
As it turns out, ACSs are particularly suitable for
building domain-specific frameworks for
compositional processes design, especially their
typed versions, and especially in conjunction with
semantic models (e.g. description logic or a frame
theory) when concepts are embedded in the
computational model as types. In (Wolfengagen,
1984) embedding a frame theory into ߣ-calculus is
shown, and (Shapkin, 2010) shows embedding
description logic into the typed ߣ-calculus.

In this section we give a number of
methodological considerations on lambda-calculus
and combinatory logic from the perspective of
process construction.

4.1 The Combinatory Logic Approach

An important notion in ACSs is that of a
combinator. This notion comes from combinatory
logic and means an object build out of a predefined
set of ‘constants’ – initial objects, in the sense of
(Wolfengagen, 2010). The only main object
constructor is the application operation, though in
applied theories others may be introduced, either as
syntactical elements denoting some (initial)
combinators, or as meta-level entity, as suggested in
(Roslovtsev and Luchin, 2009) and (Roslovtsev et
al., 2013).

Basically, all combinators are built out of
constant atomic objects having no references to the
environment of any kind, thus eliminating side-
effects. This is a very helpful feature that reduces the
number of state synchronization points, concurrency
issues, etc., and facilitates and improves overall
design.

The combinatory logic philosophy is that of
describing things in terms of a fixed set of basic
(initial) entities, some of them considered atomic.
The basis is extensible, to some degree, but the only
way for extension is to turn some of the complex
objects to the initial category.

4.2 The Lambda-calculus Approach

In ߣ-calculus objects are build, basically, out of
variables using the application and functional
abstraction (meta-)operators. Constants, if they are
Turing-computable objects, may be synthesised, so
that philosophically ߣ-calculus suggest an adaptive
approach when the computational basis is actually
synthesised, perhaps dynamically, through detection
of the most commonly used sub-objects
(expressions) and their injection in the system as
initial objects.

The notion of a combinator may be naturally
extended to the case of ߣ-calculus: a combinator is
an object with no free variables, so in a combinator
all occurring variables are bound with the functional
abstraction operator. ߣ-calculus may be seen a
reference theory, of sorts, in that an occurrence of a
bound variable in a term is actually a reference to a
specific item or a specific spot in the outside
environment. This formalises and facilitates objects
dependencies control, and also helps in localizing
and controlling side effects when they are indeed
intended and necessary (though at a cost of some
technical complexity).

Again, the system may be extended in two ways:
the conventional one consists in adding new
combinators to the set of initial objects,
complemented, perhaps, with some ‘syntactic
sugar’, as is shown in (Barendregt, 2012, ch. 6); the
second way (already mentioned above), simplifies
capturing the domain-specific semantics.

4.3 Two-level Process Modeling

The best part of the paper was devoted to explaining
how ߨ-calulus may be used for not only process
modelling and execution, but also for process tracing
and verification. Though ߨ-calculus itself may be
used for process modelling and even developing
process algebras, its primitives are a little too ‘low

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

452

-level’ from the perspective of subject area sematics.
We suggest that higher-level process modelling,

more aware of subject domain semantics, will profit
from using ACSs. First, ACSs are computational
systems that rely on constructive definition of
processes (and data objects, too) and explore their
equivalent transformations (including optimizations,
in some contexts). Second, very powerful type
systems for ACSs are known, and, in fact, developed
as their part; besides, connection with variations of
logics are more or less well explored, which helps in
direct usage of subject domain concepts and
relationships in processes (and data objects)
definition.

Though there are numerous abstract machines
for ACSs, distributed and parallel execution remains
yet relatively poorly explored; ߨ-calculus and, in
particular, our approach would fill the gap to some
extent. The idea, briefly speaking, is to transform the
semantic-aware applicative model to a more
‘lightweight’ system based on ߨ-calculus to perform
actual execution.

5 CONCLUSION

In this paper we presented an approach to business
process execution tracing. Usually, executing a
process on an abstract machine (AM) comprises a
series of steps, each consisting in executing a
simple, relatively low-level, instruction that changes
AM’s current state. However, given an arbitrary step
(and a number of preceding steps) it is difficult to
evaluate whether process execution goes as
expected, or which phase of the process is being
actually executed. What we suggested may be seen
as an extension an AM for executing ߨ-calculus
processes that facilitates this kind os ‘semantic’
process debugging.

REFERENCES

van der Aalst, W. M., van Dongen, B. F., and Adriansyah,
A., 2011. Conformance checking using cost-based
fitness analysis. In Proc. of the 15th IEEE
International Enterprise Distributed Object
Computing Conference (EDOC), pp. 55–64.

van der Aalst, W. M., 2013. A general divide and conquer
approach for process mining. In Proc. of the Federated
Conference on Computer Science and Information
Systems (FedCSIS), pp. 1–10.

Barendregt, H., 2012. The Lambda Calculus, its Syntax
and Semantics. Studies in Logic, Mathematical Logic
and Foundations, vol. 40, College Publications, 2012.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and

Patel-Schneider, P., 2003. The Description Logic
Handbook: Theory, Implementation and Applications.
Cambridge University Press

Berry, G. and Boudol G., 1992. The Chemical Abstract
Machine. Theoretical computer science, vol. 96, no. 1,
pp. 217–248, 1992.

Boudol, G., 1998. The π-calculus in direct style. Higher-
Order and Symbolic Computation, vol. 11, no. 2, pp.
177–208.

Milner, R., 1992. Functions as processes. Mathematical
structures in computer science, vol. 2, no. 02, pp. 119–
141.

Milner, R., Parrow, J., and Walker, D., 1992. A Calculus
of Mobile Processes. Information and Computation,
vol. 100, no. 1, pp. 1–40.

Pierce, B. and Sangiorgi, D., 1993. Typing and subtyping
for mobile processes. In Proceedings of Eighth Annual
IEEE Symposium on Logic in Computer Science,
LICS’93, pp. 376–385.

Roslovtsev, V.V., Luchin, A.E., 2009. Concept of Higher-
Order Applicative Computational Environment. In
Proceedings of the 11th international workshop on
computer science and information technologies
CSIT'2009, pp. 48-53.

Roslovtsev, V., Wolfengagen, V., Shumsky, L.,
Bohulenkov, A. and Sakhatskiy, A., 2013. Applicative
Approach to Information Processes Modeling.
Towards a Constructive Information Theory. In
Proceedings of the 15th International Conference on
Enterprise Information Systems (ICEIS 2013), Vol. 2,
Angers, France, July 4-7, 2013. – pp. 221-226

Shapkin, P., 2010.Computing with Concepts in am
Applicative Programming Language. In Proc. of the
2nd International Conference on Applicative
Computational Systems (ACS’2010), Moscow,
Russia, 2010. – p. 205-213. [In Russian]

Shumsky, L., Roslovtsev, V., Belyaev, E., Bordonos, A.,
Kazantsev, N. A Synthetic Approach to Building
Canonical Model of Subject Area in Integration Bus.
IEEE ISKO Maghreb Proceedings 2013

Wolfengagen, W.E., 1984. Frame Theory and
Computations. In Computers and Artificial
Intelligence, Vol. 3, No. 1, 1984. pp. 3-32.

Wolfengagen V.E., 2010. Applicative computing. Its
quarks, atoms and molecules. Ed. Dr. L.Yu.
Ismailova. Moscow, Russia: Center JurInfoR, Ltd.

Processes�Construction�and�PI-calculus-based�Execution�and�Tracing

453

