
Cloudifying Applications with ARTIST
A Global Modernization Approach to Move Applications onto the Cloud

Leire Orue-Echevarria1, Juncal Alonso1, Hugo Brunelière2, Andreas Menychtas3,
Philip Langer4 and Manuel Wimmer4

1TECNALIA, ICT-European Software Institute Division, Parque Tecnológico Ed #202, E-48170 Zamudio, Spain
2AtlanMod Team Inria, Mines Nantes & LINA, Nantes, France

3National Technical University of Athens, Athens, Greece
4Vienna University of Technology, Vienna, Austria

Keywords: Software Modernization, Software Migration, Cloud Computing, Cloud Business Model, Feasibility
Assessment, Reverse Engineering, Forward Engineering, Cloud Provider Benchmarking,
CLOUDML@ARTIST.

Abstract: Cloud computing is still considered a disruptive technology in spite of being part of our lives for several
years now. However, cloud computing is much more than a technology; it is also a business model. Many
companies that have sold software in a traditional way are now attending to this revolution, wondering if
that new technological and business shift is adequate for them, if they would be able to move their
application towards the cloud, transforming alongside the company in a service oriented company and how
they could do that. The European Project ARTIST aims to guide companies in this transition by providing
them with methods, techniques, and tools, from when the migration is just a thought, until it can be
provisioned as a service, taking into account technical, business and organizational aspects.

1 INTRODUCTION AND
MOTIVATION

Much more than the technology that supports it,
cloud computing is the latest step in the evolution of
the IT industrialization process. Most CIOs wish to
be on the “cloud train”, and therefore cloud adoption
is growing in popularity for enterprises and
independent software providers. One way to quickly
move to the cloud is by developing new, cloud-ready
software applications that can be delivered through
PaaS solutions like Google App Engine and Azure.
But when cloudifying existing software applications,
significant re-engineering and adaptation is needed.
Only after those steps have been performed, existing
applications can be delivered and offered effectively
in the software-as-a-service (SaaS) model.

However, this transition can be complex, time-
consuming and expensive, especially when not all
applications can be moved to cloud and each
application has its own business specific migration
requirements that derive on the necessity of different
problem approximation strategies. Questions such as

How do you know which applications are best
candidates for fitting the cloud? Are there any tools
that can help with application cloudification? How
can enterprises take advantage of the flexibility and
scalability of the cloud while avoiding application
migration frustrations? arise.

Due to these arising needs, several ongoing
projects (e.g., cf. ARTIST (ARTIST, 2012),
ModaClouds (MODAClouds, 2012), PaaSage
(PaaSage, 2012)) explore automation possibilities
for moving to the Cloud from a modeling
perspective.

Besides, cloud providers’ compatibility issues,
vendor lock in (e.g. being non interoperable) and
performance concerns still keep cloud-wary IT
managers from getting more comfortable with the
idea of moving applications to the cloud.

This paper proposes a global modernization
framework developed in the context of the ARTIST
European project which understands the
cloudification of an application as a global concept
involving technical, business and organizational
aspects and provides methods, techniques, and tools
to guide companies in this transition.

737Orue-Echevarria L., Alonso J., Brunelière H., Menychtas A., Langer P. and Wimmer M..
Cloudifying Applications with ARTIST - A Global Modernization Approach to Move Applications onto the Cloud.
DOI: 10.5220/0004975107370745
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (MultiCloud-2014), pages 737-745
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 THE ARTIST APPROACH

2.1 ARTIST Methodology Overview

ARTIST Migration and Modernization Methodology
(ARTIST WP6, 2013) has been implemented to
enable the effective migration of legacy applications
to cloud environments. Legacy applications have
some unique characteristics which introduce many
challenges for their modernization and migration to
cloud environments. On one hand, there are
technical issues related with the nature of the
specific application and on the other, the business
aspects that need to be considered in offering an
application “as a service”. Often the legacy
applications are not cloud-enabled, following
monolithic architecture design approaches and
implemented in technologies which may be
deprecated. The modernized version of the
applications needs the equivalence of functionality
and performance as well as business continuity. This
does not only require adaptation of the software and
integration of modern services of cloud solutions on
a technical level (monitoring, security etc.), but also
changing the business processes and models based
on which the application is offered to the customers
so as to exploit the strategic advantages of clouds.

Figure 1: The ARTIST methodology overview.

The ARTIST Methodology consists of three
major phases which are explained below. These
phases are:

 Pre-migration: In this phase, a study on the
technical and economic feasibility will be
conducted as a prelude to perform modernization
of the legacy system.

 Migration: This phase will perform the
migration process itself, by using reverse as well
as forward engineering techniques to deploy the
legacy system in the cloud.

 Post-migration: In this phase the modernized
application will be deployed on the target
environment and checked if both technical and

business objectives established in the pre-
migration phase have been achieved. Moreover,
a certification model will be created in order to
increase customer confidence in the SaaS
system.

2.1.1 Methodology Process Tool

The ARTIST methodology is a detailed (ARTIST
WP6 2 2013), but also generic, methodology that
covers all migration tasks and processes. In order to
practically support this methodology, we incorporate
a central component in the overall architecture: the
ARTIST Methodology Process Tool (MPT).

The objective of the ARTIST MPT is to allow
the customization and instantiation of the ARTIST
Migration Methodology for end-users based on the
Migration Assessment results of the particular
migration project. The MPT, exploiting the results
processed and obtained during the assessment,
defines a customized modernisation process, tailored
to the concrete legacy application needs. The tool
shows the customized process in detail, its tasks
broken down step-by-step, including hooks to
invoke the tools required to accomplish each task
acting as an umbrella for ARTIST tools.

During the first year of the ARTIST Project, we
worked on the requirements analysis to effectively
design and implement MPT. Besides the
requirements analysis, we also investigated the
possible implementation approaches. The identified
approaches are:

 Eclipse-based

 Web-based

 Spikes Together proprietary solution (SPIKES,
2013)

 Hybrid (Eclipse + Web)

After a first analysis on the pros and cons of each
approach, the Hybrid solution seems to be the most
adequate one. It combines the smooth integration
capabilities of the Eclipse based solution (as most of
the ARTIST tools will be Eclipse based) and the
adaptability of the Web solution for collaborative
development environments. In the next year of the
project the final implementation technology will be
selected and the first version of the prototype
implemented.

2.1.2 Pre-migration Phase and Supporting
Tools

The pre-migration takes place even before the
migration starts. Software vendors need to check if

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

738

what they want to achieve with a specific migration
project is actually feasible to them in terms of
technology, processes and business (ARTIST
D5.1.1, 2013).Once a company has realized that
their current product is not sustainable as-it-is any
more, the first big challenge faced is therefore the
decision of what is more convenient, to migrate or to
start from scratch.

ARTIST proposes a pre-migration phase that
starts off with the characterization of the legacy
application from two points of view: technical and
business, and follows up with a technical feasibility
analysis and totally intertwined, an economic and
business feasibility analysis. The result of this pre-
migration phase is a Go / NoGo to the migration.

The first step of the pre-migration is the
Maturity assessment with the main objective of
analysing how mature the application is in terms of
technology (i.e. architecture, programming
language, database, integration with 3rd party
offerings, installation requirements, versioning, etc.)
and business (i.e. current business model, existence
of SLA, maintenance and upgrades procedures,
customer service, etc.) and how the customer wants
the application to be in those two axes once the
application is migrated. The evaluation of the
current situation and the ideal situation allows
ARTIST to perform a gap analysis, described in
terms of a technical feasibility analysis and the
business feasibility analysis.

The Maturity Assessment in ARTIST is
supported by the Maturity Assessment Tool
(MAT). which focuses on two perspectives, business
and technical in both situations (initial and final) and
provides as a result a picture with the position in a
quadrant of the initial and the final situation of the
application enriched by a set of high level
recommendations and goals to be reached along the
migration project (the current prototype supports the
maturity analysis, and the positioning of the
application).

The second activity to be performed in the pre-
migration phase is the Feasibility Analysis which
comprises a Technical Feasibility & Business
Feasibility analysis.

On the one hand the Technical Feasibility
Analysis aims at supporting ARTIST users on the
early technical assessment of the migration of a
legacy application to the cloud. No matter how
simple the application may be the technical
feasibility analysis may require non negligible
efforts and concrete expertise to be accomplished.
The support for decision making at this early pre-
migration stage, can benefit from a detailed

breakdown of the migration process into a set of
technical tasks, to estimate their required efforts, and
to identify other resources needed to accomplish
every task, including the selection of the appropriate
technical expertise or even the detection of
dependencies among tasks or other technical
intricacies.

ARTIST supports the technical feasibility
analysis through the Technical Feasibility Tool
(TFT).The aim of the TFT is to estimate the efforts
required to migrate a legacy application to a selected
target cloud environment, fulfilling some migration
goals and requirements and automating the process
as much as possible. Our implementation of TFT
extends the Cloud Migration Point (Tran, 2011)
approach by automating some steps, using
techniques such as Model Driven Reverse
Engineering (MDRE), Software Metrics or DSL-
based heuristics, notably to extract knowledge of the
legacy system, propose migration strategies and
estimate the component complexity. It provides as a
final result the estimated effort required to perform
the migration project (based on previous based
experiences). The current available prototype
supports the extraction off software metrics and the
proposition of components and migration strategies.

In parallel to the Technical Feasibility Analysis a
Business Feasibility Analysis is proposed. The need
of the Business Feasibility Analysis stems the
observation that, although cloud computing is a
software deployment scheme expected to bring a
number of advantages (e.g. elastic provisioning, cost
savings) to its adopters the same advantages does
not apply equally well to all potential users
(ARTIST D5.1.1, 2013). Hardware costs savings, as
an example, does not equally apply to SME and
large enterprises. Moreover there are also potential
(often sunken) costs that have to be carefully
assessed. The Business Feasibility Analysis in
ARTIST aims to provide, not only economic
information about how ROI, or payback metrics
shall behave in the future, but also which are the
main risks to be faced with the migration and the
organizational processes affected by the uptake of
the new business model.

The tool that performs the Business Feasibility
Analysis in ARTIST is the Business Feasibility
Tool (BFT) which supports decision to estimate
costs, benefits and operational changes to be applied
within a migration to a cloud deployment scheme.
The ARTIST’s BFT adopts (i) the Agent-Based
modelling (Twomey et al., 2002) paradigm to
represent (cloud-based) Business Models (ii) Agent-
based Simulation (Tesfatsion et al., 2006) to support

Cloudifying�Applications�with�ARTIST�-�A�Global�Modernization�Approach�to�Move�Applications�onto�the�Cloud

739

the user to learn how the organizational changes
required by the adoption of a cloud deployment
scheme may impact an enterprise and (iii) Enterprise
Simulation (ES) (Datar et al., 2000) to support “what
if” scenario aimed at the evaluation of the impact
that additional controls due to the adoption of a
cloud deployment scheme may have on the
organization.

2.1.3 Migration Phase and Supporting Tools

2.1.3.1 Reverse Engineering

Reverse Engineering is the first step of any
migration process, as it consists in performing a
prior analysis of the existing system or software that
is going to be later migrated (e.g. to the cloud)
(Canfora et al., 2011). Within the ARTIST
methodology and model-based framework, a global
Model Driven Reverse Engineering (MDRE)
(Rugaber et al., 2004) approach is being designed
and developed to support it.

Model Discovery, cf. the Model Discovery
Toolbox (MDT) is the initial activity of obtaining
“raw” (i.e. low-level) models from the different
artefacts composing a given software. This is
realized (at least semi-)automatically thanks to
software components called model discoverers. The
main related challenge is to deal with the software
artefacts heterogeneity, as they can take many
different forms/formats (Java or C# source code,
XML documents, databases, etc.). Thus, we have
been working on a taxonomy of legacy artefacts that
helps better classifying them according to several
dimensions (their technical space, internal structure,
nature, size, environment, etc). The second objective
of this taxonomy is to provide some kind of
guidance in the process of deciding on the most
suitable way to discover the required initial models.

Model Understanding, cf. the Model
Understanding Toolbox (MUT) is the activity of
processing the initial models, computed from the
Model Discovery, in order to identify and build
higher-level views on the analyzed software. This is
generally performed via (chains of) model
transformations, usually refining the models
iteratively. There are several issues related to this
model understanding context: How to deal with both
functional and non-functional properties of a
system? How to allow the definition and
computation of new views? How to generalize views
independently from the nature of the system initially
reverse engineered? Intending to answer these open
questions, several tracks are being explored. For
instance, a view definition DSL is being specified in

order to make easier the elaboration of (new) views
covering different aspects of a given system. Also,
experimentations are being performed on which
model transformations are made more generic and so
reusable indifferently in the context of several types
of systems (e.g. both Java- and C#-based).

These two toolboxes come up with sets of
components that can be picked up, used and
combined according to the context (i.e. the input
system or software, the targeted migration platform,
etc.). The final goal is to be able to feed correctly the
next steps of the process, and more particularly the
beginning of the Forward Engineering phase.

2.1.3.2 Target Platform Selection

One of the most complex activities when migrating
to a cloud based solution is the selection of the
appropriate cloud platform. Here, several aspects
come to play, such as the different services offered
by the cloud platforms (in any of their delivery
models IaaS, PaaS or SaaS) and the needs from the
migrated software to be deployed in an efficient
manner (in terms of costs) and fulfilling the required
QoS parameters (without compromising the SLAs
agreed by the service provider and the final user) in
the selected provider.

To ease this process ARTIST proposes
(Menychtas et al., 2013) to implement two phases in
parallel: one in the application domain and one in
the candidate target environment domain.

In the application domain, following the
analysis of the application features and the creation
of models describing the legacy system using
reverse engineering techniques, we examine and
profile the performance aspects of each application
element and feature (through the profiling tool). In
the process, these aspects are linked with specific
software solutions exploiting trace analysis and
benchmarking, which in sequel are matched to
elementary hardware resources (virtualized or
physical) such as computation storage and
networking.

In the target environment domain, the various
offerings, in the IaaS, PaaS and SaaS layers, are
described in a way that will facilitate the matching
between these offerings and application component
requirements. For this, we have developed a unique
Cloud Modeling Language (CloudML@artist). The
specification of the target environment, including
both functional capabilities and detailed
performance aspects of common application types,
enables effective matchmaking and allows for the
selection of the ideal provider for the overall
application and/or its specific fragments. Metrics are

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

740

also investigated to characterize service offerings
based on a combination of performance and cost, to
improve the overall deployed application’s
efficiency.

Models of the candidate cloud targets
(infrastructure or platform providers), which are
available through the ARTIST repository are
matched against the afore-posed requirements, using
a model-enabled matchmaking algorithm. The
optimal target provider (e.g. best ranked match)
could be automatically selected or the selection can
be deferred to the end-user, who selects it amongst
the found matches.

2.1.3.3 Forward Engineering

The main goal of the forward engineering phase is
to produce executable code, which is efficiently
runnable in cloud environments, from platform
independent models (PIMs) which have been
produced in the reverse engineering phase. In order
to produce the required code from the given models,
we use several dedicated steps to cope with the
following main challenges. First, the PIMs have to
be refined in order to deal with the specifics of a
particular cloud environment–this step is called
model cloudification. For instance, a first basic step
when migrating models towards cloud environments
is to select appropriate cloud services and a
virtualization level. Second, possible model
optimizations have to be explored in the refinement
process to meet the non-functional requirements
stated for the migration. Current cloud environments
offer a large set of different configuration options.
Thus, automation support is urgently required to
explore more efficiently and effectively this search
space. Third, tailored code for a particular cloud
environment has to be generated from the refined
models, packaged for, and deployed in the chosen
cloud environment involving also the provisioning
of the required cloud resources beforehand.

Our approach to support this phase relies on
model transformations as main means for
automation. In particular, we employ different
model refinement levels instead of generating code
directly out of the PIMs. Using these subsequent
refinement steps, we ensure that developers are able
to control and guide the model cloudification and
optimization for their purposes. We also aim at
eliminating tedious recurring tasks by applying the
convention-over-configuration principle as well as
design exploration techniques when transitioning
from PIMs to cloudified platform-specific models
(PSMs).

As the Unified Modeling Language (UML)

(OMG, 2011) already provides modelling concepts
to represent software-, platform-, and infrastructure-
related artefacts, especially in version 2.x, e.g.,
considers UML deployment diagrams, UML is used
as host language for specifying PIMs and PSMs in
our approach. UML is designed as a platform-
independent and general purpose modeling
language, but also as an extensible language for
considering specific domains and technologies such
as cloud computing. The language inherent
extension mechanisms of UML are UML libraries
and UML Profiles. On this basis, we developed as
one part of the CloudML@ARTIST language a
sublanguage called Cloud Application Modeling
Language (CAML, available as open source project
at: http://code.google.com/a/eclipselabs.org/p/caml
), which provides cloud-specific modeling concepts
and at the same time well established UML
modeling concepts. In this respect, we have
extended UML by providing the UML-based Cloud
Deployment Modeling Library. This library allows
representing cloud-based deployment models
independent from particular cloud providers. To
keep the cloud provider specifics separate from the
modeling library, additional UML Profiles are
utilized. These UML Profiles are essential to allow
cloud consumers specifying concrete deployments
for a selected cloud provider. In the current first
version of CAML, we developed UML Profiles that
address functional cloud consumer concerns, such as
instance types, storage solutions and service
offerings, as well as non-functional ones, such
pricing, performance and service levels.

To transition from PIMs to cloudified PSMs, we
provide a set of model transformations that achieve
the refinement of the models based on cloud
blueprints, patterns, and best practices. Based on the
stated migration goals, the abstract services
contained in the PIMs are substituted by the most
appropriate specific ones offered by cloud providers.
Once a set of services is selected, additional
configurations and deployment options are
automatically examined in order to improve, e.g., the
performance measures or costs of software running
in the cloud. Therefore, we reuse simulation
techniques for the PSMs that are established for the
migration validation in the post migration phase (cf.
Subsection 3.1.4.2). Based on the results, we foresee
dynamic design-space exploration by applying
different cloud optimization patterns formalized as
model transformations to the models and evaluate
their impact on the non-functional properties by
iterative simulation runs (Troya et al., 2013).

From the optimized PSMs, application code is

Cloudifying�Applications�with�ARTIST�-�A�Global�Modernization�Approach�to�Move�Applications�onto�the�Cloud

741

generated using model-to-text transformation
approaches. Please note that not only the application
code is produced, but also supporting code, e.g.,
deployment scripts, configuration files, etc., are
generated. These additional artefacts are needed to
automatically transfer the generated applications to
pre-configured cloud environments.

We aim for a highly configurable forward
engineering process built up of reusable
transformations (Kusel et al., 2013). By using
different model composition techniques to develop
transformations chains, we counteract the
development of monolithic transformations. By
reusing standards, such as UML, and Ecore, we have
several possibilities to reuse available
transformations for code generation and available
metamodels and UML profiles that may be of
interest also for the cloud modeling domain such as
SoaML and MARTE.

2.1.3.4 Business Model Definition and
Organizational Impact

Most of the existing cloud migration approaches
(ARTIST DOW, 2012) focus their attention in the
analysis and the implementation of the technical
migration strategy. But cloudification paradigm
affects also the delivery model of the company
(from SaaG to SaaS) which implies change also at
organizational and business level.

Within ARTIST methodology we propose, in
combination with the technical migration activities,
a set of tasks to implement the changes required as a
result of the migration at business and organizational
level.

The activities required for the re-definition of
the business model are based on Osterwalder’s
Business Model Generation and adopted for cloud
based applications, including Market segment re-
definition, cost-structure re-development or
customer relationship update among others.

The tasks related to the organizational changes
include aspects from development process to
accountability or providers management processes
specially adapted for Cloud based and SaaS provider
companies. These ideal processes are based on best
practices and standards such as CCRA (ITU-T
SG13, 2013).

2.1.4 Post-migration Phase and Supporting
Tools

2.1.4.1 Migration Goals

The main objective of the migration goals is to

establish in a formal and shareable manner the main
constraints exposed from the application (or its
owner) for the migration. The requirements for the
migration that cannot be extracted from the legacy
software itself will be established by the migration
goals and circulated over the other ARTIST tool to
be accessible in all migration phases.

These migration goals are worked out through a
questionnaire and finally determined by the end-user
and are circulated over other migration phases with
the purpose of having information about the non-
functional requirements required for the migration
(quality metrics required, infrastructure information,
etc.). These user specified migration goals will be
validated in combination with the functional
requirements in the validation phase c.f. subsection
3.1.4.2.

2.1.4.2 Validation of the Migration

The objective of the validation phase is to assess
whether the migration was successful or not. A
migration is considered to be successful, if the
behaviour of the software has not been affected in
an unexpected way during the migration (i.e.,
preserving functional correctness) and if the
migrated software fulfils the user-specified
migration goals.

Validating these two aspects holds several
challenges. For evaluating the functional correctness
of the software after the migration, it is necessary to
verify whether the business logic of the software
after the migration corresponds to the software’s
business logics before the migration. Especially
when an insufficient number of test cases is
available for the software, ensuring the correct
behaviour of the migrated software with respect to
the behaviour before the migration is a challenging
task—from a theoretical and a practical perspective.
Concerning the validation of the user-specified
migration goals, we have to evaluate a variety of
different types of potentially competing migration
goals, ranging from goals, for instance, regarding
performance efficiency to goals concerning
operating costs. These goals may often not be
evaluated by measuring the respective metrics
directly in the software deployed in the cloud
environment used in production, because, for
instance, benchmarking the deployed software in the
cloud environment may lead to high costs or the
information required for the evaluation may not be
available directly due to restrictions and
virtualization levels of the cloud environment.

For assessing the functional correctness of the
migrated software, we follow three different

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

742

approaches. First, we adapt the migration techniques
of ARTIST in order to migrate not only the software
itself but also potentially existing test cases. If no
test cases are available or if their test coverage of is
insufficient, we follow a second approach to assess
the functional correctness. In particular, we provide
techniques to generate test cases automatically from
the PIM, corresponding to the overall spirit in
ARTIST to apply techniques from model-driven
engineering. Therefore, not only structural but also
behavioural models are reverse-engineered from the
legacy software and represented in the PIM. These
behavioural models are then used in a model-based
test generator tool developed in the course of
ARTIST to derive test inputs until the execution of
the software with these test inputs leads to a certain
test coverage. For this task, we adapt differential
symbolic execution techniques to be applied solely
on model-level (Person et al., 2008). Of course, this
step has to be guided by the user, who may indicate
which parts and to which degree the migrated
software shall be tested. If the behavioural models
are detailed enough, we may also use them to derive
test oracles for the generated test inputs. First
experiments show that FUML (OMG, 2012), a
recent standard of the OMG providing a concise
semantics definition for a subset of UML Classes
and Activities, may serve as an adequate modelling
language to represent the expected behaviour of the
software accurately and independently of any
platform or technology. In fact, the semantics of
FUML is precise enough to enable the unambiguous
simulation of FUML models. Therefore, we
developed an extended FUML virtual machine
(Mayerhofer et al., 2012), which enables the
simulation of FUML models, while providing
detailed information about the simulation, such as
inputs and outputs of each step and detailed
simulation traces. Based on this information, we
simulate the models for each test input and obtain
test oracles covering the expected outputs, as well as
the expected traces. The third approach to assess the
functional correctness of the migrated software is
based on running the legacy software and the
migrated software in parallel, forward each request
to both of software versions, and compare their
responses.

To provide the means for evaluating whether the
migration goals, such as performance efficiency and
operation costs, are fulfilled, we have to address the
challenge that certain information for computing the
verdict about the migration goal may not be
available in the cloud environment used for
production. Thus, simply benchmarking the

deployed software may sometimes be insufficient.
Therefore, we provide a dedicated tool that enables
model-simulation and analysis techniques to
estimate certain property measures that are related to
the respective quality characteristics mentioned in
the migration goals. These measures are then
combined and analyzed to validate whether the
defined goals are fulfilled. Our current work shows
promising first results indicating that several metrics
can be obtained by model-level simulation
leveraging the level of details in the PSMs
(representing the migrated software on model level)
without requiring a translation of the PSMs into
dedicated performance models (Berardinelli et al.,
2013); (Fleck et al., 2013) which is however the case
for existing work in software performance analysis
(Balsamo et al., 2004). These techniques come with
the additional benefit that they can be performed
also when the actual migrated code has not been
derived yet and hence may be used to guide the
optimization already in early phases of the migration
as well as in the forward engineering phase (cf.
Subsection 3.1.3.3). However, since the model-level
simulations and analyses are only estimations, we
further aim at validating the migration goals on
code-level as a final step. We run and benchmark the
actual migrated software, as far as possible (van
Hoorn, 2012) providing dedicated forward-
engineering modes that, besides generating the
production code, also instrument the generated code,
where necessary, to obtain the measures needed to
validate the migration goals.

2.1.4.3 Certification Model

One of the shortcomings for the final implantation of
SaaS and cloud computing in the software industry
is the reluctance of the users to this new service
offering.

The purpose of the certification phase in
ARTIST is to obtain an independent and impartial
judgment of SaaS providers, focusing on businesses,
processes and technology aspects (ARTIST D11.4.1,
2013) in order to create consumer confidence in
software applications offered as services considering
reliability parameters (categories) that will be
evaluated.

The certification model proposed by ARTIST,
Service based Software Provider (SbSp) focus on
organisations that develop and offer software based
services using methodologies and business models
that are connected to the Future Internet and cloud
computing schemes. It is structured into three areas
i) The business area aims to analyse the financial

Cloudifying�Applications�with�ARTIST�-�A�Global�Modernization�Approach�to�Move�Applications�onto�the�Cloud

743

stability and soundness of the business in order to
assess the potential for continuity and sustainability,
ii) the process area aims to ensure the quality of the
process of delivering the IT service to the end
customer, and iii) the technology area aims to
establish a high level of security and transparency
for both customers and providers of dedicated SaaS.

To support the certification process, three
questionnaires (corresponding to the three areas)
have been developed to be used in the certification
method. This method is the procedure through which
a third independent part evaluates the practices of a
company providing a cloud application to assure by
a label that the system fulfils a specified level (Gold,
Silver or Bronze). It is a way to ensure that
"standard-based" products are implemented: quality
products, competitive markets with more choices,
commodity pricing, and less opportunity to become
"locked in" to a particular vendor.

3 CONCLUSIONS

In this paper we present a novel cloudification
approach, supporting software vendors paving the
path to a smoother transition to the cloud computing
paradigm. The presented ARTIST methodology and
framework considers both technical and business
aspects of the legacy applications and covers not
only the core migration phase but also the pre-
migration phase, where based on the assessment of
the initial and target situations added to the results of
a technical and business feasibility analysis, the
various steps and tasks of the methodology are
customized, as well as the post-migration phase
where the outcomes are validated and certified.

ARTIST proposes a set of tools supporting each
methodology phase based on model-driven
engineering approaches, allowing when possible the
reuse of artefacts. The first version of the ARTIST
approach has been applied to the PetStore example
as the preliminary test case for validation. Currently,
the solution is applied to 4 real-world business
scenarios for validation and refinement of the overall
approach, improving its impact and standardization
on real-world industrial environments.

ACKNOWLEDGEMENTS

This work has been supported by the ARTIST
Project and has been partly funded by the European
Commission under the Seventh (FP7 - 2007-2013)

Framework Programme for Research and
Technological Development, grant no. 317859.

REFERENCES

OMG, 2011. OMG Unified Modeling Language (OMG
UML), Superstructure 2.4.1. Object Management
Group, http://www.omg.org/spec/UML.

Kusel, A., Schönböck, J., Wimmer, M., Kappel, G.,
Retschitzegger, W., Schwinger, W., 2013. Reuse in
Model-to-Model Transformation Languages: Are we
there yet?. SoSym, Springer online first, pp. 1-31.

ARTIST D6.2.1, Menychtas, A., Orue-Echevarria, L.,
2013. D6.2.1 ARTIST Migration Methodology.
http://www.artist-
project.eu/sites/default/files/D6.2.1_ARTIST%20Meth
odology_M12_30092013.pdf

ARTIST D6.3.1, Menychtas, A., 2013. D6.3.1 ARTIST
Methodology Process Framework. http://www.artist-
project.eu/sites/default/files/D6.3.1%20ARTIST%20
Methodology%20process%20framework_M12_30092
013.pdf

ARTIST D5.1.1, Alonso, J., D5.1.1. Specification of the
Business and Technical Modernization assessment in
ARTIST.

Tran, V.T.K., Lee, K., Fekete, K., Liu, A., Keung, J.,
2011. Size Estimation of Cloud Migration Projects
with Cloud Migration Point (CMP). Int. Symposium
on Empirical Software Engineering and Measurement
(ESEM'11), pp 265-274.

Twomey P., Cadman, R., 2002. Agent-Based Modelling of
Customer Behavior in the Telecoms and Media
Markets, Info, Vol. 4(1), pp. 56-63.

Tesfatsion, L., 2006. Agent-Based Computational
Economics: A Constructive Approach to Economic
Theory. Handbook of Computational Economics, Vol.
2, North-Holland/Elsevier.

Datar, M.M., 2000. Enterprise Simulations: Framework
for a strategic application. Winter Simulation
Conference.

Menychtas, A., Santzaridou, C., Kousiouris, G.,
Varvarigou, T., Gorronogoitia, J., Strauss, O.,
Senkova, T., Orue-Echevarria, L., Alonso J.,
Bruneliere, H. Pellens, B., Stuer, P., 2013. ARTIST
Methodology and Framework: A novel approach for
the migration of legacy software on the Cloud.
MICAS 2013.

ARTIST DOW, 2013. DOW: Advanced software-based
service provisioning and migration of legacy software.

ARTIST D11.4.1, Vergara, M., 2013. ARTIST SbSp
Certification Model.

Berardinelli, L., Langer, P., Mayerhofer, T., 2013.
Combining fUML and Profiles for Non-Functional
Analysis Based on Model Execution Traces. Qosa’13,
ACM Sigsoft Conference on the Quality of Software
Architectures. ACM, pp. 79-88.

Fleck, M., Berardinelli, L., Langer, P., Mayerhofer, T.,
Cortellessa, V., 2013. Resource Contention Analysis of

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

744

Service-Based Systems through fUML-Driven Model
Execution. Int’l Workshop Non-functional Properties
in Modeling, CEUR, Vol-1074 pp. 6-15.

Mayerhofer, T., Langer, P., Kappel, G., 2012. A runtime
model for fUML. Int’l Workshop on
models@run.time, ACM, pp. 53-58.

Person, Suzette, et al. "Differential symbolic execution.".
16th ACM SIGSOFT International Symposium on
Foundations of software engineering. ACM, 2008.

Balsamo, Simonetta, et al. "Model-based performance
prediction in software development: A survey."
Software Engineering, IEEE Transactions on 30.5
(2004): 295-310.

Van Hoorn, André, Jan Waller, and Wilhelm Hasselbring.
"Kieker: A framework for application performance
monitoring and dynamic software analysis." Joint
WOSP/SIPEW international conference on
Performance Engineering.

ACM, 2012.OMG, 2012. Semantics of a Foundational
Subset for Executable UML Models (FUML). Object
Management Group http://www.omg.org/spec/FUML

SPIKES, Spikes is member of ARTIST consortium
G. Canfora, M. Di Penta, L. Cerulo, Achievements and

Challenges in Software Reverse Engineering. ACM 54
(2011) 142-151

S. Rugaber, K. Stirewalt, Model Driven Reverse
Engineering, IEEE Software 21 (2004) 45-53.

CCRA, Cloud Computing Reference Architecture CT-
CCA-o-016-Edit-Draft-RA ITU-T SG13/WP6.

Troya, J., Cubo, J., Martín, J.A., Pimentel, E., Vallecillo,
A., 2013: Automated Throughput Optimization of
Cloud Services via Model-driven Adaptation.
MODELSWARD, pp. 356-362

ARTIST 2012, www.artist-project.eu
ModaClouds 2012 http://www.modaclouds.eu
PaaSage 2012 http://www.paasage.eu

Cloudifying�Applications�with�ARTIST�-�A�Global�Modernization�Approach�to�Move�Applications�onto�the�Cloud

745

