
Enhancing BPMN 2.0 Support for Service Interaction Patterns

Dario Campagna, Carlos Kavka and Luka Onesti
Research and Development Department, ESTECO SPA, Area Science Park, Padriciano 99, Trieste, Italy

Keywords: BPMN 2.0, Service Interaction Patterns.

Abstract: Choreography modeling languages have emerged in the past years as a mean for capturing and managing
collaborative processes. The advancement of such languages let to the definition of the service interaction
patterns, a pattern-based framework for the benchmarking of choreography languages against abstracted forms
of representative scenarios. Service interaction patterns have been used to analyze the capabilities of different
languages. Since its introduction, no benchmark based on this framework has been performed on the Business
Process Model and Notation (BPMN) version 2.0. In this paper, we present an assessment of BPMN 2.0
support for service interaction patterns. We evidence the issues that limit the set of supported patterns, and
propose enhancements to overcome them.

1 INTRODUCTION

In the past years there has been much activity in
developing languages for Business Process Manage-
ment systems. In particular, languages suited for de-
scribing interaction behavior between different ser-
vices, i.e., for modeling service choreography, have
emerged as a key instrument for achieving integration
of business applications in a service-oriented archi-
tecture (SOA) setting. Examples of such languages
are Lets’Dance (Zaha et al., 2006), WS-CDL (W3C,
2005), and WS-BPEL (OASIS, 2007).

With the advancement of service choreography
languages came the need for consolidated insights
into the capability and exploitation of the resulting
standard specifications and associated implementa-
tions in terms of business requirements. In 2005, Bar-
ros et al. concluded that for service-oriented archi-
tectures to move forward, it was necessary to shift
from thinking in terms of request-response and buyer-
seller-shipper interaction scenarios into addressing
complex, large-scale, multi-party interactions in a
systematic manner. They thus presented in (Barros
et al., 2005b) a set of thirteen patterns of service in-
teractions, theservice interaction patterns. These pat-
terns aim to contribute to the gathering of require-
ments needed to shed light into the nature of ser-
vice interactions in collaborative business processes,
where a number of parties, each with its own internal
processes, need to interact with one another accord-
ing to certain pre-agreed rules (Barros et al., 2005b).

The patterns capture different peculiar characteristics
of such collaborative processes. The number of in-
volved parties may be in the order of tens or even
hundreds, and thus the nature of interactions is rarely
only bilateral but rather multilateral. Furthermore, the
assumption of strict synchronization of all responses
before the next steps in a process breaks down due to
the independence of the parties. More realistically,
responses are accepted as they arrive. Also, while
it is conventional to think of multi-cast interactions
as a party sending a request to several other parties,
the reverse may also apply, several parties send mes-
sages from autonomous events to a party which corre-
lates these into a single request. Finally, not all inter-
actions in dynamic marketplaces follow a requester-
respondent-requester structure. Rather, a sender may
re-direct interactions to nominated delegates. Re-
ceivers may outsource requests, choosing to “stay in
the loop” and observe parts of responses. More gener-
ally, it may only be possibly to determine the order of
interaction at run-time, given, for example, the con-
tent of messages passed.

The collected service interaction patterns have
been derived and extrapolated from insights into real-
scale B2B transaction processing, use cases gath-
ered by standardization committees, generic scenar-
ios identified in industry standards, and case studies
reported in the literature. The patterns consolidate
recurrent scenarios and abstract them in a way that
provides reusable knowledge. They range from sim-
ple message exchanges to scenarios involving multi-

199Campagna D., Kavka C. and Onesti L..
Enhancing BPMN 2.0 Support for Service Interaction Patterns.
DOI: 10.5220/0004989901990208
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 199-208
ISBN: 978-989-758-036-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



ple participants and multiple message exchanges. On
the one hand, the service interaction patterns consoli-
date the nature of service interactions through gener-
alized functional classification. On the other hand,
they clear the track for further and ongoing exten-
sions. These patterns allow the assessment of web
services standards, and the benchmarking of chore-
ography and orchestration languages, making it pos-
sible for SOA technologies to progress further (Barros
et al., 2005b).

Since their introduction, the service interaction
patterns have been used to evaluate different choreog-
raphy languages. In this paper, we focus on the latest
version of the Business Process Model and Notation,
i.e., BPMN version 2.0 (OMG, 2011), and present an
assessment of BPMN 2.0 collaboration diagrams sup-
port for the service interaction patterns.

The remainder of this paper is structured as fol-
lows. In Section 2 we recall some of the choreogra-
phy language analysis based on the service interaction
patterns. In Section 3, we evaluate BPMN 2.0 for its
pattern support, and point out issues that limit the set
of representable patterns. To overcome such issues,
we propose in Section 4 a set of enhancements for
BPMN 2.0. The paper conclusions are presented in
Section 5.

2 RELATED WORK

WS-BPEL (OASIS, 2007) has been the first language
to be analyzed in terms of service interaction pat-
terns. In (Barros et al., 2005b; Barros et al., 2005a)
the authors show that WS-BPEL directly supports
Single Transmission Bilateral Interaction Patterns.
ForSingle Transmission Multilateral Interaction Pat-
terns, WS-BPEL imposes some restrictions to the
Send/Receivepattern and requires “house-keeping”
code for correlation and for capturing stop and suc-
cess conditions. OfMulti Transmission Interaction
Patterns, WS-BPEL provides support for two of the
three patterns. Lack of sufficient transaction support
compromises a WS-BPEL solution forAtomic Mul-
ticast Notification. All the Routing Patternsare sup-
ported with the exception ofDynamic Routing, which
is outside the scope of WS-BPEL.

In (Decker and Puhlmann, 2007) the authors show
that BPMN 1.0 directly supports only five of the thir-
teen service interaction patterns, and present exten-
sions for BPMN 1.0 that allow the representation of
multiple participants, correlation, and reference pass-
ing. They introduce the concept ofparticipant setin
order to represent a set of participants of the same type
involved in the same conversation, and the concept of

referenceto distinguish individual participant out of a
participant set. A reference is a special data object, it
can be connected to flow objects via directed associa-
tions, and can be passed to other participants connect-
ing it to message flows with undirected associations.
Thanks to these extensions, the number of patterns
supported by BPMN 1.0 increases to ten.Contingent
Requestis only partially supported, whileDynamic
Routingis excluded from the analysis.

The BPMN 2.0 specification extends the scope
and capabilities of BPMN 1.0 in several areas.
Among other improvements, it describes the execu-
tion semantics for all BPMN elements, defines an
extensibility mechanism for process model exten-
sions, and defines a choreography model. BPMN
2.0 choreographies are evaluated in (Cortes-Cornax
et al., 2011) by using an extended quality frame-
work, which includes the service interaction patterns.
Since the patterns only cover one perspective of the
requirements for choreography definition languages,
the framework also includes other perspectives paying
special attention to graphical notations. The evalua-
tion identifies a number of issues in BPMN 2.0 that af-
fects the perceptual discriminability of certain chore-
ography modeling constructs. To address these defi-
ciencies, the authors propose the introduction of new
concepts in choreography diagrams. Examples are the
concept of channel annotations, message multiplicity
for message flows, and annotations for message flows
to indicate which participant initiates a conversation.
In (Cortes-Cornax et al., 2012) the authors considered
a precise analysis of the support of the service inter-
action patterns in BPMN 2.0 as an important future
work. However, such a study is still missing.

3 PATTERN ANALYSIS

We present in this section an assessment of BPMN 2.0
support for the service interaction patterns introduced
by Barros et al. in (Barros et al., 2005b). This sec-
tion is organized by following the structure of (Barros
et al., 2005b). For each pattern, we present its de-
scription and issues, and propose a BPMN 2.0 imple-
mentation. The implementations and their semantics
are described in natural language. For most of the
patterns, we include a BPMN 2.0 graphical represen-
tation of the implementation. We provide no formal
validation of the proposed solutions, since the only
complete BPMN 2.0 semantics specification is pre-
sented in (OMG, 2011) by using natural language.

As we will show, BPMN 2.0 directly supports the
Single Transmission Bilateral Interaction Patterns,
two of the threeSingle Transmission Multilateral In-

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

200



teraction Patterns, the Multi-responsespattern, and
two of the threeRouting Patterns. With the addi-
tion of a BPMN 2.0 extension for collaborations and
message queuing, it is possible to support theOne-
to-many Send/Receivepattern and theContingent Re-
questspattern too. TheAtomic Multicast Notifica-
tion pattern can only be partially supported. We ex-
cluded from this assessment theDynamic Routing
pattern since its description is too imprecise, as al-
ready noted in (Decker et al., 2006a; Decker and
Puhlmann, 2007).

From now on, with the termparty we indicate
a BPMN 2.0 participant instance, and with the term
partieswe indicate a set of heterogeneous BPMN 2.0
participant instances, i.e., instances of one or more
BPMN 2.0 participants.

3.1 Single Transmission Bilateral
Interaction Patterns

Single transmission bilateral interaction patterns cor-
respond to elementary interactions where a party
sends (receives) a message, and as a result expects a
reply (sends a reply). These patterns cover one-way
and round-trip non-routed bilateral interactions.

3.1.1 Send

Description. A party X sends a message to another
party.

Issues. The counter-party may or may not be known
at design time.

TheSendinteraction pattern can be modeled by using
in a participantX a send taskthat sends a message to
a participantY, as shown in Figure 1(a). If participant
Y has multiplicity greater than one (i.e., there may be
more than one instance ofY in execution at the same
time), then we can add to the sent message payload
a reference forY, and use context-based correlation
in Y to route the message to the correct instance. It
is assumed that the sender gains knowledge about the
receiver reference and stores it in, e.g., a data object.

3.1.2 Receive

Description. A party X receives a message from an-
other party.

The Receive:interaction pattern can be modeled by
using in a participantX a receive taskthat receives
a message from a participantY, as shown in Fig-
ure 1(b). IfY has multiplicity greater than one, then
we can use context-based correlation inX to accept
only messages from a particular instance ofY.

(a) Send pattern. (b) Receive pattern.

(c) Send/Receive pattern.

Figure 1: Single transmission bilateral interaction patterns.

3.1.3 Send/Receive

Description. A party X engages in two casually re-
lated interactions: in the first interactionX sends
a message to another partyY, while in the second
oneX receives a message fromY.

Issues. The counter-party may or may not be known
in advance. The outgoing and incoming messages
must be correlated.

The Send/Receiveinteraction pattern is depicted in
Figure 1(c). It can be modeled with asend taskfol-
lowed by areceive taskin a participantX. The former
task sends a message to a participantY, the latter re-
ceives a message fromY. If Y has multiplicity greater
than one, then we can make use of context-based cor-
relation for communicating with the desired instance
of Y, and take advantage of key-based correlation to
correlate outgoing and incoming messages inX.

3.2 Single Transmission Multilateral
Interaction Patterns

Single transmission multilateral interaction patterns
cover non-routed interactions where a party may send
or receive multiple messages, but as part of different
interaction threads dedicated to different parties.

3.2.1 Racing Incoming Messages

Description. A partyX expects to receive one among
a set of messages. Messages may be structurally
different and may come from different parties.
The way a message is processed depends on its
type and/or the party from which it comes.

Enhancing�BPMN�2.0�Support�for�Service�Interaction�Patterns

201



The Racing Incoming Messages:interaction pattern
can be modeled by using in a participantX an event
based gatewayconnected tocatch message events, as
depicted in Figure 2. Each catch message event re-
ceives messages of a certain type, or from a particular
participant.

Figure 2: Racing Incoming Messages pattern.

3.2.2 One-to-many Send

Description. A party X sends a message to several
other parties. All the messages have the same type
(although their contents may differ).

Issues. The number of parties to whom the message
is sent may or may not be known at design time.

Under the assumption that receiving parties are in-
stances of a single participant, this pattern can be
thought as variant of theSendpattern when partici-
pantY has multiplicity greater than one. The pattern
can be modeled as shown in Figure 3(a). Aparallel
multi-instance send task Ain participantX receives as
input adata object collectioncontaining references of
participantY instances, and sends a message to each
of them. Context-based correlation can be used inY
in order to route messages to the correct instances.

3.2.3 One-from-many Receive

Description. A partyX receives several logically re-
lated messages arising from autonomous events
occurring at different parties. The arrival of mes-
sages needs to be timely so that they can be corre-
lated as a single logical request.

Issues. Since messages originate from autonomous
parties, a mechanism is needed to determine
which incoming messages should be grouped to-
gether.

Under the assumption that sending parties are in-
stances of a single participant, this pattern can be
viewed as a variant of theReceivepattern when the
sending participantY has multiplicity greater than
one. The pattern can be modeled as depicted in
Figure 3(b). A loop receive task Awith an inter-
rupting boundary timer eventis used in participant

X to receive messages from participantY instances.
Context-based correlation can be used inX to accept
only messages from certain instances of participantY.

(a) One-to-many Send. (b) One-from-many Re-
ceive.

Figure 3: One-to-many Send pattern and One-from-many
Receive pattern.

3.2.4 One-to-many Send/Receive

Description. A party X sends a request to several
other parties, which may be all identical or log-
ically related. Responses are expected within a
given time-frame. However, some responses may
not arrive within the time-frame and some parties
may even not respond at all.

Issues. The number of parties to which messages are
sent may or may not be known at design time. Re-
sponses need to be correlated to their correspond-
ing requests.

A BPMN 2.0 representation of this pattern is shown
in Figure 4. We use in participantX a multi-
instance sub-processwith an interrupting boundary
timer event, and whoseloop data inputis adata ob-
ject collectioncontaining references to instances of a
participantY. The sub-process contains asend task
followed by areceive task. Each instance of the sub-
process sends a message to an instance ofY (context-
based correlation is used inY), and then waits for a re-
sponse. Responses could be correlated to their corre-
sponding request by using key-based correlation inX.
However, BPMN 2.0 correlation works at process in-
stance level, i.e., we can only correlate a message to a
specific instance of a process. To support this pattern
we need to correlate received messages to a particular
instance of the sub-process, and this is not possible in
BPMN 2.0. To overcome this limitation, we propose a
BPMN 2.0 extension for collaboration/conversations,
and a modification of message correlation semantics,
which will be described in Section 4.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

202



Figure 4: One-to-many Send/Receive pattern.

3.3 Multi Transmission Interaction
Patterns

Multi transmission interaction patterns are dedicated
to non-routed interactions in which a party sends (re-
ceives) messages to (from) the same party.

3.3.1 Multi-responses

Description. PartyX sends a request to partyY, then
X receives any number of responses fromY until
no further responses are required. The trigger of
no further responses can rise from a temporal con-
dition, or be based on message content, which in
both cases can rise from eitherX or Y.

Figure 5 depicts a possible representation of this pat-
tern in BPMN 2.0. ParticipantX sends a message to
participantY by using thesend task D. Such message
is received inY by thereceive task A. Then,Y sends
messages toX by using theloop send task B. These
messages are received inX by theloop receive task E.
X stops receiving message as soon as either theinter-
rupting boundary timer eventof E is triggered, orE
loop condition evaluates to false, or a message sent by
Y (by using thesend task C) reaches theinterrupting
boundary catch message eventof E.

Figure 5: Multi-responses pattern.

3.3.2 Contingent Requests

Description. Party X makes a request to another
partyY. If X does not receive a response within
a certain time-frame,X sends a request to another
partyZ, and so on.

Issues. After a contingency request has been issued,
it may be possible that a response arrives (late)
from a previous request.

Figure 6 depicts a possible representation of the
pattern (we assume that responding parties are in-
stances of the same participant). First, ataskin X se-
lects a reference to an instance ofY from adata object
collection. Then, thesend task Asends to the selected
Y instance a message (context-based correlation is
used inY). Finally, thereceive task Bwaits for a re-
sponse fromY. Context-based correlation is used in
X to accept only messages containing the selectedY
instance reference in their payloads. If no response is
received before theinterrupting timer boundary event
is triggered, then anotherY instance reference is se-
lected and processed as described. Responses that ar-
rive late from previous requests are discarded thanks
to context-based correlation.

Figure 6: Contingent Requests pattern, solution (1).

The just described implementation of the pattern
exploits one of the three available solutions to han-
dle the late response issue. The first solution (1) is
to disallow late arrivals altogether, and receive only
the response of the current request. Another solution
(2) is to accept the first response even if it is late and
stop outstanding requests. The last solution (3) is to
accept the first arriving response, trigger the end of
outstanding request, but receive any further response
that arrives (beforeX terminates). The pattern does
not predispose which of the three solutions prevails.
Solution (1) is the one adopted in Figure 6.

To support solution (2) we modify the workflow
in Figure 6 adding to it adata objectand atask C.
The resulting workflow is shown in Figure 7. We use
the new data object for context-based correlation in
X. We initialize this data object with some value, and
send this value in the payload of messages sent toY

Enhancing�BPMN�2.0�Support�for�Service�Interaction�Patterns

203



instances. Only messages fromY instances contain-
ing the chosen value in their payload are accepted in
X. As soon as a response is received byB, the task
C executes and changes the value of the new data ob-
ject. Any other message coming fromY instances will
then be discarded by context-based correlation. With
the workflow in Figure 7 we accept late responses,
but we may lose messages that arrive after the inter-
rupting boundary timer event has been triggered and
before the activation ofB. Hence, the response we
receive inX may not be the first sent fromY. To
avoid losing responses, we propose a modification to
the message semantics. This modification will be de-
scribed in Section 4.2.

Figure 7: Contingent Requests pattern, solution (2).

Solution (3) requires deep changes to the BPMN
2.0 message correlation mechanism in order to be im-
plemented. A precise analysis of such changes is out
of the scope of this assessment.

3.3.3 Atomic Multicast Notification

Description. A party sends notifications to several
parties such that a certain number of parties are
required to accept the notification within a cer-
tain time-frame. For example, all parties or just
one party are required to accept the notification.
In general, the constraint for successful notifica-
tion applies over a range between a minimum and
maximum number.

Issues. The constraint that all parties should have re-
ceived the notification, means that if any one party
received the notification, all the other parties also
received it. Thus, some kind of transactional sup-
port is required.

The main issue of this pattern relates to atomic trans-
actions. Atomic transactions have an all-or-nothing
property: the actions taken by a transaction partici-
pant prior to commit are only tentative (typically they
are neither persistent nor made visible outside the

transaction); if all participants were able to execute
successfully then transactions are committed; if a par-
ticipant aborts or does not respond at all, all trans-
actions are aborted. Web Service Atomic Transac-
tion (OASIS, 2009) is an OASIS standard that defines
protocols for atomic transactions, one of them is Two-
Phase Commit (2PC). The 2PC protocol coordinates
registered participants to reach a commit or abort de-
cision, and ensures that all participants are informed
of the final result.

BPMN 2.0 provides built-in support for busi-
ness transaction through the notion oftransaction
sub-process. A sub-process marked as transactional
means that its component activities must either all
complete successfully or the sub-process must be
restored to its original consistent state. However,
business transactions are usually not ACID transac-
tions coordinated via the 2PC protocol. The reason
is they fail the isolation requirement. In order to
isolate, or lock, the resource performing the com-
ponent activities of the transaction, the transaction
must be short-running, taking milliseconds to com-
plete. For business transactions it is not possible
to make that assumption. Business transactions are
long-running, and the resources associated with their
component tasks are not locked while the transaction
is in progress. Instead, each activity in the transaction
executes normally in its turn, but if the transaction as a
whole fails to complete successfully, each of its activ-
ities that has completed already is undone by execut-
ing its defined compensating activity. Hence, BPMN
2.0 provides no support for atomic transactions, but
different workarounds can be provided for theAtomic
Multicast Notificationpattern. These workarounds
will be described in Section 4.3.

3.4 Routing Patterns

Routing patterns cover routed interactions, i.e., inter-
actions involving transfers of party references.

3.4.1 Request with Referral

Description. PartyX sends a request to partyY indi-
cating that any follow-up should be sent to a num-
ber of other parties (Z1,Z2, . . . ,Zn) depending on
the evaluation of a certain condition.

Issues. PartyY may or may not have a prior knowl-
edge of the identity of the other parties. The in-
formation transferred fromX to Y must therefore
allow Y to interact with the other parties.

This pattern can be represented in BPMN 2.0 as
shown in Figure 8. Adata object collectionin par-
ticipantX contains references to instances of partici-

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

204



pantZ that should receive the follow-ups (we assume
that the referred parties are all instances of the same
participant). The data object collection is transferred
to participantY through a message sent by thesend
task Ain X. Thereceive task Bin Y receives the mes-
sage fromA, and stores its payload (i.e., the collection
of references) into a data object collection. Then, the
multi-instance send task Cin Y sends a message to
each instance ofZ referenced in the data object col-
lection (context-based correlation is used inZ).

Figure 8: Request with Referral pattern.

3.4.2 Relayed Request

Description. Party X makes a request to partyY
which delegates the request to other parties
(Z1,Z2, . . . ,Zn). Z1,Z2, . . . ,Zn then continue inter-
actions withX while Y observes a view of the in-
teractions including faults.

Issues. The delegated parties (Z1,Z2, . . . ,Zn) may or
may not have prior knowledge of the identity of
the request originator, i.e., partyX. The infor-
mation transferred from partyY to the delegated
parties must therefore allow these to fully identify
and interact withX.

Figure 9 depicts the BPMN 2.0 representation of this
pattern. Thesend task Ain participantX sends a mes-
sage containing the reference ofX in its payload to
participantY. The message is received by aninter-
mediate catch message eventand its payload is stored
into a data object. Subsequently, themulti-instance
send task Cin Y sends a message containing the ref-
erence ofX in its payload to each instance of partici-
pantZ referenced in adata object collection(context-
based correlation is used inZ, we assume that del-
egated parties are all instances of the same partici-
pant). Each message sent by taskC reaches a dif-
ferent instance of thereceive task E, that in its turn
transfers the payload into a data object. Thesend task
F andG in Z executes in parallel. The taskF sends
messages toY, allowing it to monitor interactions be-
tweenZ andX through theloop receive task D. The

taskG sends messages to theloop receive task Bin
order to continue the interaction with the participant
X. Context-based correlation is used inX to receive
messages from the delegated parties.

Figure 9: Relayed Request pattern.

4 BPMN 2.0 ENHANCEMENTS

We describe in this section the proposed set of en-
hancements for BPMN 2.0 that improve its support
for service interaction patterns.

4.1 Initiator Extension

In this section, we introduce the concept of collab-
oration/conversationinitiator, and modify the mes-
sage correlation semantics in order to move message
routing at the initiator level. Then, we show how
such extensions help supporting theOne-to-many
Send/Receivepattern with the BPMN 2.0 workflow
described in Section 3.2.4.

Business processes typically can run for days or
even months, requiring asynchronous communication
via messages. Moreover, many instances of a partic-
ular process will typically run in parallel, e.g., many
instances of an order process, each representing a par-
ticular order. Correlation is used to associate a partic-
ular message to an ongoing conversation between two
particular process instances. BPMN 2.0 allows using
existing message data for correlation purposes, rather
than requiring the introduction of technical correla-
tion data (OMG, 2011).

The concept of correlation facilitates the associ-
ation of a message to a process instance send task

Enhancing�BPMN�2.0�Support�for�Service�Interaction�Patterns

205



(throw message event) or receive task (catch message
event) often in the context of a conversation, which is
also known as instance routing. This association can
be viewed at multiple levels, namely the collabora-
tion (conversation), choreography, and process level.
However, the actual correlation happens during run-
time (e.g., at the process level). Correlations describe
a set of predicates on a message (generally on the pay-
load) that need to be satisfied in order for that mes-
sage to be associated to a distinct process instance
send task (throw message event) or receive task (catch
message event).

In plain key-based correlation, messages that are
exchanged within a conversation are logically corre-
lated by means of one or more common correlation
keys. A correlation key represents a composite key
out of one or many correlation properties. A corre-
lation property essentially specifies an extraction ex-
pressions atop a message. At run time, the first sent or
received message in a conversation populates at least
one of the correlation key instances. If a follow-up
message derives a correlation key instance, where that
correlation key had previously been initialized within
the conversation, then the correlation key value in the
message and conversation must match. For example,
let us suppose to have participantX andY involved
in a conversation with a message flow going from a
send task inX to a receive task inY, and a message
flow going from a send task inY to a receive task in
X. When the send task of thei-th instance ofX sends
a message, a correlation key is instantiated from the
message payload. When the receive task of thei-th
instance ofX receives a message fromY, a correla-
tion key instance is derived from the received message
payload, and checked against the previously instanti-
ated correlation key. If the two key instances match,
then the received message is accepted. Otherwise, it
is discarded by thei-th instance ofX.

Key-based correlation allows one to route mes-
sages to receive tasks (or catch message events) in
specific process instances, based on messages pay-
loads. In some cases, this may be not enough.
For example, in the workflow for theOne-to-many
Send/Receivepattern depicted in Figure 4, we want
the taskB to receive a message that correlates with
the one sent by the taskA. Hence, we want to route
messages fromY to the taskB in specific instances of
the multi-instance sub-process inX.

BPMN 2.0 does not provide a way to indicate
which element (e.g., participant, activity, etc.) in-
volved in a conversation initiates the communication.
Such information can be useful to better understand
the sequence of interactions determined by message
flows in a conversation. Moreover, the knowledge of

the conversation initiator is fundamental for moving
message correlation to a level different from the one
of process instances. We propose a BPMN 2.0 exten-
sion, calledinitiator, which allows one to specify the
id of the element initiating a conversation.

The following is the XSD schema for the initiator
extension.

<xsd:schema ...>
<xsd:element name="initiator"

type="tInitiator"/>
<xsd:complexType name="tInitiator">
<xsd:attribute name="initiatorId"

type="xsd:string"
use="required"/>

</xsd:complexType>
</xsd:schema>

The initiator element can be used to specify the
initiator of a collaboration as shown below.

<bpmn:definitions ...>
...
<bpmn:extension mustUnderstand="false"

definition="esteco:initiator"/>
...
<bpmn:collaboration ...>
<bpmn:extensionElements>

<esteco:initiator initiatorId="_11"/>
</bpmn:extensionElements>
...

</bpmn:collaboration>
...

</bpmn:definitions>

In key-based correlation, correlation key instances
are associated to conversation instances. A conversa-
tion instance is associated to the process instances that
it involves. We propose to associate conversation in-
stances to their initiators. Thanks to this association, a
received message can be routed to a specific initiator
instance. The modified key-based correlation mech-
anism works as follows. When a message is sent by
an initiator instance, a correlation key is instantiated
and associated to the corresponding conversation in-
stance. When a message reaches the initiator, the cor-
relation key instance derived from the message pay-
load is matched with correlation key instances associ-
ated to conversation instances. If a match is found, the
message is routed to the initiator instance associated
to the matching conversation.

Let us now consider the One-to-many
Send/Receiveworkflow depicted in Figure 4.
The initiator in the conversation betweenX andY is
the sub-process inX. At run-time, for each message
sent by taskA, a correlation key is instantiated and
associated to an instance of the conversation. Each
sub-process instance is associated to a different
conversation instance. Each message sent byY
generates a correlation key instance that is matched

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

206



with the correlation key instances of conversation
instances. When a match is found, the message is
routed to the sub-process instance associated to the
matching conversation, and received by the correct
instance of taskB.

4.2 Message Queuing

In section 3.3.2 we proposed a BPMN 2.0 representa-
tion of Contingent Requestswhen the first response is
accepted even if it is late (see Figure 7). This repre-
sentation has a flaw, i.e., late responses may be lost.

In order to overcome this limitation, we propose
the introduction ofmessage queuing. That is, each
message directed to a receive task or catch message
event in a process, is stored in a queue when it cannot
be received (e.g., when the receive task to which it is
directed to is not yet active). As soon as a receive task
or catch message event becomes active, it looks for
messages in the message queue.

Thanks to message queuing, responses that reach
participantX when the receive taskB in Figure 7 is
not yet active are not lost. Let us suppose a mes-
sage fromY reachesX just after the interrupting timer
boundary events ofB has been triggered. The mes-
sage is stored in a queue for taskB. After the selec-
tion of the nextY reference and the execution ofA, B
becomes active and immediately receives the message
that was previously stored in the queue.

4.3 Workarounds for Atomic
Transactions

As we already pointed out in Section 3.3.3, BPMN
2.0 provides no support for atomic transactions. Nev-
ertheless, different workarounds can be provided for
theAtomic Multicast Notificationpattern.

The first workaround consists in enforcingquasi-
atomicity(Hagen and Alonso, 2000). Quasi-atomicity
is related to the ability to undo certain parts of a pro-
cess execution. Using this mechanism, receiving par-
ties can perform the work associated to received re-
quests, and compensate for it in case of failure. How-
ever, the effect of the performed work is visible to
other parties, thus violating the principle of atomic-
ity. Quasi-atomicity can be enforced in BPMN 2.0
by exploiting its built-in support for business trans-
actions. Each receiving party can use atransaction
sub-processto perform the work associated to the re-
ceived request. Activities within the transaction that
need to be undone if the transaction fails can be con-
nected with their respectivecompensating activities
by usingcompensating boundary events. Figure 10

depicts an example of usage of such BPMN 2.0 ele-
ments. ParticipantY executes a transaction through a
transaction sub-process. The transaction only consists
of a taskA connected to its respective compensating
activity. After the execution of the transaction sub-
process,Y awaits for an “Ok” or a “Fail” message. If
a “Fail” message is received, thecompensation event
“Undo Transaction”, targeted to the transaction sub-
process, triggers the compensating activity ofA and
rolls back the transaction to its initial state.

Figure 10: Example of usage of transaction sub-process,
compensating activity, and compensation events.

The second workaround is a BPMN 2.0 encoding
of the 2PC protocol as a sequence of sub-interactions,
in a way similar to the one proposed in (Barros et al.,
2005b). In the first phase, a “prepare” message is
sent from the coordinating party to each receiving
party. Each receiver deals with this message with
a separate sub-process, which eventually will send
back a “ready” message to the coordinator. After
the timeout, the responses are counted to determine
whether the minimum and maximum constraint are
satisfied. Then, the second phase has a related set of
sub-processes for each party providing a “commit” or
“reject” message. Different payloads may be included
in the first and second phase messages. As part of
the first phase of interactions, contacted parties might
only see a limited content of the message, enough to
decide whether they are ready to accept the request
or not. In the second phase, selected parties see all
details needed to act on the request. Transaction sub-
processes, compensating activities, and compensation
events may be used to enforce quasi-atomicity in the
second phase.

The third workaround consists in using a variant
of theOne-to-many Send/Receivepattern with a com-
pletion condition at the notifying side, as proposed
in (Decker and Puhlmann, 2007).

Enhancing�BPMN�2.0�Support�for�Service�Interaction�Patterns

207



5 CONCLUSIONS

In this paper, we investigated BPMN 2.0 collabora-
tion diagram support for the service interaction pat-
terns (Barros et al., 2005b), and proposed a set of en-
hancements to broaden it.

We assessed that BPMN 2.0 directly supports nine
of the thirteen patterns, i.e., the threeSingle Transmis-
sion Bilateral Interaction Patterns, Racing Incoming
Messages, One-to-many Send, One-from-many Re-
ceive, Multi-responses, Request with Referral, and
Relayed Request. Standard BPMN 2.0 supportsCon-
tingent Requestswhen we choose to disallow late re-
sponses altogether. The BPMN 1.0 extensions pre-
sented in (Decker and Puhlmann, 2007) are not nec-
essary in BPMN 2.0, since it supports multiple par-
ticipants and message correlation out of the box, and
since reference passing (Decker and Puhlmann, 2007)
can be modeled by using data objects/data inputs/data
outputs, messages, and context-based correlation.

We proposed three enhancements to broaden
BPMN 2.0 support for service interaction patterns.
The first is an extension calledinitiator that together
with a modification of the key-based message corre-
lation semantics allows the representation of theOne-
to-many Send/Receivepattern. The second enhance-
ment consists in the use ofmessage queuesto sup-
port theContingent requestspattern when we choose
to accept the first response even if it is late and stop
outstanding requests. The last enhancement is a set
of workarounds forAtomic Multicast Notification.
Thanks to these enhancements, BPMN 2.0 supports
eleven of the thirteen patterns.

Future work will include the study of BPMN 2.0
extensions to further improve theContingent request
pattern support. We also plan to evaluate BPMN 2.0
as a whole, comparing and combining our results with
the ones presented in (Cortes-Cornax et al., 2011).
Moreover, we consider aπ-calculus formalization of
the BPMN 2.0 semantics as an important future work.
Such a formalization would make it possible for a
formal validation of the proposed pattern represen-
tations, since aπ-calculus formalization of the ser-
vice interaction patterns has already been presented
in (Decker et al., 2006b).

ACKNOWLEDGEMENTS

The authors thank the reviewers for the very useful
comments that have contributed to enhance the paper.

REFERENCES

Barros, A., Dumas, M., and Hofstede, A. (2005a). Ser-
vice Interaction Patterns. InBusiness Process Man-
agement, volume 3649 ofLecture Notes in Computer
Science, pages 302–318. Springer Berlin Heidelberg.

Barros, A., Dumas, M., and Hofstede, A. (2005b). Ser-
vice Interaction Patterns: Towards a Reference Frame-
work for Service-based Business Process Interconnec-
tion. Technical Report FIT-TR-2005-02, Faculty of IT,
Queensland University of Technology.

Cortes-Cornax, M., Dupuy-Chessa, S., and Rieu, D. (2012).
Choreographies in BPMN 2.0: New Challenges and
Open Questions. InProceedings of the 4th Central-
European Workshop on Services and their Compo-
sition, ZEUS-2012, volume 847 ofCEUR Workshop
Proceedings, pages 50–57.

Cortes-Cornax, M., Dupuy-Chessa, S., Rieu, D., and Du-
mas, M. (2011). Evaluating Choreographies in BPMN
2.0 Using an Extended Quality Framework. InBusi-
ness Process Model and Notation, volume 95 ofLec-
ture Notes in Business Information Processing, pages
103–117. Springer Berlin Heidelberg.

Decker, G., Overdick, H., and Zaha, J. M. (2006a). On the
Suitability of WS-CDL for Choreography Modeling.
In Proceedings of Methoden, Konzepte und Technolo-
gien für die Entwicklung von dienstebasierten Infor-
mationssystemen, EMISA 2006.

Decker, G. and Puhlmann, F. (2007). Extending BPMN for
Modeling Complex Choreographies. InProceedings
of the 2007 OTM Confederated international confer-
ence on On the move to meaningful internet systems:
CoopIS, DOA, ODBASE, GADA, and IS - Volume Part
I, OTM’07, pages 24–40. Springer-Verlag.

Decker, G., Puhlmann, F., and Weske, M. (2006b). Formal-
izing Service Interactions. In Dustdar, S., Fiadeiro,
J., and Sheth, A. P., editors,Business Process Man-
agement, volume 4102 ofLecture Notes in Computer
Science, pages 414–419. Springer Berlin Heidelberg.

Hagen, C. and Alonso, G. (2000). Exception handling in
workflow management systems.IEEE Transaction on
Software Engineering, 26(10):943–958.

OASIS (2007). Web Services Business Process Ex-
ecution Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

OASIS (2009). Web Services Atomic Transaction (WS-
AtomicTransaction) Version 1.2. http://docs.oasis-
open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-
1.2-spec-os.html.

OMG (2011). Business Process Model
and Notation (BPMN) Version 2.0.
http://www.omg.org/spec/BPMN/2.0.

W3C (2005). Web Services Choreography Description Lan-
guage Version 1.0. http://www.w3.org/TR/ws-cdl-10/.

Zaha, J., Barros, A., Dumas, M., and Hofstede, A. (2006).
Let’s Dance: A Language for Service Behavior Mod-
eling. InOn the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE, volume
4275 of Lecture Notes in Computer Science, pages
145–162. Springer Berlin Heidelberg.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

208


