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Abstract: In mutation analysis many simple modification of the original program called “mutants” are created. Test 
cases which are supposed to identify the introduced program changes are designed. Each mutant must be 
“killed” by a test case, i.e. the test case should detect the purposely introduced modification. Mutation 
testing is known to be effective but computationally demanding and time consuming because a large 
number of mutants has to be tested. Mutation score, which is the fraction of mutants that are killed by a test 
set, is often used to evaluate the effectiveness of mutation testing. An interesting research question is if the 
number of mutants can be reduced without significantly decreasing the effectiveness of the test. We were 
exploring selective reductions of mutants generated for Java programs. The results of several experiments 
conducted in the Eclipse environment are presented in this paper. These results show that selective 
reduction in mutants can significantly reduce the cost of testing with acceptable mutation score and code 
coverage.  

1 INTRODUCTION 

The general idea of mutation testing is that faults 
used in mutation testing represent mistakes made by 
a programmer so they are deliberately introduced 
into the program to create a set of faulty programs 
called mutants. Each mutant program is obtained by 
applying a mutant operator to a location in the 
original program. Mutation operators are defined 
based on programming language characteristics and 
common mistakes programmers make. Typical 
mutation operators include replacing one operator e. 
g. ‘+’ by another e.g. ‘-‘ or replacing one variable by 
another. Mutation operators have been defined for 
many languages e.g. Fortran (e.g. Offut et al. 1996), 
C (e.g. Agrawal H. et al., 1989), C# (Derezińska, 
2012, 2013) and Java (e.g. Kim et al. , 2001). 

The tester designs tests that make these mutant 
programs behave differently from the original 
program. If the test is able to detect the change (i.e. 
one of tests fails), then the mutant is said to be 
killed.  

Mutation testing is very effective at measuring 
the adequacy of a test suite, but it can be 
computationally expensive and time consuming. It is 
expensive because mutation operators generate a 
large number of mutants and all these mutants must 
be run against the test set thus causing high 
computational cost. Testers have to analyse mutants 

and design tests to kill them. Some mutants cannot 
be killed because they behave the same as the 
program under test for all tests. Such mutants are 
called equivalent. The identification of equivalent 
mutants is usually done “by hand” and needs a lot of 
time.  

Mutation score is a kind of quantitative test 
quality measurement that examines a test suite's 
effectiveness. It is defined as the ratio of the number 
of killed mutants to the total number of non-
equivalent mutants. 

The reduction of the number of mutants will 
decrease the computational and “human” costs. 
Several reduction methods proposed are listed in 
section 2. 

The objective of this paper is to examine what is 
the impact of selecting some subsets of mutants 
generated for each mutation operator and for the 
method for Java programs, on the mutation score 
and the code coverage. This kind of experiments is 
not quite new, some of them are also mentioned in 
section 2. Due to the effort needed to conduct such 
experiments all of them were made on very limited 
number of classes, programs (4-10) so repeating 
them on other programs, with the usage of other 
tools, other operators and in different environment, 
seems to us worthy and important. In (Bluemke, 
2013) we described completely different, than in this 
paper, reduction of mutants by randomly sampling. 
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The main ideas of reducing the number of 
mutants and related work are briefly described in 
section 2. The results of experiments are presented 
in section 3 and some conclusions are given in 
section 4. 

2 REDUCTIONS OF MUTANTS 
AND RELATED WORK 

Interesting survey of mutation techniques was 
published in 2011 by Jia and Harman, they also 
created a repository (Mutation, 2011) containing 
many papers on mutation. Recently Bashir and 
Nadeem (2012) published a survey on object 
mutation and Offut (2011) presented fascinatingly 
the past, the present and the future of mutation.  

One of the greatest challenges to the validity of 
mutation testing is the number of mutants that are 
semantically equivalent to the original program. 
Equivalent mutants produce the same output as the 
original program for every possible input. 
Determining which mutants are equivalent is a 
tedious activity, usually not implemented in tools. 
The impact of equivalent mutants is studied in (Grun 
et al, 2009). Techniques have been devised to 
identify equivalent mutants using program slicing 
(Hierons et al., 1999), compiler optimization (Offut 
and Craft, 1994), constraint solving (Offut and Pan, 
1997) and, more recently, impact assessment (Grun 
et al, 2009). Equivalent mutants are still difficult to 
remove completely (Schuler and Zeller, 2010). 
Recently, in 2014, a systematic literature review 
regarding the equivalent mutant problem was published 
by Madeyski et.al . 

It is not feasible to use every possible mutant of 
the program under test, even after all the equivalent 
mutants have been removed. It is therefore necessary 
to select a subset of mutants that allow the test suite 
to be evaluated within a reasonable period of time. 
Some research has been conducted to reduce the 
number of mutants by selecting certain operators, 
sampling mutants at random, or combining them to 
form new higher-order mutants. Mutant sampling 
was proposed by Acree (1980) and Budd (1980). 
The problem of reducing the cost of mutation testing 
was studied in several papers. Mathur and Wong 
(1995) proposed two techniques limiting the number 
of mutants: randomly selected x% mutants, and 
constrained mutation (only a few specific types of 
mutants are used and others are ignored).  

Slightly different approach to mutants’ sampling 
was proposed by Scholive, Beroulle and Robach 
(2005). They proposed to choose a subset (10%) of 

mutants generated for each mutation operator. The 
selection was not performed randomly, they choose 
different percentages of mutants in the mutant 
subsets generated from different operators. This idea 
we used as a basis for our experiments with selective 
reductions described in section 3. The proportion of 
mutants selected from each operator was the 
function of its stuck-at fault coverage efficiency. 
They conducted experiment on a benchmark 
comparing the random and the proposed sampling 
technique. With the classical random sampling 
technique, the mutation score obtained was 85.62% 
while with sampling strategy mutation score 
increased to 88.18%.  

Offutt, Rothermel and Zapf (1996) were 
examining constrained mutation (some mutation 
operators were ignored). Using the results of the 
above mentioned experiments and performing others 
experiments Mresa and Bottaci (1999) proposed the 
set of efficient operators – eff. Researchers have 
found that statement deletion operator has relatively 
few mutants, but yields tests that are almost as 
effective as using all mutants. Delamaro et.al. (2014) 
extend this idea. Theirs paper presents results from 
mutation operators that delete variables, operators, 
and constants. Bluemke and Kulesza (2013) 
examined randomly sampling mutants in Java 
programs. The experiment shows that randomly 
sampling 60% or 50% of mutants in Java programs 
can significantly reduce the cost of testing with 
acceptable mutation score and code coverage. These 
subsets of mutants were also effective in detecting 
hand seeded errors. Another approach to the mutant 
reduction problem was proposed by Patrick, Oriol 
and Clark (2012). They propose to use static analysis 
to reduce mutants.  

The above listed approaches to reduce the costs 
of mutation were aimed at reduction the number of 
mutants. The literature lacks a theoretical result that 
articulates how many mutants are needed in any 
given situation. Recently Amman Delamaro and 
Offut,  2014, presented a way to identify precisely 
how many mutants are needed in the context of a 
given test set. According to them the size of this set 
appears to be much smaller than the set delivered by 
current approaches to mutation.  

3 EXPERIMENT  

The goal of our experiment was to explore the 
selective reduction of mutants generated by the 
mutation operator. We based our reductions on rules 
proposed by Scholive, Beroulle and Robach (2005) 
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briefly described in section 2 but we decided to 
examine the selective reductions more thoroughly. 
We were reducing 40% to 90% of generated mutants 
using step of 10% as a reduction value. In this paper 
the experimental results of selecting subsets of 
mutants generated for each mutation operator 
(named as OP) and for mutation operators dedicated 
to method (named as METHOD) are presented while 
in (Bluemke and Kulesza, 2013) we showed the 
results of randomly reducing the sets of mutants for 
the same classes.   

Our experiments were conducted in the Eclipse 
environment. MuClipse and CodePro plugins were 
used for the mutation testing. Two special tools: 
Mutants Remover and Console Output Analyzer 
(Kulesza, 2012) were implemented especially for 
these experiments. Eight Java classes (listed in Table 
1), were tested. For these classes 53 to 556 mutants 
were generated.  

Table 1: Tested classes. 

class Project methods code 
mutants/e
quivalent 
mutants 

Recipe CoffeeMaker 14 84 138/15 

CoffeeMaker CoffeeMaker 8 102 285/17 

Money CodePro JUnit 
Demo 

14 59 53/4 

MoneyBag CodePro JUnit 
Demo 

17 114 54/6 

Element MapMaker 10 80 380/20 

Board NetworkShipBattl
e 

12 123 270/3 

Wall jet-tetris 7 79 290/19 

Stack javasol 26 176 556/30 

3.1 Plan of Experiment  

For each class, being the subject of our experiment, 
firstly all mutants were generated by MuClipse using 
traditional operators operating only at the method 
level i.e., changing lines of code that fit a certain 
pattern (i.e., switching operands, replacing + with -, 
etc.) and at the class-level: changing keywords that 
indicate the type of class or the methods involved 
(i.e. overloading a given method, changing a class to 
static, etc.). 

Secondly, the test cases killing these mutants 
were generated using JUnit, part of CodePro plugin. 
Console Output Analyzer was identifying test cases 
not killing mutants. The identification of equivalent 
mutants, based on the analysis of source code of the 
original program and its mutants was time 
consuming. Equivalent mutants were indicated and 
removed “manually”. The tester had to construct 
several test cases especially for non-equivalent 

mutants to obtain an adequate test suite. The number 
of test cases generated automatically by CodePro 
was only 28.78% so quite a lot of time was spend on 
constructing test cases “manually”. The number of 
mutants killed by automatically generated tests was 
47.15%. Such low values of mutants killed by 
automatically generated tests were also reported in 
other papers e.g. (Segura et al., 2011). Based on the 
results of Mresa and Bottaci research (1999) 
effective test sequence were built. Informally, each 
test in an effective sequence is non-redundant with 
respect to the tests that precede it.  

The initial set of all generated mutants was 
reduced by sampling and selective mutations. Due to 
time limitations and the effort needed to construct 
test cases, identify equivalent mutants and remove 
them, for each class being the subject of this 
experiment, only 18 sets of mutants were 
constructed which is not sufficient to obtain 
statistically correct results.  

In the next step test cases “killing” all mutants in 
the set were produced. Firstly the CodePro generator 
was generating test cases and Console Output 
Analyzer was identifying test cases not killing 
mutants. For the not “killed” mutants the test cases 
prepared for the whole set of mutants were used.  

In Table 2 the code coverage (instruction 
coverage) for each class being the subject of our 
experiments is given for all generated mutants.  

Table 2: Code coverage and method coverage for all 
generated mutants. 

class  coverage 
for all 

mutants  

methods  covered 
methods  

Recipe 95.90% 14 14 
CoffeeMaker 98.20% 8 7 
Money 84% 14 10 
MoneyBag 74.20% 17 13 
Element 99% 10 10 
Board 99% 12 12 
Wall 100% 7 7 
Stack 94.50% 26 23 

 
As far as we know, there are no commonly 

agreed limits defining satisfying killing factor so we 
arbitrary assumed that test cases killing 95% of all 
mutants are adequate. Also arbitrary, we assumed 
that 2% decrease of the code coverage (instruction 
coverage) is acceptable. With these values we 
evaluated the sets of mutants and theirs test cases.  

We also assumed arbitrary that subset of 
mutants satisfying both criteria (95% killed 
mutants factor and 2% decrease in code 
coverage) is adequate for testing. For the majority 
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of classes the coverage is greater than 90%, only for 
classes Money and MoneyBag (Codepro) is less. In 
these classes mutants were not generated for four of 
its methods (last column of Table 2) and this caused 
the low value of code coverage.   

In following sections the results of reducing the 
number of mutants generated for mutation operators 
and methods reductions are presented.  

3.2 Results for OP Reduction  

In the OP reduction only part of generated mutants 
by a mutation operator (class level and method 
level) is used in testing. From 40% to 90% of 
generated mutants were removed using step of 10% 
as a reduction value. If the number of mutants 
disable the removal of multiplicity of 10%, formula 
(1) was used: 
 

 (1) 
 

Where: 
• U – number of mutants which should be removed, 
• LM – number of mutants for mutation operator, 
• prc – percentage of mutants to be removed, 
• int  – integer part of a number.  

Mutants Remover tool (Kulesza, 2012) was used 
to remove mutants. To minimize the “random 
element” in our experiment the process of removing 

mutants was tripled for different prc values and the 
modified sets of mutants were stored in files 
class_name_OP_(100% - prc)_i.  

The results of testing using constraint subset are 
given in Table 3. The mean values greater than 95% 
of killed mutants for all tested classes were obtained 
for subset produced for prc values 40%, 50% and 
60%.  

In Table 4 the degradation in the code coverage 
for OP reduction is shown. The degradation not 
greater than 2 % (to the code coverage for all 
mutants) was obtained for two reduced sets of 
mutants OP_60 and OP_50. These sets are satisfying 
both our criteria described in section 3.1. 

3.3 Results for METHOD Reduction 

We treated each method as a “whole” and the 
number of mutants generated for this method was 
reduced by 40% to 90% for each mutation operator. 
In METHOD reductions for each method and for 
each mutation operator (method level) part of its 
mutants were removed. Next, independently, parts of 
mutants generated for each operator (at the method 
level) were removed and at last, mutants for each 
operator at the class level were reduced. 
 

Table 3: Percentage of killed mutants in OP subsets. 

class/subset OP_60 % OP_50 % OP_40 % OP_30 % OP_20 % OP_10 % 

Recipe 94.31 94.85 90.24 87.53 82.93 62.60 
CoffeeMaker 99.13 98.88 98.51 98.38 97.01 94.78 
Money 97.28 91.84 92.52 91.16 85.71 68.03 
MoneyBag 97.22 95.83 95.14 91.67 88.19 87.50 
Element 98.70 98.33 96.94 95.09 91.85 86.11 
Board 98.75 98.75 97.50 96.63 94.13 91.89 
Wall 99.63 99.51 99.14 98.77 97.91 93.36 
Stack 98.10 98.23 96.64 93.92 87.77 75.41 
average 97.89 97.03 95.83 94.14 90.69 82.46 

Table 4: The degradation of code coverage for OP reduction. 

class/subset OP_60 OP_50 OP_40 OP_30 OP_20 OP_10 

Recipe 2% 2.37% 5.10% 7.10% 8.65% 30.60% 
CoffeeMaker 0% 0% 0% 0% 0.27% 2.73% 
Money 2.07% 0.47% 3% 2.07% 6.47% 16.63% 
MoneyBag 0% 0% 2.67% 1.43% 4.27% 2.43% 
Element 0.23% 0.47% 1.17% 2.10% 3.37% 4.77% 
Board 2.07% 2.17% 4.07% 5.17% 9.23% 6.10% 
Wall 0% 0% 0.27% 0.27% 0.27% 1.70% 
Stack 1.87% 1.20% 2.63% 5.87% 5.43% 8.27% 
average 1.03% 0.83% 2.36% 3% 4.74% 9.15% 
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Table 5: Percentage of killed mutants in METHOD subsets. 

Class/subset M-D_60 % M-D _50 % M-D _40 % M-D _30 % M-D _20 % M-D _10 % 

Recipe 95.66 93.50 93.77 93.50 88.08 86.18 
CoffeeMaker 99.25 99.13 98.63 98.38 97.14 96.52 
Money 96.60 95.92 94.56 89.80 89.80 87.76 
MoneyBag 97.92 95.83 95.14 95.14 95.14 93.06 
Element 98.15 98.24 97.78 96.57 94.35 88.33 
Board 99.00 98.63 98.50 96.25 94.63 91.01 
Wall 99.75 99.51 99.02 99.26 98.52 97.54 
Stack 99.05 98.48 97.02 94.74 90.87 84.09 
average 98.17 97.40 96.80 95.46 93.57 90.56 

 
The reductions were performed for each method 

of a class independently. The exact number of 
mutants eliminated was also calculated using the 
formula (1) and Mutants Remover tool was used in 
the elimination process.  

In Table 5 the results for reducing METHOD 
subsets of mutants are presented. The average value 
95% of killed mutants was obtained for subset 
produced for prc values 30%, 40%, 50% and 60%. 
For 48 subset of mutants the 95% of killed mutants 
was obtained in 31 subsets. The level 95% of killed 
mutants was even available for class Recipe, for 
60% of mutants, such good results were not 
available for this class in the OP reduction (section 
3.2). 

In Fig. 1 mean values of killed mutants factor in 
OP and METHOD reduction are presented as a 
function of eliminated mutants for OP and 
METHOD reductions. It can be seen that these 
values are similar till the 95% level. These 
reductions decreased the number of mutants 
significantly (about 62%) with only small (5%) 
decrease in killed mutants factor.  

 

Figure 1: Mean values of killed mutants” factor in OP and 
METHOD reduction. 

Similar measures were also obtained for 
randomly sampled reductions, described in 
(Bluemke and Kulesza, 2013), but the killed mutants 

factor was worse than for OP and METHOD 
reductions. 

We also observed during experiments that if the 
number of mutants significantly decreased, till a 
specified level (e.g. 55% for class Recipe Fig. 2.) the 
OP and METHOD reductions were less efficient 
than random elimination of mutants described in 
(Bluemke and Kulesza, 2013). Decreasing the 
number of mutants lowers the killed mutants factor 
which can be seen in Fig. 1 and Fig. 2. It may 
happen, that for a file with less number of mutants 
the killed mutants factor will be greater, this can be 
observed in Fig. 2. For class Recipe for file OP_60 
killed mutants factor was 94.31%, while for file 
OP_50, containing less elements than OP_60, the 
value of killed mutants factor was slightly greater 
and equal to 94.85%. This phenomenon is caused by 
random factor in the elimination of mutants. 

 

Figure 2: Killed mutants factor for class Recipe in OP, 
METHOD and random sampling – SAMP.  

In Fig. 1, Fig. 2 and in Fig. 3 it can be observed 
that the ‘METHOD’ curve stops before the others. 
This is caused by formula 1 used for the calculation 
of the number of mutants reduced in prc% step of 
reduction. This formula is used, if the number of 
mutants for the operator is too low to use directly 
prc%. Example: LM=7, and we want to reduce 90%. 
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From formula 1 we obtain U=6 mutants to be 
removed which is 6/7= 85.71% . For subsets SAMP 
(random reduction ) and OP (Fig. 3) the numbers of 
mutants were significantly greater, than for 
METHOD, so it was easier to reduce it close to e.g. 
90%.  

In Table 6 the decrease of code coverage for 
METHOD reduction comparing to the coverage of 
full set of mutants is presented. The mean decrease 
of 2% was for subsets obtained for reductions 40% to 
70% of mutants (METHOD_60 - METHOD_30. 
Each of these subsets enabled also the mean values of 
killed mutants to be greater than 95% thus satisfying 
ours both criteria (section 3.1). Even for the subset 
METHOD_10 the mean decrease in code coverage is 
only 3% and is significantly lower than for subsets 
SAMP_10 - random elimination (Bluemke and 
Kulesza, 2013) and OP_10 (accordingly 17.90% and 
9.15%). In METHOD reduction mutants are 
eliminated independently for each method so it is not 
possible to eliminate all mutants for a method thus 
making its code not covered. In OP and randomly 
reduction such situation may happen. 

Table 6: Decrease code coverage for METHOD reduction 
comparing to the coverage of full sets of mutants. 

class/ 
subset 

M-
D_60 

% 

M-D 
_50 % 

M-D 
_40 % 

M-D 
_30 % 

M-D _20 
% 

M-D _10 
% 

Recipe 3.03 3.73 4.07 3.73 11.20 13.27 
CoffeeMa
ker 

0 0 0 0 0.27 0.53 

Money 0 0 0 0 0 0.47 
MoneyBa
g 

0 0.87 1 0.43 0.87 0.87 

Element 0.70 0.70 0.93 0.93 1.87 4.20 
Board 1.57 2.10 1.57 1.73 4.13 3.20 
Wall 0 0 0 0.27 0 0.27 
Stack 0.43 0.87 0.87 1.30 1.83 1.30 
average 0.72 1.03 1.05 1.05 2.52 3.01 

 
In Fig. 3. the mean decrease of code coverage for 

OP, METOD and random reduction, denoted as 
samp, (Bluemke and Kulesza, 2013) of mutation is 
shown.  

3.4 Reduction of Computation Cost  

We evaluated each subset obtained after mutants 
reduction in terms of computational costs. We 
observed the decrease of the number of: mutants, test 
cases necessary for maximal killed mutant factor and 
total runs in testing. 

3.4.1 Reduction of Mutants 

In Table 7 the mean values of mutants for different 
prc values (section 3.1 formula 1) are given. These

numbers may differ, as can be seen in Fig. 4. In 
Table 7 bold fonts are used for subsets satisfying 
both criteria (section 3.1). From these subsets the 
greatest reduction level was almost 60%, for subset 
METHOD_30 (prc=70%). 
 

Figure 3: Mean decrease of code coverage for OP, 
METOD and random reduction – samp of mutants  

 

Figure 4: Decrease of the number of mutants as function 
of 100%-prc (section 3.1, formula1).  

Table 7: Reduction of mutants for different prc values 
(formula 1, section 3.1). 

subset/ 
prc 40 % 50 % 60 % 70 % 80 % 90 % 

OP 
38.84 48.05 58.05 67.61 76.58 85.91 

MET
HOD 34.67 43.63 51.63 59.41 68.55 74.16 

3.4.2 Reduction of Test Cases 

Each generated mutant has to be executed for at least 
one test case. The less test cases there are, the fewer 
executions are needed. The reduced number of 
mutants and reduced number of test cases 
significantly decrease the total number of test 
executed in the testing process. The decrease in the 
total number of executed test is presented in Table 8 
for METHOD reduction. Bold font is used for subset 
satisfying both our criteria (section 3.1). The last 
row shows the mean percentage of reduced tests for 
all classes. It can be noticed that the reduction in 
total number of executed tests is significant: 68.41%. 
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Table 8: Number of executed tests for METHOD reductions. 

Class/subset full M-D_60 M-D _50 M-D _40 M-D _30 M-D _20 M-D _10 

Recipe 1631 963.67 855.67 660.33 648 406.67 343 
CoffeeMaker 4130 2286.33 1848 1507.67 1111 684.33 451.33 
Money 412 247 184.33 169 117 96 94.67 
MoneyBag 330 180.33 160.67 146.67 137.33 96.33 99.33 
Element 6126 3406.67 2871 2275 1787.67 1165.33 644.33 
Board 2399 1408 1242.33 986 763 601.67 386.33 
Wall 2145 1301 962.67 793.67 539.33 398.67 198.33 
Stack 21785 13060.33 10560.67 8604 6521 4136 2496.67 
Average 
reduction 

 42.01% 52.17% 60.35% 68.41% 78.04% 83.45% 

 

4 CONCLUSIONS   

Experimental research has shown mutation testing to 
be very effective in detecting faults e.g.: (Bluemke 
and Kulesza, 2011), (Frankl et al., 1997), (Andrews 
et al., 2005), unfortunately it is computationally 
expensive so some researchers propose parallel 
execution of tests (Mateo and Usaola, 2013), others 
constraining the sets of mutants. The contribution of 
our research is the detailed examination of selective 
reduction of mutants generated for mutation 
operators including class operators in Java programs.  

The mean values, greater than 95% of killed 
mutants for almost all tested classes, were obtained 
after reductions 40%-60% of generated mutants for 
OP subsets. Even better results were obtained for 
sampling METHOD subsets. For these subset only 
30% of mutants were able to kill 60% of mutants in 
average and the degradation in the code coverage 
was less than 1%.  

However our experiment was made in different 
environment and on different language, we 
confirmed the observation of Scholive et. al. (2005) 
that selective reductions of mutants are better than 
the random ones. 

Our experiment shows that reduction in mutants 
generated for mutation operator (regular and class 
level) in Java programs can significantly reduce the 
cost of testing. The reductions in numbers of 
mutants and executed test are easily visible (Tables 
7-8). Even better reductions can be achieved by 
logic mutations (Kaminski et al., 2011) but they 
require special test cases. 

The experiments reported in this paper were time 
consuming so only 8 Java classes were tested. The 
number of programs used in other experiments on 
mutation’ subset were similar. It is difficult to know 
if 8 classes is sufficiently large sample from which 
to generalize and so similar studies on larger sets of 
classes will be useful. Due to the effort needed in 

performing the experiment we were not able to use 
statistically significant number of mutants for 
random selection. However the results of our 
experiments support the results presented in 
literature, some of which were made on other 
programming languages, e.g. (Mathur and Wong, 
1995), (Scholive et al., 2005), (Offut et al., 1996), 
(Polo et al., 2009) it seems to us that confirming 
experiments is important in science. 

All the results of this study have been obtained 
using the set of mutation operators available in  
MuClipse. Clearly, these results cannot be applied 
directly to mutation systems that use different 
operators. Efficiency relationships will, nonetheless, 
be present between any set of operators. In future it 
would be interesting to compare the results of our 
experiment with minimal set of mutants quite 
recently proposed by Amman, Delamaro and Offutt 
(March 2014) . 
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