
Towards Efficient Reorganisation Algorithms of Hybrid Index Structures
Supporting Multimedia Search Conditions

Carsten Kropf
Institute of Information Systems, Hof University, Hof, Germany

Keywords: Database Architecture and Performance, Indexing, Spatio-Textual Indexing, Hybrid Index, Data Structures
and Data Management Algorithms

Abstract: This paper presents the optimization of the reorganisation algorithms of hybrid index structures supporting
multimedia search conditions. Multimedia in this case refers to, on the one hand, the support of high dimen-
sional feature spaces and, on the other, the mix of data of multiple types. We will use an approach which
may typically be found in geographic information retrieval (GIR) systems combined of two-dimensional ge-
ographical points in combination with textual data. Yet, the dimensions of the points may be arbitrarily set.
Currently, most of these access methods implemented for the use in database centric application domains are
validated regarding their retrieval efficiency in simulation based environments. Most of the structures and ex-
periments only use synthetic validation in an artificial setup. Additionally, the focus of these tests is to validate
the retrieval efficiency. We implemented such an indexing method in a realistic database management system
and noticed an unacceptable runtime behaviour of reorganisation algorithms. Hence, a structured and iterative
optimization procedure is set up to make hybrid index structures suitable for the use in real world application
scenarios. The final outcome is a set of algorithms providing efficient approaches for reorganisations of access
methods for hybrid data spaces.

1 INTRODUCTION

Hybrid index structures, or in general, access meth-
ods for disk oriented systems with the ability to effi-
ciently explore hybrid data spaces have been investi-
gated much during the last years. Basically, these ac-
cess methods provide fast access to the data stored in
the underlying data spaces. Many applications may
use them to search in a geographic information re-
trieval (GIR) context utilizing a combined scheme of
textual and geographical data, like vector data such
as points, lines or polygons. A GIR system may
use relational database systems to persist the data.
Yet, specialized indexing systems are necessary sup-
porting queries for multidimensional ranges in con-
junction with keywords. Typical search conditions in
this application domain are of mixed type of textual
and geographical predicates. Other types of combi-
nations, for example normalized in combination with
non-normalized data sets, may also be efficiently sup-
ported by these hybrid access structures. Most of
them use some kind of index structure for normal-
ized values, e.g. a B-Tree or an R-Tree, in combi-
nation with one for non-normalized values, e.g. an

inverted index or a Radix tree. Several variants for
this kind of access have been created and empirically
evaluated. Examples of query classes may be boolean
range queries supporting checks for existence of key-
words inside document texts in combinations with
containment of (geographical) points inside ranges or
polygons or the overlap of ranges or polygons.

Unfortunately, the validation of these access struc-
tures is mostly performed in synthetic simulation
based environments. These experiments show an im-
proved retrieval behaviour and fast access to the un-
derlying datasets. Thus, search processes executed
with these access methods perform very efficiently. In
realistic environments, a GIR system might be used to
store data generated by a web crawler. It could also
serve for persisting data from social networks. These
allow the integration of geographical data during pub-
lishing time. Either the use of standard web crawlers
applying an analysis and filter chain or the integra-
tion of social media produces several millions of data
portions every day. Each of these postings must be
included in the hybrid index structure to allow the
search and retrieval of the data based on the analy-
sis results, again. Thus, for the integration of such a

231Kropf C..
Towards Efficient Reorganisation Algorithms of Hybrid Index Structures Supporting Multimedia Search Conditions.
DOI: 10.5220/0004996302310242
In Proceedings of 3rd International Conference on Data Management Technologies and Applications (DATA-2014), pages 231-242
ISBN: 978-989-758-035-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



hybrid access method, it is inevitable to provide, be-
sides the existence of efficient retrieval mechanisms,
also fast insertion and reorganisation algorithms.

Simulation based environments which validate the
enhanced retrieval capabilities are most often con-
structed in main memory and executed on server sys-
tems with large amounts of RAM. Sometimes, also
disk oriented test suites are used to simulate the be-
haviour of the access methods. However, the most
interesting feature validated in the experiments is the
quantity of disk I/Os which may, e.g., be monitored
through access counting. Generally, disk I/Os may be
used as an approximation of time as still nowadays,
the positioning and read/write operation of disk heads
towards a rotating hard disk takes milliseconds to be
completed. Thus, it is sufficient to validate the block
access count using simulation based synthetic envi-
ronments.

One of the main issues which lead to this work
was a realistic GIR system backed by a relational
database. We tried to integrate this new kind of ac-
cess structures combining an R-Tree augmented with
bitlists with an inverted index lookup approach. Dur-
ing the implementation of the structure in a realis-
tic environment, the reorganisation time of the hybrid
index structure inside the realistic database environ-
ment was one of the conspicuousnesses during per-
formance monitoring of the web crawler which gen-
erated several thousands of postings per day. The per-
formance of the retrieval algorithms is superior to the
one of independent searches in multiple structures (in-
verted index and R-Tree separated from each other),
but the reorganisation performance is just unaccept-
able for this task. Based on the blocking behaviour
of table modification operations, a bad reorganisa-
tion performance also leads to high retrieval times
if searches are issued during insertions, updates or
deletions. Therefore, the reorganisation algorithms
had to be reinvestigated in order to reduce the effort
to a reasonable amount. Basically, it must be noted
that not only the construction of a data structure must
be investigated but also the algorithms leading to the
methodology of construction and retrieval in a new
kind of access structure. The reorganisation algo-
rithms are such a gap which are not described in de-
tail, yet. This paper describes the procedure and final
outcome of an optimization based on an initial imple-
mentation of a hybrid access method which evolves
to acceptable performance bounds using an iterative
approach. Hence, the term “iteration” is used here to
describe the single steps inside the entire optimization
procedure.

The main contributions of these work are:

1. A discussion of the initial implementation as well

as the definition of a test suite for the optimiza-
tion of reorganisation algorithms of hybrid access
structures,

2. an overview of the optimization iterations per-
formed to limit the reorganisation effort to a rea-
sonable amount and

3. the final state of efficient reorganisation algo-
rithms with focus on insertions.

This work is structured as follows: Section 2 dis-
cusses in short the related work, especially hybrid in-
dex structure variants and experiments. An outline
of the initial implementation as well as the definition
of a test suite and the outer circumstances, like input
data and parameters is given in section 3. The proce-
dure of the actual optimization is presented in section
4 which also explains details of selected optimizations
and phases. The final state of the reorganisation algo-
rithms is given in section 5 where the final and effi-
cient algorithms are explained.

2 RELATED WORK

Basic approaches for creating GIR systems are pre-
sented in (Göbel and de la Cruz, 2007; Kropf et al.,
2011; Vaid et al., 2005). These papers introduce the
requirements and also analysis techniques for GIR
systems like toponym extraction and already provide
first insights on possible indexing schemes. Such a
system may utilize the enhanced capabilities of hy-
brid index structures to present the data to the user,
fast.

Hybrid indexing techniques, either with focus on
top-k or boolean queries are presented in (Felipe et al.,
2008; Göbel et al., 2009; Göbel and Kropf, 2010;
Rocha-Junior et al., 2011; Rocha-Junior and Nørvåg,
2012; Wu et al., 2012; Zhang et al., 2009; Zhou et al.,
2005). Several variants of hybrid access methods are
presented in these papers. The targets either include
boolean queries which just ask for existence of certain
features like keywords or top-k queries which already
employ ranking possibilities. The main construction
of these access methods is similar for most of them.
One base access method is taken into account man-
aging data from one part of the data space, e.g. the
geographical/normalized data sets, and is then aug-
mented with a representation for another part, e.g. the
texts/non-normalized data sets. We use one of these
methods as the base of our investigation and try to en-
hance the reorganisation performance.

An experimental evaluation of available structures
and methods for spatial keyword processing is given
as an overview in (Chen et al., 2013). Also the classes

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

232



of boolean range queries as well as boolean k-NN or
top-k kNN queries are investigated and an evaluation
for each of the problem classes is given based on pre-
defined datasets. This analysis evaluates the query ef-
ficiency regarding the respective query classes. Yet,
the construction and update efficiency which may be
described as reorganization effort is left out of scope,
there.

3 INITIAL IMPLEMENTATION
AND TEST SUITE DEFINITION

This section basically outlines the initial implementa-
tion of the hybrid index structure under examination.
It must be noted that a more general overview is given
here and only the respective phases are discussed as
well as the setup of the test suite in conjunction with
test and input parameters.

The access structure under test is described from
a conceptual view in (Göbel et al., 2009). The ba-
sic concept of the hybrid index implemented for this
work can be seen in figure 1. It is comprised by
an initial inverted index separating high and low fre-
quently used terms based on Zipf’s Law (Zipf, 1949).
This empirical law is used to, on the one hand, keep
the bitlists small and, on the other, allow sequential
searches for elements to a pre-defined extent. In some
cases, it might be more efficient to scan the results re-
turned from an inverted index linearly instead of pro-
ceeding with the retrieval in the hybrid R-Tree part.
The tuples to be stored in the index consist of a set of
terms or words from textual documents in conjunction
with a set of (geographical) points. The structure con-
sists of an initial inverted index which is the starting
point for all operations. All terms are indexed in this
structure. For frequently occurring terms, only refer-
ences to bit indices which are used in further opera-
tions are stored whereas for seldom occurring terms,
all document entries, they are present in, are stored
directly, there. Thus, low frequently occurring terms
are directly searched for inside this inverted index.
The document heap structure serves for persisting all
point values from the documents currently not present
inside the hybrid R-Tree to be able to support sequen-
tial searches on point data, as well. The next storage
structure, which is only used for commonly occurring
terms, is the hybrid R-Tree which is a basic R-Tree
augmented with a bitlist. The bitlist is used to indi-
cate the existence of a term, represented by its bit in-
dex, inside a certain subtree. As the bitlist is of fixed
size, multiple hybrid R-Tree instances for discrete bit
index ranges might exist. The root nodes of these R-
Trees are stored inside the R-Tree Root Storage com-

ponent. The final destination of each term is inside
the secondary inverted index structures. Each of the
leaf elements of the hybrid R-Tree which then repre-
sents a point value has one of these secondary struc-
tures assigned. The terms are finally persisted there
to build the intersection of point and term assignment
to document in an efficient manner. Each of the in-
verted index structures, initial as well as secondary, is
accessed via a B-Tree which serves as the directory.

However, based on the implementation inside a re-
alistic database environment, some changes are intro-
duced to the original proposal. The database selected
for the implementation of the access structures is a
modified version of the H2 Database Engine1. The
main changes introduced to this database system re-
sult from the requirement of adding user defined ac-
cess methods to be able to load them from external
places, e.g. a jar file residing in a specific folder.

The modification of the initial inverted index will
be referred to as “rootBTree” phase. The phases
which describe the modification of the hybrid R-
Tree in the following work are called “rtreeExpand”
for general R-Tree insertion operations, “distribute”
for keyword distribution and “generateList” for sub-
set generation of specific terms valid for a given
point/region. The modification of the secondary in-
dexes is referred to as “putEntries” in the following.
As mainly the insertion is inspected, the entire reor-
ganisation process is called “add”.

We refer to “iteration” as one phase inside the en-
tire optimization procedure. It must be noted that the
implementation before the first optimization iteration
is really a naı̈ve one. The inverted index structures,
initial and secondary, store the directory inside a B+-
Tree. Each occurrence of one term and its relation
to a document is marked once directly inside the leaf
nodes. Hence, lots of entries inside the B+-Tree exist
mapping from exactly the same term to one document
they occurs in. This is obviously not the best option,
but it is worked on later during the optimization iter-
ations. After the insertion of the entries at the initial
inverted index, the terms with a occurrence frequency
greater than a pre-defined arbitrary user defined limit
are distributed to the hybrid R-Tree. Hence, first the
node elements and regions are created by inserting the
points to the existing R-Tree. Then, the distribution
of the terms to the inner and finally the leaf nodes of
the R-Tree is executed. This is backed by the genera-
tion of a list of elements valid for the respective sub-
tree to distribute them to subtrees where they spatially
fit. The final step is the insertion at the secondary in-
verted index, initially also executed using the naı̈ve

1http://www.h2database.com/html/main.html, accessed
2014-03-24

Towards�Efficient�Reorganisation�Algorithms�of�Hybrid�Index�Structures�Supporting�Multimedia�Search�Conditions

233



Figure 1: Conceptual Overview of the Hybrid Index Structure.

approach.
The test suite used here measures the results of

specific insertion operations repeatedly. Generally, it
monitors lots of features of the hybrid index structure
like the number of disk I/Os (no distinctions are made
between read and write) differentiated based on the
page type, the highest assigned bit index and other in-
ternal states of the hybrid access structure. The infor-
mation about, especially, the disk I/Os also had major
influences on the decisions regarding the restructur-
ing of the algorithms. However, primary subject of
investigation for this study is the runtime of the al-
gorithm. Hence, the test suite also contains profiling
facilities used repeatedly. Based on the fact that the
profiling produces large XML output files, an itera-
tive measurement scheme is introduced which is only
applied at pre-defined points in time (50 document in-
sertions without, then one with, continuing with 50
without profiling activated, . . . ). By using an import
to a graph database and into adopted analysis tools,
an output for the respective phases may be generated
displaying the total and the average runtime as well as
the number of calls to each specific sub-routine.

The input data result from an analysis of a
Wikipedia dump2 which is unfortunately already
deleted from the servers. Newer dumps of the
Wikipedia are generated repeatedly and freely avail-
able3. The given analysis may be applied to newer
versions of the dumps, as well. Besides, also a pre-
processed version of the Reuters TRC24 corpus is
used for the verification which is not presented in this
paper. Thus, we also ensure that the given optimiza-
tions are independent of the corpus used and represent
generic approaches valid for any kind of corpus. An

2http://dumps.wikimedia.org/enwiki/20111007/enwiki-
20111007-pages-articles.xml.bz2, accessed 2011-11-07

3http://dumps.wikimedia.org/enwiki/latest/, accessed
2014-05-14

4http://trec.nist.gov/data/reuters/reuters.html, accessed
2014-05-14

Table 1: Table of Settings for the Pre-tests Testsuite Run.

Parameter Value
HLimit 200
R-Tree Elements 5
Document Count 969
Splitting Method R-Tree (1–2)/R*-Tree (3–7)
Choose Subtree R-Tree (1–2)/ R*-Tree (3–7)

analysis scheme is executed which uses stop word re-
moval and porter stemming (see (Porter, 1997)). After
that, coordinates are extracted from the articles, on the
one hand, by using the already assigned ones which
may be set up for points of interest inside Wikipedia.
On the other hand, also a toponym extraction func-
tionality is applied which detects place names and as-
signs discrete geographical coordinates to the place
names found in the articles. The articles consisting
of sets of terms and points serve as an input for the
database table backed by the hybrid access method.

Unfortunately, the first iteration took very long for
completing the measurement runs. Hence, only a very
limited number of measurement runs could be exe-
cuted. 38 repetitions of the test suite runs are per-
formed. Basically, due to the varying approach of
not monitoring 50 documents (including queries after
each 25th) and monitoring one afterwards, the total
amount of documents inserted to the database table
is only

� 38
2

�
� 50+

� 38
2

�
= 969. During the actual re-

search work on the optimization, the quantity of doc-
uments processed by the hybrid access method was,
obviously, much bigger than the given 969 used for
this analysis.

Some parameters may be set on the test suite for
control. They are summarized in table 1. The param-
eter HLimit refers to the arbitrary user defined limit
separating low and high frequently used terms. It is
set up to 200 based on prior experiments. As a fixed
block size is set for the database disk pages, either
the R-Tree element count or the number of entries
present to be set inside the bitlist may be specified.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

234



Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

average required time

tim
e 

(m
s)

0
20

00
00

60
00

00
10

00
00

0
14

00
00

0

add

Figure 2: Overview of Average Required times for Adding
an Item (Iterations 2 – 7).

In this case, five R-Tree elements are configured and
the size of the bitlist is calculated. The R-Tree may
be adopted to the user’s needs by applying different
split or choose subtree methods (e.g. (Ang and Tan,
1997; Beckmann et al., 1990; Guttman, 1984)). These
change between iteration 2 and 3 as result of an opti-
mization.

As update operations in databases are often per-
formed by marking one tuple as deleted and adding
a new one, we do not especially discuss these, here.
This holds (at least) for the inspected databases H2
and PostgreSQL. The query efficiency of the changed
structures and algorithms is also not discussed be-
cause one main focus of the optimizations is to im-
prove reorganisation efficiency whilst keeping the re-
trieval performance constant. The measured times are
only compared relatively to each other. Hence, we
omit a detailed description of the hardware used for
the tests.

4 EVOLUTION OF HYBRID
INDEX STRUCTURE
REORGANISATION
ALGORITHMS

An overview of the average duration of the reorgan-
isation runs is presented in figure 2. As a side note,
iteration 1 is excluded from this plot and many others
following because the optimizations performed with
this iteration including the cache mechanism are just
too large to be reasonably displayed (� 0:531% rel-
ative runtime of phase “add” for iteration 2 in com-
parison to iteration 1). It must be noted that, although
all following plots show average runtimes in millisec-
onds, the values cannot be taken as a reference. This
results from the chosen profiling approach. For the

rootBTree rtreeExpand generateList putEntries

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 3: Average Percentual Runtime per Phase.

time measurements, additional code for monitoring as
well as exporting is executed which distorts the abso-
lute values because the profiling approach adds a cer-
tain time overhead. Hence, they may only be used to
compare the times measured during the test suite exe-
cutions and may not be taken as absolute ones. Figure
2 describes the trend of iterations 2 – 7. It shows a
clear decrease of the runtime for each iteration except
for iteration 4. Inside the remaining phases, the dif-
ferences are comparably high. Yet, a clear decreasing
tendency, at least from iteration 5 to 7, can be depicted
from this plot. The runtime difference of iteration 2 to
3 is only marginal whereas it slightly worsens in iter-
ation 4. This is is a result of the size of the document
set. On principle, the quantity of documents is con-
tinuously raised between the particular iterations dur-
ing the real optimization iterations executed in exter-
nal studies. The changes applied in iteration 4 mainly
profit from a larger document set. Thus, the relatively
small cardinality of the document set used in this test
run does not produce the same effects as for larger
sets.

The particular phases of the reorganisation algo-
rithm are now analyzed in detail with respect to the
changes performed during the optimization iterations.
The values of the first iteration are omitted because, as
already seen for the entire process, the differences be-
tween the first and the subsequent iterations are sim-
ply too big to be displayed reasonably.

Figure 3 shows the average percentual portion of
the respective phases in relation to the entire runtime.
Hence, the initial inverted index (“rootBTree”) con-
tributes only a small portion of the runtime whereas
the remaining phases have more influence, in total.
Additionally, no iteration directly refers to this struc-
ture. Therefore, this phase is left out of consideration
in the following subsections.

Towards�Efficient�Reorganisation�Algorithms�of�Hybrid�Index�Structures�Supporting�Multimedia�Search�Conditions

235



4.1 Iterations

The iterations described in this subsection are exe-
cuted in this order. That means that the sequence, pre-
sented in the following subsections, also corresponds
to the one executed to reach the final goal of obtain-
ing efficient reorganisation algorithms. The outcome
of each optimization is validated based on pre- and
post-tests. The facts, presented here, describe the fi-
nal outcome of each of the sequentially executed op-
timization iterations.

As already seen in section 4, each of the opti-
mization iterations introduces differences in the run-
time. However, it is probably interesting which kinds
of adoptions lead to the respective improvements. A
short list of changes in the algorithms or data struc-
tures is given here. Each of the changes introduced for
the respective iterations is motivated based on obser-
vations leading to solution alternatives. One of them
is selected on grounds of additional evaluations (e.g.
further investigations or experiments).

The iterations seen in the figures correspond with
the following list of adoptions:

1. Initial State using the naı̈ve implementation as de-
scribed in section 3. The values for this iteration
are omitted in the plots because of the tremendous
differences.

2. Page and Value Caches introducing least recently
used caching (e.g. (O’Neil et al., 1993)) for seri-
alization and de-serialization of objects as well as
an adopted caching mechanism. The used caches
are introduced in addition to already present ones
from the H2 database.

3. R-Tree Distribution which considers different
methods of selecting a proper subtree or splitting
a node in two. Three methods of splitting (R-
Tree linear, R*-Tree and Ang and Tan) as well
as two methods of subtree selection (R-Tree lin-
ear and R*-Tree) were cross-evaluated. The R*-
Tree splitting and choose subtree work best for the
datasets under test (Wikipedia and also an addi-
tional Reuters excerpt).

4. Inverted Index and Storage Changes adopting the
internal storage of objects from a serialized ver-
sion of the entire object to the decomposition of
individual objects. This makes a direct access to
stored data more efficiently. The storage mech-
anism of the postings inside the inverted index
which is used intensively in initial and secondary
index storage is changed based on experimental
and theoretical considerations. Depending on the
size of the posting lists compared with the avail-
able block size, they are either stored inside the

directory B+-Tree or at external pages.

5. Further Inverted Index manipulations. This it-
eration includes an optimization for searches in-
side the directory B+-Tree. Thus, a binary search
in inner elements is included reducing this inter-
nal search effort from linear O(n) to logarithmic
O(logn). Besides, empirical data are taken to
check the occurrence frequency of all points in the
datasets (Wikipedia and Reuters) and the outcome
is that the frequency is also distributed based on
Zipf’s Law. A specialized storage mechanism is
included for points occurring in exactly one doc-
ument.

6. Pre-Calculation of Item Insertions introduces a
modified version of the distribution of term to
document mappings to the points where they fit in
inside the hybrid R-Tree. Initially, the data struc-
ture used is set up on the terms pointing to the
documents which refer to the points contained in
them. This is changed to a pre-calculated hash
table version of points referring to terms which
themselves reference the documents. Thus, the
pre-calculation is very similar to the structures re-
quired by the hybrid R-Tree and secondary in-
verted index, respectively. A more direct al-
gorithm of distribution is chosen which loads
leaf nodes where the points are in and the pre-
calculated inverted posting sets may be inserted
to the secondary inverted index structures, with-
out further calculations. In addition, bulk-loading
oriented operations for secondary inverted index
structures are also introduced.

7. Spatial Structures for Spatial Distributions are in-
troduced in the last of the inspected iterations.
The hash table is replaced by a KD-Tree (Bent-
ley, 1975) which is better suited for handling spa-
tial objects. This enhances the access to spatial
objects on the one hand for subset generation and
enables a cache hit query in inner node elements.
Thus, for inner elements inside the hybrid R-Tree,
it is sufficient that at least one point exists in the
set of objects to the distributed elements which is
contained inside the region described by the node
element to be further distributed. Therefore, no
subsets must be created and spatial range queries
are efficiently supported which is not given for
hash tables.

4.2 R-Tree

The R-Tree operations are not investigated exclu-
sively during the optimization. Only the distribution
is changed (split and choose subtree) during iteration

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

236



Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

average required time

tim
e 

(m
s)

0
20

00
40

00
60

00
80

00 rtree

Figure 4: Overview of R-Tree Optimization Iterations.

3. The alterations of the runtime are mainly intro-
duced as side effects from other optimizations. The
results can be seen in figure 4. Iteration 1 is omit-
ted here because the caching mechanism introduced
in iteration 1 has too big effects on the runtime that a
proper display of the results is impossible. The cache
mainly works for the spatial objects stored inside the
R-Tree (and some others, as well).

Although iteration 3 introduces an adopted ver-
sion of the distribution, the runtime slightly rises,
here. This results from the fact that the actual cal-
culation of the improved distribution takes more time.
The basic R-Tree algorithms (at least the linear ver-
sion implemented here) is not very computationally
complex. The more complex algorithms of the R*-
Tree contribute negatively to the runtime of the in-
sertion operations. Additionally, the change in the
R-Tree element structure should support the distribu-
tion of terms to points in the “distribute” part of the
hybrid index which follows the “rtreeExpand” phase,
shown here. Hence, an optimization of the actual R-
Tree modification is also not intended for iteration 3.

The greatest effects for the actual R-Tree manipu-
lations are given in iteration 4 and 7. The value for
iteration 6 is missing because in this iteration, an-
other insertion and distribution algorithm is applied.
It is performed together with the distribution and no
phase can be isolated for analysis here. The difference
between iteration 3 and 4 results from the change in
the storage mechanisms, because the spatial objects
may be modified more directly, then. In advance, a
composed object of spatial component, bitlist and sec-
ondary inverted index reference is stored inside the el-
ements of an R-Tree node. The new storage approach
separates the storage to individual column represen-
tations. The gap present between iterations 5 and
7 is explainable because of the improvements intro-
duced by the KD-Tree. The algorithms are substan-
tially changed in this iteration. Up to iteration 5, the

Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

average required time

tim
e 

(m
s)

0
20

00
00

60
00

00
10

00
00

0

put

Figure 5: Overview of Secondary Inverted Index Manipula-
tion Iterations.

insertion and distribution of the new terms and points
to be placed to the hybrid R-Tree is executed by first
iterating through all points present in the set of over-
flowing elements, looking up the points and, if not
present, inserting them. Subsequently, the distribu-
tion of terms to the points is executed. Hence, all
affected nodes are accessed at least twice. The new
version first distributes the terms to already present
R-Tree point elements. Afterwards, all points (and af-
fected terms) which were not handled, yet, are placed.
Hence, the possibility of loading paths multiple times
exists but is lower based on the more direct way of
placing only the remaining elements and not having
to load the entire tree (at least) twice.

4.3 Secondary Inverted Index

The effects of the optimization iterations for the sec-
ondary inverted index are presented in prior to the
ones of the distribution phase because it directly in-
fluences the runtime of the distribution of elements.
However, the secondary inverted index reorganisation
does not depend on other algorithms and may thus be
inspected exclusively.

Figure 5 shows an overview of the iterations of the
secondary inverted index manipulations. Iteration 1
is omitted, again, due to huge differences of the run-
time. The secondary inverted index manipulation is
executed very frequently because all terms that are
distributed to the hybrid index must be placed at a fi-
nal destination, which is the secondary inverted index.
Hence, for each point affected by the distribution of
items, the manipulation of the secondary inverted in-
dex is carried out. The general tendency of this phase
is continuously decreasing, too. Iteration 4, where the
runtime of increases very much, is an outlier. Basi-
cally, it can be shown that for larger numbers of doc-
uments handled by the hybrid index structure, the ef-

Towards�Efficient�Reorganisation�Algorithms�of�Hybrid�Index�Structures�Supporting�Multimedia�Search�Conditions

237



fects introduced with iteration 4 are also beneficial for
the runtime. The changes introduced in iteration 4 re-
fer to the storage of a high quantity of documents. If
there is a large number of references from one par-
ticular item stored inside the directory to a lot of en-
tries in the document heap, a strategy is applied to the
elements inside the B-Tree which, depending on the
occurrence frequency of one term, decides whether to
place the term inside the directory B+-Tree or in ex-
ternalized posting lists. Unfortunately, the manage-
ment operations introduced using this approach for
the inverted index become by far more complex than
the initial ones. Originally, for each element a tuple
is built which is simply inserted to the secondary in-
verted index using the standard B+-Tree algorithms
and placed directly inside the directory. After the
introduction of the new strategy, decisions must be
taken whether to place the element to the leaf node
itself or to move it to an external page. References
to these external pages must be updated if the ele-
ment is moved, which includes additional computa-
tional overhead. This indicates that the algorithms for
element placement in the new version of the inverted
index are by far more complex than the original ones
which simply took each term to document reference
and placed it instantly into the B+-Tree.

The remaining tendency demonstrated there is that
the average time required for one manipulation of
the secondary inverted index continuously decreases
from iteration 2 –7. An optimized way for the dis-
tribution of point values inside the hybrid index also
seems to have a side effect for the secondary inverted
index performance. Yet, the most significant changes
for this manipulation phase turn out between itera-
tions 5 – 7. The combination of a pre-calculation, an
advanced inverted index and the introduction of spa-
tial structures for the distribution algorithms seems to
increase the performance of the secondary inverted in-
dex manipulation to a large extent. The effects of the
reorganisation of the storage mechanism for points
referencing exactly one tuple eminently affects the
average runtime. The same obviously holds for the
bulk-oriented insertions introduced in iteration 6. It-
eration 7 actually does not change much in the ba-
sic behaviour of the algorithms and thus has nearly
no influence, there. Basically, iteration 7 only intro-
duces an optimized way for the distribution of ele-
ments throughout the hybrid index which means that,
besides a pre-calculation of elements, also the distri-
bution may be executed in a more optimal way. This
change leads to the fact that the performance of the
generation of valid items for a given subtree is opti-
mized evoking, on the one hand, a lower amount of
calculations of valid elements and, on the other, to

Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

average required time

tim
e 

(m
s)

0
20

00
00

60
00

00
10

00
00

0
14

00
00

0

distribute

Figure 6: Overview of Distribution Optimization Iterations.

an optimized way of treating pages inside the cache
of the H2 database. If a lower amount of pages is
visited during the reorganisation, less pages need to
be managed inside the cache for the remaining page
types. This produces more space available in this
cache. Hence, it is possible to perform the manage-
ment of the potentially high quantity of secondary in-
verted index pages more efficiently because a large
amount of the available cache can be used here. This
leads subsequently to a more efficient utilization of
the cache resource from the database. Nevertheless,
the most considerable difference can be detected be-
tween iteration 5 and 6 which means that the bulk-
loading as well as the appropriate storage of points oc-
curring in only one document lead to a tremendously
improved performance for the secondary inverted in-
dex structures.

4.4 Distribution of Entries

Besides the inverted index manipulation, the distribu-
tion of the entries is the phase which is worked on
most considering the optimizations. It is related very
closely to the secondary inverted index manipulation
because the entries are placed into the secondary in-
verted index at the end of the distribution. Hence, the
items valid for the particular subtree represented by
an element are calculated and afterwards distributed
to this subtree. In the case of a leaf node, the entries
are subsequently inserted to a secondary inverted in-
dex. Thus, for most optimization iterations, except for
iteration 6 where the distribution is omitted by includ-
ing direct insertions to leaf nodes, these two phases
must be inspected in connection with each other.

The results of the measurements for the distri-
bution phase are displayed in figure 6. This figure
shows that the performance for this part steadily in-
creases as well (except for iteration 4). Iteration 1
is again omitted based on the already mentioned rea-

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

238



sons. The distribution phase contains the recursive
traversal through the tree as well as the subset gen-
eration and placement of the items to the secondary
inverted index structures. Thus, the efficiency of this
structure directly affects the “distribute” phase. This
influence explains the results from iteration 4. It can
be seen that the alteration of split and choose subtree
methods has minor effects, at least compared to the
iterations carried out later on. Iteration 5, however,
introduces a great performance increase. In this itera-
tion, the storage structures are adopted, which means
that points occurring only in one single document are
stored without the necessity of secondary inverted in-
dex manipulations. As a side note, this is also ben-
eficial for the retrieval effort. Hence, the process of
skipping these manipulations leads to a major perfor-
mance improvement here. But, the generation of the
item lists is still executed there. Thus, for each R-
Tree element a set of valid term ids and documents
is generated to be distributed to the respective sub-
tree, there. This is omitted in iteration 6 where the
pre-calculations in the shape of a hash table are intro-
duced. From iteration 5 to 6 a relative performance
enhancement of � 50% can be depicted. This is a
direct effect of the introduction of the hash table pre-
calculation and the direct insertions to secondary in-
verted index structures. No subsets must be calcu-
lated during the distribution phase. The most influ-
ential part at this stage is the introduction of the hash
table. Although it has proved successful for the iter-
ation, it is its main time consumer, as well. This is
primarily based on the “random” access of the map
entries which has been overcome by the use of a spa-
tial structure (KD-Tree) at the end. The effects of the
KD-Tree are tremendous like the difference between
iteration 6 and 7 shows. In comparison to the map, the
KD-Tree shows two substantial distinctions. On the
one hand, the list generation is skipped and replaced
by an approach performing cache-like. Thus, the gen-
eration of potentially large lists for subtrees can be
left out. On the other, the spatial structure of the KD-
Tree arranges the elements better suited for queries
towards specific points or ranges. This leads to an
enormous performance gain between iteration 6 and
7. Besides these improved spatial distributions, the
approach also benefits from the chance of not having
to visit many subtrees and visiting them only once.

Figure 7 shows the results for the generation of the
subsets valid for the particular subtrees. The general
tendency of this figure is comparable to the one of the
distribution function if the put entries phase is disre-
garded. Iteration 6 skips the generation of the sublists
by introducing the hash table. This is changed in it-
eration 7 where the KD-Tree mainly functions as a

Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

average required time

tim
e 

(m
s)

0
50

00
0

10
00

00
15

00
00

20
00

00

generate

Figure 7: Overview of Sublist Generation.

comparison cache. The queries for the respective en-
tries valid for one spatial element inside the R-Tree
are performed via the KD-Tree in the last iteration. A
query is only executed for presence of at least one el-
ement from the KD-Tree inside or equalling the cur-
rently inspected element. Only in the leaf level, the
sets are generated which are already pre-calculated
before the distribution algorithm. Thus, actually in no
stage from iteration 7, a subset is generated because
the already prepared ones are chosen for insertion. It
is obvious (see figure 7) that this change is the most
beneficial regarding the performance.

With exception of iteration 4, the performance of
the subset generation lowers very much during the op-
timization iterations. A great effect can also be de-
picted between iteration 2 and 3. That indicates that it
profits much from the improved version of of the R-
Tree distributions. Based on the adopted versions of
the inverted index algorithms, the generation of sub-
sets also benefits from the caching. The algorithm,
basically, first loads all documents contained in the
sets and checks the point values. Thus, if less pages
are loaded by other parts, the subset generation profits
from this by not requiring all the entries to be loaded
from the document heap repeatedly.

5 FINAL RESULT OF THE
REORGANISATION
ALGORITHMS

This section provides the final outcome of the reor-
ganisation algorithms. Basically, only the insertion
is inspected in this case. The algorithms are listed
in pseudo-code which should be applicable to a wide
variety of programming languages. These algorithms
are the final outcome of the seven implementation
states as discussed in the previous sections.

Towards�Efficient�Reorganisation�Algorithms�of�Hybrid�Index�Structures�Supporting�Multimedia�Search�Conditions

239



Algorithm 1: Insert Document.

1 Function HybridIndex::Add(doc)
Data: the document to be inserted to the

hybrid index
2 documentHeap.Place(doc.getPoints());
3 toDistribute =

initial.Insert(doc.getWords());
4 if toDistribute != /0 then
5 hybrid.Insert(toDistribute);

Algorithm 1 shows the general hybrid index in-
sertion algorithm. First, the document heap is ma-
nipulated. This storage structure has not been dis-
cussed, before. It is a persistence unit saving the
points or normalized values for the support of sequen-
tial searches when the a term occurring inside one of
the document has an occurrence frequency of lower
than HLimit. Thus, the sequential filtering done on
the documents after inverted index retrieval may be
executed, there. After this insertion step, the initial in-
verted index modification is executed which produces
a set of values to be distributed to the hybrid R-Tree
which means that the term frequency is higher than
HLimit. Thereafter, this set is further processed by
the hybrid R-Tree algorithms.

Algorithm 2: Insertion at Initial Inverted Index.

1 Function Initial::Insert(terms)
Data: the terms representing the

non-normalized values
Result: set of items to be distributed to the

hybrid R-Tree
2 overflow = /0;
3 for term 2 terms do
4 inverted.FindLeaf(term);
5 if f ound^over f low then
6 overflow.Add(element);

7 else
8 refcount =

inverted.Insert(term);
9 if re f count > HLimit then

10 item.SetWordId(max(termid)+
1);

11 inverted.Replace(inverted
index item);

12 overflow.Add(element);

13 return overflow

A description of the initial inverted index manip-
ulation is given in algorithm 2. For each term in the
set of terms assigned to a document, this algorithm

checks whether the respective term is already in the
set of terms with a high frequency. If so, they are
directly added to the set to be processed, further. If
not, the reference count is determined by placing the
new document reference to the postings list. If after
that, the term frequency is higher than the given limit,
a new bit index is created to indicate the presence or
absence of this term inside the bitlist of an R-Tree ele-
ment, all references to this term are removed from the
inverted index and it is also added to the set of terms
to be further processed.

Algorithm 3: Insertion on Inverted Index.

1 Function Inverted::Insert(node, elem)
Data: the node to insert the element at and

the element itself
Result: the frequency of the element

2 if internal storage then
3 if ! inverted.CheckSize(node, elem)

then
4 inverted.MoveExternal(items);
5 inverted.PlaceExternal(elem);

6 else
7 inverted.PlaceToNode(elem);

8 else
9 inverted.PlaceExternal(elem);

10 return frequency

The general inverted index manipulation used by
the initial as well as the secondary inverted index is
shown in algorithm 3. Two strategies may be applied
here based on the size required by the set of docu-
ments pointed to by one term. Either internal stor-
age, which means that the references are placed di-
rectly inside the directory, or external storage indicat-
ing that an external postings page is used may be se-
lected as strategies. In case the external storage indi-
cator is set, the new element is directly stored, there.
Otherwise, the size of the currently existing elements
with the new one in addition is determined and de-
cided whether a limit is reached. Currently, this limit
is set to the size of a page, because if a second page
must be created to store all references to one term in,
then it is more efficient to keep the directory B+-Tree
lean and place all entries to an external postings list.

The insertion of the overflowing set to the hybrid
R-Tree is described in algorithm 4. First, a KD-Tree
which serves for cache lookups and subset generation
is constructed which is then distributed to the R-Tree
root node. This KD-Tree uses the point or normalized
values as keys which reference a set of terms which
again refer to a set of documents each. That means
that the new entries for the secondary inverted index

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

240



Algorithm 4: Hybrid R-Tree Insertion.

1 Function Hybrid::Insert(overflow)
Data: the overflowing list to be distributed

2 kdtree =
hybrid.GenerateAssignment(overflow);

3 hybrid.Distribute(kdtree, root);
4 hybrid.PlaceRemaining(kdtree);

Algorithm 5: Distribution of Elements.

1 Function Hybrid::Distribute(kdtree, node)
Data: the KD-Tree and the node to be

modified
2 for entry 2 node do
3 if ! isLeaf then
4 if kDTree.CacheHit(entry) then
5 subtree =

hybrid.LoadSubtree(entry);
6 hybrid.Distribute(kdtree,

subtree);

7 else
8 assignment =

kDTree.Candidates(entry,
kdtree);

9 secondary.PutEntries(entry,
assignment);

10 hybrid.UpdateBitlist();

structures are already pre-calculated, there. Finally,
new items which means that terms cooccurring with
points that have not been placed, yet, are inserted to
the R-Tree using the appropriate splitting and subtree
choosing methods.

Algorithm 5 shows how the distribution of the
elements to the respective secondary inverted index
structures is executed. In the final version, for inner
nodes just a check is performed whether at least one
point from the KD-Tree is inside the region described
by one element pointing to a particular subtree. If
this is true, the algorithm recurs to this subtree until a
leaf node is hit. In case of a leaf node, an assignment
of term id to document is built which is valid for the
respective point. This assignment consisting of po-
tentially multiple terms which may point to multiple
documents is then inserted to the secondary inverted
index structures.

The last algorithm to be executed when inserting
a new document instance to the hybrid index is the in-
sertion operation on secondary inverted index struc-
tures (see algorithm 6). It checks whether currently
there is only one document pointed to by the entire
secondary inverted index. If this is true and the passed

Algorithm 6: Insertion Operation on Secondary
Inverted Index.

1 Function Secondary::PutEntries(entry,
assign)

Data: the hybrid R-Tree entry and the
assignment to be placed

2 if secondary.CheckSingleDocument()
then

3 secondary.SetRowKey(document);

4 else
5 if row key not empty then
6 secondary.MoveSec(entries);

7 while assign != /0 do
8 toAdd =

secondary.GetEntries(assign);
9 inverted.Insert(toAdd);

assignment also points to solely this document, only
the bitlist of the R-Tree element which references this
secondary inverted index has to be updated. Other-
wise, the respective assignment must be placed to the
secondary inverted index by pre-calculating all ele-
ments which may be placed in a bulk-loading oriented
procedure. This is executed by first searching a proper
node in the directory B+-Tree and then inspecting the
respective node and probably its successors if more
than one element from the set of entries contained in
the assignment may be placed, there.

6 CONCLUSIONS

We presented an iterative approach for the optimiza-
tion of hybrid index structures supporting spatial-
keyword queries. Finally, a set of algorithms is ob-
tained which leads to efficient support for hybrid in-
dex structures in realistic database environments. An
analysis of queries during the optimizations is omitted
because the entire optimization work is focussed on
leaving the retrieval at least constant or to improve it.
Yet, the main focus was on optimizing the reorganisa-
tion behaviour. The reorganisation in this case refers
to both, insertions and updates, because in many re-
lational databases updates are performed by marking
a row as invalid and inserting a new one. Hence, be-
sides optimizing insertion operation, also the updates
are improved.

The main optimization effort is done in relational
database management systems. However, the final
algorithms may be used in arbitrary environments
where disk oriented persistence and buffer manage-
ment and allocation is an issue. Hence, they may also

Towards�Efficient�Reorganisation�Algorithms�of�Hybrid�Index�Structures�Supporting�Multimedia�Search�Conditions

241



be ported to other kinds of persistence systems like
graph databases.

A data structure always consists of the basic stor-
age structure definition in connection with a set of al-
gorithms to handle the data flow inside this structure.
The data structure in connection with retrieval algo-
rithms was already present in advance of this work.
Yet, the reorganisation algorithms were missing. This
gap is now closed as we presented efficient algorithms
for this task.

REFERENCES

Ang, C.-H. and Tan, T. C. (1997). New linear node splitting
algorithm for r-trees. In SSD ’97: Proceedings of the
5th International Symposium on Advances in Spatial
Databases, pages 339–349, London, UK. Springer-
Verlag.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger,
B. (1990). The r*-tree: An efficient and robust ac-
cess method for points and rectangles. SIGMOD Rec.,
19(2):322–331.

Bentley, J. L. (1975). Multidimensional binary search
trees used for associative searching. Commun. ACM,
18(9):509–517.

Chen, L., Cong, G., Jensen, C. S., and Wu, D. (2013). Spa-
tial keyword query processing: an experimental eval-
uation. In Proceedings of the 39th international con-
ference on Very Large Data Bases, PVLDB’13, pages
217–228. VLDB Endowment.

Felipe, I. D., Hristidis, V., and Rishe, N. (2008). Keyword
search on spatial databases. International Conference
on Data Engineering, 0:656–665.

Guttman, A. (1984). R-trees. a dynamic index structure for
spatial searching. In SIGMOD ’84: Proceedings of
the 1984 ACM SIGMOD international conference on
Management of data, pages 47–57, New York, NY,
USA. ACM.

Göbel, R. and de la Cruz, A. (2007). Computer science
challenges for retrieving security related information
from the internet. Global Monitoring for Security and
Stability (GMOSS), -:90 – 101.

Göbel, R., Henrich, A., Niemann, R., and Blank, D. (2009).
A hybrid index structure for geo-textual searches. In
Proceeding of the 18th ACM conference on Informa-
tion and knowledge management, CIKM ’09, pages
1625–1628, New York, NY, USA. ACM.

Göbel, R. and Kropf, C. (2010). Towards hybrid index
structures for multi-media search criteria. In DMS,
pages 143–148. Knowledge Systems Institute.

Kropf, C., Ahmmed, S., Göbel, R., and Niemann, R. (2011).
A geo-textual search engine approach assisting dis-
aster recovery, crisis management and early warning
systems. In Geo-information for Disaster manage-
ment (Gi4DM).

O’Neil, E. J., O’Neil, P. E., and Weikum, G. (1993). The
lru-k page replacement algorithm for database disk
buffering. In Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data,
SIGMOD ’93, pages 297–306, New York, NY, USA.
ACM.

Porter, M. F. (1997). Readings in information retrieval.
chapter An algorithm for suffix stripping, pages 313–
316. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.

Rocha-Junior, J. a. B. and Nørvåg, K. (2012). Top-k spa-
tial keyword queries on road networks. In Proceed-
ings of the 15th International Conference on Extend-
ing Database Technology, EDBT ’12, pages 168–179,
New York, NY, USA. ACM.

Rocha-Junior, J. B., Gkorgkas, O., Jonassen, S., and
Nørvåg, K. (2011). Efficient processing of top-
k spatial keyword queries. In Proceedings of the
International Symposium on Spatial and Temporal
Databases (SSTD), volume 6849 of LNCS, pages 205–
222. Springer.

Vaid, S., Jones, C. B., Joho, H., and Sanderson, M. (2005).
Spatio-textual indexing for geographical search on the
web. In 9th International Symposium on Spatial and
Temporal Databases SSTD 2005, volume 3633 of Lec-
ture Notes in Computer Science, pages 218–235.

Wu, D., Yiu, M. L., Cong, G., and Jensen, C. S. (2012).
Joint top-k spatial keyword query processing. Knowl-
edge and Data Engineering, IEEE Transactions on,
24(10):1889 –1903.

Zhang, D., Chee, Y. M., Mondal, A., Tung, A. K. H., and
Kitsuregawa, M. (2009). Keyword search in spatial
databases: Towards searching by document. Data En-
gineering, International Conference on, 0:688–699.

Zhou, Y., Xie, X., Wang, C., Gong, Y., and Ma, W.-Y.
(2005). Hybrid index structures for location-based
web search. In CIKM ’05: Proceedings of the 14th
ACM international conference on Information and
knowledge management, pages 155–162, New York,
NY, USA. ACM.

Zipf, G. K. (1949). Human Behaviour and the Principle
of Least Effort: an Introduction to Human Ecology.
Addison-Wesley.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

242


